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Abstract: Predicting the flow situation of cavitation owing to its high-dimensional nonlinearity
has posed great challenges. To address these challenges, this study presents a novel reduced order
modeling (ROM) method to accurately analyze and predict cavitation flow fields under different
conditions. The proposed ROM decomposes the flow field into linearized low-order modes while
maintaining its accuracy and effectively reducing its dimensionality. Specifically, this study focuses
on predicting cavitation on the Clark-Y hydrofoil using a combination of numerical simulation,
proper orthogonal decomposition (POD), and neural networks. By analyzing different cavitation
conditions, the results revealed that the POD method effectively reduces the order of the cavity
flow field while achieving excellent flow field reconstruction. Notably, the zeroth- and first-order
modes are associated with attachment cavitation, while the second-, third- and fourth-order modes
correspond to cavitation shedding. Additionally, the fifth- and sixth-order modes along the hydrofoil
surface are associated with the backward jet flow. To predict the conditions of high-energy modes,
the neural network proved to be more effective, exhibiting excellent performance in stable attached
cavitation. However, for cloud cavitation, the accuracy of the neural network model requires further
improvement. This study not only introduces a novel approach for predicting cavitation flow fields
but also highlights new challenges that will require continuous attention in future research endeavors.

Keywords: cavitation; proper orthogonal decomposition; neural network; hydrofoil; machine learning

1. Introduction

Cavitation is an inevitable problem when studying flow in liquid media [1]. This
problem becomes more pronounced when using pumps, turbines, or hydro-turbines to
transport liquid media or generate power, as drastic changes in pressure can trigger cav-
itation [2–5]. Cavitation leads to several adverse effects, such as noise [6], vibration [7],
and material damage [8]. Its presence has far-reaching consequences across various fields,
such as aerospace (liquid hydrogen and liquid oxygen transportation) [9], ocean energy
utilization (tidal, ocean current, and wave energy conversion) [10], hydraulic engineering
(water transportation) [11], hydropower (water energy utilization) [12], and ships (propeller
problem) [13]. As cavitation can cause performance degradation and material damage in
fluid machinery, it poses a great risk to operational safety and stability [14,15].

Hydrofoils serve as simplified models of fluid machinery blades and are commonly
used to simplify the complex internal flow of impellers; therefore, they are widely used in
basic research in fluid machinery and engineering [16,17]. To investigate hydrodynamic
cavitation, researchers often use a cavitation water tunnel, where various foil profiles
are installed and tested [18]. By adjusting the flow rate of the circulating pump and
valves, the speed of upstream flow can be altered, and different cavitation states can
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be investigated by controlling the environmental pressure through adjustments to the
vacuum pump and cavitation tank. Researchers have extensively studied different states
of hydrofoil cavitation. On smaller cavitation scales, it exhibits an attached and relatively
stable state [19,20]. As the cavitation scales increase, the cavities become unstable and shed
along the flow direction [21–23]. When cavitation encompasses the entire flowing object,
it is termed supercavitation, characterized by unique fluid dynamics [24]. Additionally,
in cases with a gap at the end, tip leakage cavitation may occur, which has attracted the
attention of numerous researchers [25,26]. Overall, the cavitation flow field is characterized
by high-dimensional nonlinearity [27,28]. Its varied forms and complexities under different
situations pose great challenges for research endeavors.

In reality, the complex changes in cavitation are closely related to turbulent flow [29].
Turbulence was first observed by Reynolds, who noticed the transition of flow in a circular
tube from regular to turbulent as the incoming flow velocity increased. However, the
Navier–Stokes equation, when averaged, faces closure problems, and the existence and
smoothness of the equation remain unresolved [30,31]. Fortunately, with advancements
in science and technology, numerical solutions for turbulence have played a significant
role, leading to notable progress in turbulence research [32–34]. This progress can be
attributed to the efforts of researchers such as Prandtl, who addressed practical problems in
fluid mechanics. The large amount of data generated, including experimental, simulation,
and image data, can potentially supplement and improve the missing and unresolved
turbulence control equations if adequately processed and summarized [35]. Although this
remains challenging, summarizing the statistical laws in massive data through data-driven
approaches aligns with the efforts of researchers such as Taylor and von Carmen.

Currently, machine learning plays a crucial role in handling massive amounts of data,
significantly advancing the field of fluid dynamics. Some scholars have also conducted
research on how machine learning can be applied in the field of fluid machinery [36].
However, handling large amounts of data presents a great challenge, particularly when
considering the application of machine learning techniques. To effectively use machine
learning, it becomes essential to implement functions such as dimensionality reduction [37]
and sparse identification [38] and then achieve temporal or spatial prediction [39]. The
most commonly used method for reducing the dimensionality of complex dynamic flow
systems is linear mode decomposition. It separates the spatiotemporal coherent structural
features of the flow field in low-dimensional space [40,41]. This approach decomposes the
high-dimensional flow field into a linear superposition of lower-order modes containing
principal components with specific physical significance. By analyzing these lower-order
modes individually, richer and more specific information can be extracted from the overall
flow. Another frequently used method is proper orthogonal decomposition (POD), which
decomposes a random quantity into a set of basis functions determined by its own charac-
teristics to represent it [42]. In POD, the principle for determining the basis function is to
maximize the energy on the lowest order pattern during each decomposition process. Dy-
namic mode decomposition (DMD) is another method of flow field feature extraction [43].
It focuses on frequency analysis and offers a unique advantage in spatiotemporal coupling
modeling. Compared to DMD, the POD method analyzes the flow field from an energy
perspective and has better adaptability in flow field analysis.

Several researchers have applied the POD method in flow field analysis. Liberge et al. [44]
investigated the flow around an oscillating cylinder using POD and constructed a low-order
dynamic system to characterize flow features. Xie et al. [45] conducted POD of the flow
field inside a bending duct, extensively reconstructing and analyzing the Karman vortex
street and other vortex characteristics. Liu et al. [46] extracted the dominant modes of the
flow field around ALE 15 hydrofoil. They extensively explored the characteristics of the
hydrofoil-surrounded flow field and compared the POD with other mode decomposition
methods. Wu et al. [47] studied the flow inside the jet pipe using POD and demonstrated
the coherent structure of the flow with the snapshot POD technique. Resseguier et al. [48]
introduced a random model based on the POD, which improved the accuracy and stability
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of small-scale turbulent flow analysis. Although POD has gained wide applications,
challenges persist in the mode decomposition of two-phase flow fields, mainly arising
from the complexity of flow field information (discussed in the next chapter) [49]. This
complexity presents obstacles to machine learning and requires further exploration.

This study focuses on the computational fluid dynamics analysis of the cavitation flow
field around the classic Clark-Y hydrofoil [50]. The validity of the data is verified through
comparison with experimental data. The POD is then used to attempt dimensionality re-
duction in the convection field at a certain cavitation number (within the range of cavitation
scale and morphology). It aims to summarize the data information rules from different
orders, effectively combining neural networks to explore machine learning possibilities
and discuss the potential of breaking away from tedious computational fluid dynamics
processes. Additionally, the results of this study provide scientific support for a deeper
understanding of the mechanism of hydrofoil shedding cavitation.

2. Hydrofoil Cavitation Problem

Cavitation is a liquid–gas phase transition that occurs at the edge of the gas–liquid
phase saturation state. Figure 1 shows the phase diagram of the cavitation process. If the
temperature remains constant and the pressure p drops below the saturation pressure pv,
the liquid–gas phase transition is generally referred to as ‘cavitation’:

p < pv, (1)
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Figure 1. Cavitation process on the phase diagram.

Conversely, if the pressure remains constant and the temperature rises, it is referred to
as ‘boiling’. Despite their different names, the two processes have the same mechanism.

For cavitation over a hydrofoil, the position of the lowest pressure point or low-
pressure zone determines the location of cavitation. Figure 2 shows that when the hydrofoil
is at a certain incidence angle, the incoming flow collides with the high-pressure side of
the foil while the opposite side experiences low pressure. Slightly downstream from the
flow separation point lies the lowest pressure point, corresponding to a certain range of
the lowest pressure region. If the flow regime in the low-pressure region remains stable,
cavitation occurs in an attached state. However, as the environmental pressure decreases
or the incidence angle changes, the low-pressure region expands to areas of unstable
flow. At this point, the cavitation enters a shedding state, and the shedding vortex core is
characterized by very low pressure with cavitation inside. If the low pressure continues to
increase, super cavitation occurs, and the entire foil is surrounded by cavities.
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Figure 2. Schematic map of cavitation over hydrofoil.

If a monitoring point is placed on the surface of the hydrofoil, such as the MP0 point
in Figure 2, the pressure variation at this point typically exhibits periodic fluctuations
when cavitation does not occur (i.e., pressure is high). Figure 3 shows that the fluctuation
pattern is relatively smooth and continuous. However, during shedding cavitation, the
vapor volume fraction fv at the MP0 point exhibits pulsations. The fv pulsation is bounded
between 0 and 1, resulting in a ‘ceiling’ limitation that poses great challenges in investigating
the cavitating flow [51]. Therefore, there is a pressing need to acquire more mathematical
and physical information through data-driven approaches.
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Figure 3. Schematic map of pressure pulsation in cavitation-free status and vapor volume fraction
pulsation in shedding cavitation status.

3. Simulation Data Preparation
3.1. Clark-Y Hydrofoil Model and Flow Field Discretization

In this study, the case of the Clark-Y hydrofoil model is used to examine the charac-
teristics of surface low-pressure region cavitation and its shedding behavior [49]. Figure 4
shows the computational domain, and the specific values of each linear dimension are
presented in Table 1. Additionally, the chord length c, maximum thickness tbmax, and
incidence angle α of hydrofoil are shown in Figure 4 and presented in Table 1.
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Table 1. Parameters of the Clark-Y hydrofoil cavitation case.

Parameter Value Unit Description

L1 105 mm 1.5 c length
L2 105 mm 1.5 c length
L3 245 mm 3.5 c length
L4 455 mm 6.5 c length
c 70 mm chord

tbmax 8.27 mm maximum thickness
α 8 degrees incidence angle

3.2. Setup of Computational Fluid Dynamics

Computational fluid dynamics (CFD) is used to simulate the cavitation phenomenon.
Two phases of water and steam are considered for the medium at 20 ◦C within the computa-
tional domain. The boundary conditions are designed to meet the simulation requirements,
as shown in Figure 5. The inlet is a velocity inlet with a value of 10 m/s., while the outlet is
a static pressure outlet that can be adjusted to simulate different cavitation scenarios. The
surface of the hydrofoil is treated as a boundary of the no-slip wall type, and the upper
and lower boundaries of the domain follow the same no-slip wall type. Symmetry-type
boundaries are used to simplify 3D calculations to 2D and reduce computational costs.
The turbulent flow is modeled using the shear stress transport model [35,52], while the
cavitation mass transfer uses the Zwart model [53]. Figure 6 shows the mesh used in the
CFD simulation. After boundary refinement, the 2D mesh has a total of 112,896 nodes with
a y+ value of approximately 1.0.
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In this study, two dimensionless parameters are important: the Reynolds and cavita-
tion numbers. They can be expressed as follows:

Re =
ρvinc

µ
(2)

σ =
2(pin − pv)

ρv2
in

(3)

where ρ is the density, vin is the inlet velocity, c is the foil chord length, µ is the dynamic
viscosity, pin is the inlet pressure, and pv is the saturation pressure. In this study, the
Reynolds number used is 6.9 × 105, and the cavitation number ranges from 0.59 to 0.96,
with an increment of 0.01 for each operating condition.

3.3. Verification and Validation of Simulation Data

To verify the accuracy of the CFD convection field prediction, a comparative analysis
was conducted between CFD data and test data [49] at a cavitation number σ = 0.8, as
shown in Figure 7. The main focus was on comparing the distribution of time-averaged
velocity off the wall at five different positions on the hydrofoil surface. The results reveal
that the predicted CFD velocity values and test values are in strong agreement at these
five different positions, reflecting the high predictive performance of the CFD simulation
for the flow field. This validation confirms the suitability of the data for smooth modal
decomposition and machine learning. Figure 8 shows the vapor volume distribution at
different cavitation numbers during the same time step. As the cavitation number decreases
from σ = 0.96 to σ = 0.59, the volume of cavitation gradually increases, and the covered area
expands downstream, showing a trend of downstream shedding of the cavity. Additionally,
within the range shown in Figure 8, the cavity length increases from 70% to 100% of the
hydrofoil length.
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4. Order Reduction in Cavitating Flow Data
4.1. Proper Orthogonal Decomposition

As previously mentioned, POD is a reduced order method based on singular value
decomposition. When applied to flow field analysis, especially spatial high-resolution
flow field analysis obtained through simulation, POD samples data from different time
points. Based on this, the flow field information f is decomposed into spatially correlated
orthogonal bases and can be expressed as follows:

f =

 |
f (t1)
|

|
f (t2)
|

L
|

f (tn)
|

, (4)

where the column of f (ti) is the ith flow field snapshot. Before solving the POD mode, it
is customary to subtract the average value of the flow field and split the snapshot into
two parts: the mean and pulsation. The mean part is referred to as the zeroth-order mode,
while the pulsation part is decomposed to obtain the first-, second-, . . ., nth-order modes
as follows:

f = UΣVT =
r

∑
j=1

σjujvT
j , (5)

where r is the rank of matrix f. U is the orthogonal matrix column of uj, with a size of
n × r. V is the orthogonal matrix column of vj, with a size of m × r. Σ, the singular value
representing the scaling relationship between U and V, is the diagonal matrix of size r × r
and it is referred to as the ‘energy’ of modes. After decomposing the flow field, if the
first nth-order modes with high energy can effectively reconstruct the information of the
original flow field (with an error less than a specific proportion), then these modes are
referred to as the dominant modes. This enables the flow field to be effectively split and
analyzed, laying the foundation for subsequent machine learning analysis.

4.2. Flow Pattern by Order

Figures 9 and 10 show the analysis of the time step of cavitation shedding under
σ = 0.8 conditions. In Figure 9, the POD decomposition results indicate the energy propor-
tion of the first 10 orders, excluding the mean field of the 0th order. The first mode exhibits
the highest energy and accounts for over 40% of the total energy, while the second and third
modes also exceed 10% energy contribution. The energy of subsequent modes gradually
decreases. From the perspective of accumulated energy, the sum of the first six orders
exceeds an 80% criterion, making them the dominant modes with great influence on the
flow behavior. Figure 10 shows the specific image situation for various modes. Comparing
the modes with the general field, it becomes evident that the strongest point of the mean
field corresponds to the stable cavitation position at the leading-edge and front part of the
hydrofoil, with the first mode also dominating at this position. The second-, third-, and
fourth-order modes are most prominent at the trailing edge, representing the shedding of
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cavitation. Additionally, the fifth and sixth modes exhibit changes on the surface of the
hydrofoil, indicating the flow of fluid along the foil surface.
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4.3. Energy Law of Modes

Examining the changes in the proportion of energy in different modes is important for
data-driven research. Figure 11a shows an analysis of the energy proportion of the first to
sixth-order modes as a function of the cavitation number σ. Overall, the energy intensity of
the first- and second-order modes decreases as σ increases, while the other orders show an
opposite trend. Using linear fitting analysis, the formula obtained is expressed as follows:

EM = C0 + C1σ, (6)
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where C0 is a constant term, C1 is a first-order term, and EM is the proportion of energy
of modes. Figure 11b shows the law of the first-order term C1 in linear fitting. As the
cavitation scale increases with the rising σ, the attached cavitation at the leading edge
becomes stronger, while the shedding cavitation at the trailing edge weakens.
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5. Learning and Prediction
5.1. Workflow

In an attempt to learn and predict cavitation flow fields, a workflow combining neural
networks and POD is used, as shown in Figure 12. The process involves data collection,
neural network training, and prediction. The data used are generated through CFD sim-
ulation of the flow field, especially the flow field data of the cavitation vapor volume
fraction. Based on these data, a database is constructed for the different cavitation number
conditions. In this study, the backpropagation (BP) neural network is used, and the data are
divided into training, testing, and validation sets, with approximately 70% of samples used
for training, 15% for testing, and 15% for validation. The Levenberg–Marquardt algorithm
is chosen as the training algorithm. In this case, the input data correspond to the cavitation
number, while the output data represent the cavitation vapor field at 6000 points. Both
the input layer number ni and output layer number no are set to 1, and the hidden layer
number nhd can be calculated using the following formula:

nhd = Cep +
√

ni + no + 1, (7)

where Cep is the empirical factor typically recommended to be in the range of 1 to 10 [54].
In this study, Cep is set to 9, resulting in nhd being 9 for each order of POD mode.
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5.2. Comparison by Order

To show the effectiveness of the neural network (NN) in predicting the cavitation
volume fraction, the cavitation number σ = 0.8 is chosen as an example. Figure 13a shows
the NN-predicted cavitation volume fraction distribution by POD modes at a specific time
step of cavitation shedding. Additionally, Figure 13b compares the NN-predicted value
against the CFD-POD data by order (see Figure 10), and the error values shown to take into
account the actual proportion of energy.
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5.3. Discussion

For the cavitation on the upper surface of the hydrofoil, its dominant mode represents
the flow posture associated with the stable attachment of the cavity. However, as the
cavitation number σ decreases, the volume of the cavity increases, disrupting the stability
of the attached cavity due to the ‘backward jet’ phenomenon [55,56]. Under this influence,
the cavitation changes to a shedding state. The second-, third- and fourth-order modes
represent the shedding cavity flow posture discussed in the above analyses. The modes
that vary along the surface of the hydrofoil in the 5th and 6th orders may be related to the
backward jet; however, further evidence is required, which will be extensively compared
and analyzed in our future hydrodynamics studies. Figure 14 shows a brief overview of
the discussed phenomenon. Overall, POD is a valuable tool in studying cavitating flow
and facilitates a deeper understanding of flow characteristics through mode decomposition.
The splitting of different modes also holds potential benefits for flow control and other
related technologies.
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6. Conclusions

The following conclusions can be drawn from this study:

(a) CFD simulation proved effective in predicting the flow field around the hydrofoil. Af-
ter comparison with the tested data, the capture of velocity fields at different positions
was found to be more accurate. The analysis of cavitation two-phase flow using CFD
revealed that the size of the cavity varied with the cavitation number σ. As σ decreased
from 0.96 to 0.59, the relative length of the cavity increased from 70% of the hydrofoil
length to approximately 100%. Additionally, the attached cavity gradually exhibited a
downstream shedding phenomenon, forming a shedding cavitation situation.

(b) The use of POD enabled effective mode decomposition of the cavitation volume
fraction field. Except for the zeroth-order (mean) field, the remaining modes were
sorted based on their energy intensity. For instance, taking σ = 0.8 as an example, the
1st order mode energy accounted for over 40%, and the sum of the energies for the
first six modes exceeded 80%. The analysis of the corresponding flow phenomenon
indicated that the 0th and 1st modes are related to the attachment of a stable cavity,
while the 2nd, 3rd, and 4th modes are related to the shedding of cavitation. The
5th and 6th modes along the hydrofoil surface may also be related to the backward
jet flow.

(c) The BP neural network was trained using modal data of CFD-POD under different
cavitation numbers. Using the cavitation number σ as input and a vapor volume of
6000 points as output, the cavitation distribution pattern at a certain cavitation number
can be predicted. For instance, taking σ = 0.8 as an example, the prediction results of
the zeroth- and first-order modes were accurate with minimal errors. However, the
prediction of intensity for the third- and fourth-order modes was not as precise, as
their contours appeared similar. The prediction effect of the 5th mode was accurate,
while the 6th mode showed a slightly worse pattern. For stable cavitation, the neural
network performed excellently, but for shedding cavitation, the accuracy of the neural
network surrogate model needs further improvement.

In summary, with the increasing complexity of high-dimensional flow fields, the
volume of flow field monitoring data will also significantly increase, posing substantial
challenges for machine learning and cavitation flow prediction in the research process.
Certain aspects of this study may provide reference for related issues in fluid research.
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Additionally, how to further improve the accuracy of extracting coherent structures in
cavitation flow fields and enhance the prediction accuracy and quality of cavitation flow
fields will need continuous attention in future research.
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