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Abstract: This paper investigates the problem of real-time parameter identification for ship ma-
neuvering parameters and wave peak frequency in an ocean environment. Based on the idea of
Euler discretion, a combined model of ship maneuvering and wave peak frequency (ship–wave)
is made a discretion, and a discrete-time auto-regressive moving-average model with exogenous
input (ARMAX) is derived for parameter identification. Based on the ideas of stochastic gradient
identification and multi-innovation theory, a multi-innovation stochastic gradient (MI-SG) algorithm
is derived for parameter identification of the ship–wave discretion model. Maximum likelihood
theory is introduced to propose a maximum likelihood-based multi-innovation stochastic gradient
(ML-MI-SG) algorithm. Compared to the MI-SG algorithm, the ML-MI-SG algorithm shows improve-
ments in both parameter identification accuracy and identification convergence speed. Simulation
results verify the effectiveness of the proposed algorithm.

Keywords: ship motion parameters; wave peak frequency; multi-innovation; stochastic gradient;
maximum likelihood

1. Introduction

As a crucial industry for economic development, the shipping industry is responsible
for transporting over 90% of global trade cargo [1,2]. The performance of ship motion
control systems directly impacts shipping safety and economic costs. Therefore, an accurate
ship maneuvering model is essential to ensure optimal control system performance [3,4].
Given that a ship is a complex system with time-varying nonlinearity, its model parameters
change with variations in load, draft, speed, etc. Hence, it is crucial to employ the system
identification method to identify unknown model parameters in real-time during ship
navigation [5,6]. In addition, a ship is affected differently by wind and waves in different
sea conditions [7–9]. The peak frequency of waves can be used to judge sea conditions,
making the identification of ship maneuvering parameters and peak frequency of waves
both important and practically significant.

Ship maneuvering models play a crucial role in the analysis of ship maneuverability,
the design of ship maneuvering controllers, and the development of ship maneuvering
simulators [10]. Ship maneuvering models provide a high degree of generalization and a
theoretical abstraction of the characteristics of the ship motion dynamic system, which can
reflect the physical nature of the ship and the quantitative changes in variables during the
actual motion process. According to their mathematical forms, ship maneuvering models
can be divided into three categories: the Abkowitz holistic mathematical model [11], the
MMG separation mathematical model [12], and the response mathematical model [13].
Among them, mathematical models are widely used in the field of control [14–19]. They
take rudder angle as an input and return bow angle and bow speed as the output. The
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parameter values of the ship response model are essential for predicting the motion state of
the ship [20]. Among them, the K and T indices can be calculated by either the Nomoto
standard Z maneuver test method or the regression equation estimation method. In prac-
tice, many of the parameters of the ship motion model are calculated or determined by
empirical formulas, which are based on ship measurement data [21,22]. System identifica-
tion based on experimental data is an important method for obtaining the parameters of the
motion model [23]. Zhang et al. used the crow search algorithm to address the parameter
identification problem of a ship motion model in the autonomous navigation of ships [24].
Allotta et al. proposed a rapid procedure for the fast calibration of the main hydrodynamic
parameters of an AUV, and the procedure has been successfully validated using simulation
tools and experimental data derived from campaigns at sea [25]. Cardenas et al. proposed
an identification method able to estimate a complete set of hydrodynamic coefficients
present in the AUV maneuver equations and, using analytical methods, provided an im-
provement not only to the convergence rate throughout the inclusion of the ASE estimates
but also to the estimates’ accuracy [26]. To diminish the parameter drift, reconstruction of
the samples and modification of the mathematical model of ship maneuvering motion were
carried out in another work. The difference method and the method of additional excitation
were proposed to reconstruct the samples in [27]. A new method for hydrodynamic coeffi-
cient identification in ship maneuvering mathematical models based on the Bayesian rule
was presented, tested, and validated in a nonlinear 4-DOF model with 108 hydrodynamic
derivatives [28].

As the ship’s speed, load, and sea state affect the parameters of the ship maneuvering
model, it should use recursive estimation algorithms [29–33] to identify the ship maneuver-
ing model through using observation data in real-time [34,35]. Since Kensaku Nomoto’s
standard algorithm for obtaining K,T via the Z-test was proposed, ship maneuverability
researchers in various countries have been happy to determine K,T using the Z-test for
evaluating the ship’s maneuverability performance [36]. It is simple, fast, and accurate to
obtain K,T with the system identification method. Currently, commonly used identifica-
tion algorithms include least squares [37], maximum likelihood estimation [38], Kalman
filtering [39], neural networks [40], and support vector machine [41]. Least squares (LS)
is a classical identification algorithm that was commonly used before the emergence of
intelligent algorithms. However, the algorithm is sensitive to outliers in the training sam-
ples, prone to overfitting, and suffers from inconsistent estimation in the identification
process [42]. To enhance the applicability and reliability of the least squares algorithm, the
stochastic gradient algorithm has been applied to the identification of ship maneuverability
models [43,44]. Song et al. proposed a novel nonlinear innovation-based algorithm using
the hyperbolic tangent function and a stochastic gradient algorithm [45]. Xie et al. proposed
multi-innovation least squares and improved multi-innovation extended Kalman filtering;
the recognition accuracy and convergence rate were higher than traditional recognition
methods [46]. Zhao et al. proposed a novel identification algorithm for 3-DOF ship ma-
neuvering modeling; the algorithm combined multi-innovation and nonlinear innovation
techniques that focus on the innovation’s processing [47].

However, the above methods do not consider the problem that, under wind and wave
disturbances, the ship’s heading will sway with the wave disturbances, and the automatic
steering gear will strike the rudder when there is a heading deviation [48–50]. In order
to avoid frequent steering under wind and wave disturbances, wave filters need to be
designed [51–53]. When using the commonly used filtering methods, the peak frequency
acquisition time is long and it is easy to cause excessive phase lag in the control system. In
recent years, a number of methods have been developed for identifying the peak frequency
of ocean waves. Han et al. proposed a novel algorithm to adaptively search for the optimal
cutoff frequency for a low-pass filter with high accuracy. The algorithm is fundamentally
based on the fact that the vessel naturally acts as a low-pass filter and the energy from the
high-frequency components, e.g., signal noise, is significantly smaller than that from the
wave-induced vessel response [54]. For ships with model uncertainty and cross-correlation
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noise interference, Jiao et al. proposed an improved smooth variable structure filter with
cross-correlation noise [55]. Ouyang et al. proposed a robust and easy-to-operate non-
parametric modeling method for wave ship maneuvering based on Gaussian process
regression (GPR). Difficult-to-measure wave parameters are not required for identifying
dynamic models [56]. Zago et al. proposed a new parametric approach for wave estimation
based on ship motion, giving a parametric description of the encounter wave spectrum,
which allowed the algorithm to perform wave inference in the ship’s frame of ref. [57].

System identification is the theory and method of establishing a mathematical model
close to the measured system on the basis of the input and output data of the system [58–62],
including the determination of the model structure and the estimation of the model pa-
rameters [63,64]. Ding et al. proposed two recursive least squares parameter estimation
algorithms by using the data filtering technique, and the auxiliary model identification idea
can generate more accurate parameter estimates [65]. To achieve higher accuracy, Guo et al.
applied auxiliary model identification ideas and decomposition techniques to derive a
two-stage recursive least squares algorithm for estimating the M-OEARMA system [66].
Aiming at the phenomenon of past time-varying parameters in the autoregressive process,
with reference to the parameter separation scheme, Xu et al. proposed a recursive identi-
fication method based on the decomposition technique of interaction estimation theory
for estimating the autoregressive coefficients [67]. To reduce the computational burden,
Yang et al. proposed an iterative algorithm for decomposition based on a multi-innovation
gradient using the decomposition technique [68,69]. Considering the identification problem
of linear continuous time-lag systems, Sun et al. derived a stochastic gradient gradient-
based iterative (SG-GI) algorithm capable of estimating unknown parameters and unknown
time delays simultaneously by using multi-frequency response and also introduced a for-
getting factor to improve the parameter estimation accuracy [70].

The system identification approach enables accurate identification of ship maneuver-
ing parameters and wave frequencies. This is critical for the design of ship maneuvering
controllers, observers, and filters. By establishing accurate ship maneuvering models and
wave frequency models, the behavior of ships under different maneuvering conditions
and wave disturbances can be better understood and predicted. This plays an important
role in improving ship maneuvering performance and safety. In this paper, we combine
the first-order ship maneuver response model and the first-order wave disturbance model
to derive a discrete-time ARMAX ship–wave model for the identification of ship maneu-
ver parameters and wave frequency. In order to achieve this goal, a multi-innovation
stochastic gradient (MI-SG) online identification method for ship K-T parameters and wave
frequencies is proposed. In comparison to the traditional method, this method can improve
the algorithm’s convergence speed and parameter identification accuracy. In addition,
in order to further improve the performance of the algorithm, a maximum likelihood
multi-innovative stochastic gradient (ML-MI-SG) algorithm based on maximum likelihood
theory is proposed. The main contributions of this paper are as follows.

• The ship maneuvering response model and wave disturbance model are converted to
an ARMAX model based on the idea of Euler discretization for ship K-T parameters
and ocean wave frequency identification.

• Aiming at the ship–wave discrete-time ARMAX model, a ship–wave parameter identi-
fication method based on MI-SG algorithms is proposed.

• To improve the identification accuracy by introducing the theory of maximum likeli-
hood, a ML-MI-SG algorithm is proposed to solve the problem.

The paper’s structured as below: Section 2 details the transformation of the ship
maneuvering response and wave disturbance model. The MI-SG algorithm, which is based
on a ship–wave model, is presented in Section 3. After that, the ML-MI-SG algorithm
is presented in Section 4. The calculation method of the ship K-T parameters and wave
frequency based on identification parameters is given in Section 5, and the efficiency of the
suggested algorithm is validated through simulation in Section 6. Ultimately, in Section 7,
we provide concluding remarks.
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2. Ship–Wave Mathematical Model

The nonlinear ship maneuvering motion and second-order linear wave disturbance
models are presented in this section. The motion of the ship’s maneuvering can be described
by three degrees of freedom (surge, sway, and yaw), and the hydrodynamic coefficients
can be expressed in terms of constants, as illustrated in Figure 1. The equation for ship’s
motion in the horizontal plane is given by [71]

mu̇ − mvr − mxGr2 = X,

mv̇ + mur + mxG ṙ = Y, (1)

mxG v̇ + mxGur + Izz ṙ = N,

where the mass and moment of inertia are denoted as m and Izz, respectively. The position
of the center-of-mass in the x-direction is represented by xG. The hydrodynamic forces and
moment are represented by X, Y, and N.
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Figure 1. The 3-DOF motion model of an unmanned surface ship.

The equation for surge motion can be decoupled from the equations for the motion
with three DOFs. By linearizing the sway force and yaw moment, the linear equations [71]
are given by

(m − Yv̇)v̇ + (mxG − Yṙ)ṙ + mur = Yvv + Yrr + Yδδ,

(mxG − Nv̇)v̇ + (IZ − Nṙ)ṙ + mxGur = Nvv + Nrr + Nδδ. (2)

A state-space representation as presented in Fossen [71] gives:

MRv̇ + NR(v)v = BRδR, (3)

where the sway velocity and yaw rate in the body-fixed frame are denoted by v = [v, r]T ,
and the rudder deflection is denoted by δR. The matrices MR, NR(v), and BR are presented:
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MR =

[
m − Yv̇ mxG − Yṙ

mxG − Nv̇ Iz − Nṙ

]
,

NR(v) =
[
−Yv mu − Yr
−Nv mxGu − Nr

]
, (4)

BR =

[
Yδ

Nδ

]
.

The Abkowitz model [11] comprises nonlinear terms that pose challenges in terms
of parameter identification. Thus, a horizontal second-order K-T model is obtained by
eliminating the sway velocity v in Equation (3) without considering the nonlinear terms [36].
The resulting model is given below:

T1T2r̈ + (T1 + T2)ṙ + r = Kδ

(
δR + T3δ̇R

)
, (5)

where T1, T2, T3, and K are the maneuvering indices, which are expressed as:

T1 + T2 =
(m − Yv̇)(mxGu − Nr)− (IZ − Nṙ)Yv + (mxG − Yṙ)Nv + (mxG − Nv̇)(mu − Yr)

−Yv(mxGu − Nr) + Nv(mu − Yr)
,

T1T2 =
(m − Yv̇)(IZ − Nṙ)− (mxG − Yṙ)(mxG − Nv̇)

−Yv(mxGu − Nr) + Nv(mu − Yr)
,

Kδ =
YδNv − NδYv

−Yv(mxGu − Nr) + Nv(mu − Yr)
, (6)

T3 =
−Yδ(mxG − Nv̇) + Nδ(m − Yv̇)

YδNv − NδYv
.

This equation is commonly referred to as the second-order Nomoto model [36], and
the transfer function is provided as follows:

r(s)
δR(s)

=
−Kδ(1 + T3s)

(1 + T1s)(1 + T2s)
. (7)

In Equation (7), the pole term (1 + T2s) and the zero terms (1 + T3s) cancel each other
out [72]. As T2 and T3 are typically of the same order of magnitude due to their small
difference, this is applied to simplify the equation through pole-zero cancellation. The
resulting equation is the well-known Nomoto model of the first order.

Tṙ + r = KδδR. (8)

We know that in absence of the roll and pitch modes (ϕ = θ = 0), the yawing rate is
defined by

ψ̇ = r. (9)

The following transfer function typically describes the oscillatory motion of the wave.

ψH(s) =
Kws

s2 + 2ζωns + ω2
n

wH(s), (10)

where wH is a zero-mean Gaussian white noise and ωn is the wave peak frequency.
Equation (10) is usually represented by the following state-space representation:

ψ̇H = −2ζωnψH − ω2
nξH + KwwH ,

ξ̇H = ψH . (11)
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Therefore, considering the ship motion and second-order wave disturbances models:

ṙL(k) =
−rL(k) + KδδR(k)

T
,

ψ̇L(k) = rL(k),

ψ̇H(k) = −2ζωnψH(k)− ω2
nξH(k) + Kww(k), (12)

ξ̇H(k) = ψH(k).

Generally, the total ship yaw angle consists of a low-frequency ship yaw angle and a
high-frequency wave disturbance yaw angle. The total yaw angle of the ship can therefore
be written as

ψ(s) = ψL(s) + ψH(s). (13)

This system can be written in state-space form

ẋ(k) = Ax(k) + Bδ(k) + Ew(k),

y(k) = Cx(k), (14)

where x(k) = [rL(k), ψL(k), ψH(k), ξH(k)]T , δ(k) is the rudder angle, w(k) is a zero-mean
Gaussian white noise sequence, y(k) = ψ(k) = ψL(k) + ψH(k), and

A =


−1/T 0 0 0

1 0 0 0
0 0 −2ζωn −ω2

n
0 0 1 0

, B =


K/T

0
0
0

, E =


0
0

Kw
0

, C =


0
1
1
0

. (15)

Next, we can transform this model representation to a discrete-time ARMAX model:

Aα

(
z−1

)
y(k) = Bα

(
z−1

)
u(k) + Cα

(
z−1

)
e(k). (16)

The polynomials Aα(z−1), Bα(z−1), and Cα(z−1) will depend on the discretization
method used. In this paper, we discretize Equation (14) using the Euler discretization
method [71]. The Euler discretization formula is

x(k + 1) = Φx(k) + ∆u(k) + Γe(k),

y(k) = Cx(k), (17)

where Φ = exp(A h), ∆ = A−1(Φ − I)B, Γ = A−1(Φ − I)E. Hence,

y(k) = C(zI − Φ)−1∆u(k) + C(zI − Φ)−1Γe(k). (18)

Using the fact that:

(zI − Φ)−1 =
adj(zI − Φ)

det(zI − Φ)
. (19)

From Equations (18) and (19) we have

det(zI − Φ)y(k) = Cadj(zI − Φ)∆u(k) + Cadj(zI − Φ)Γe(k), (20)

where Aα

(
z−1) = det(zI − Φ), Bα

(
z−1) = Cadj(zI − Φ)∆, Cα

(
z−1) = Cadj(zI − Φ)Γ.

In order to establish the identification model, the ship–wave model can be expressed
as an ARMAX model according to Equation (16), where
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Aα

(
z−1

)
:= 1 + a1z−1 + a2z−2 + a3z−3 + a4z−4,

Bα

(
z−1

)
:= b1z−2 + b2z−3 + b3z−4,

Cα

(
z−1

)
:= c1z−1 + c2z−2 + c3z−3 + c4z−4.

According to the above formula, we can obtain the following relationship:

y(k) = a1y(k − 1) + a2y(k − 2) + a3y(k − 3) + a4y(k − 4)

+ b1u(k − 2) + b2u(k − 3) + b3u(k − 4)

+ c1e(k − 1) + c2e(k − 2) + c3e(k − 3) + c4e(k − 4), (21)

where

a1 =
4T − h − 2ζωnhT

T
,

a2 =
2h − 6T + 6ζωnhT − 2ζωnh2 − ω2

nh2T
T

,

a3 =
4T − 3h − 6ζωnhT + 4ζωnh2 − 2ω2

nh2T − ω2
nh3

T
,

a4 =
h − T + 2ζωnhT − 2ζωnh2 − ω2

nh2T − ω2
nh3

T
,

b1 =
kh2

T
,

b2 =
2kh2(ζωnh − 1)

T
,

b3 =
kh2(ω2

nh2 − 2ζωnh + 1)
T

,

c1 = 1,

c2 =
h − 3T

T
,

c3 =
3T − 2h

T
,

c4 =
h − T

T
.

Equation (21) can be rewritten as

y(k) = γT
s (k)τs + γT

n (k)τn + v(k)

= γT(k)τ + v(k), (22)

where

τs := [a1, a2, a3, a4, b1, b2, b3]
T ∈ Rn1 ,

τn := [c1, c2, c3, c4]
T ∈ Rn2 ,

τ :=
[
τT

s , τT
n

]T
∈ Rn0 ,

γT
s (k) := [y(k − 1), y(k − 2), y(k − 3), y(k − 4), u(k − 2), u(k − 3), u(k − 4)] ∈ Rn1 ,

γT
n(k) := [e(k − 1), e(k − 2), e(k − 3), e(k − 4)] ∈ Rn2 ,

γT(k) :=
[
γT

s (k), γT
n(k)

]
∈ Rn0 ,

where τs, τn, and τ are the parameter vectors requiring identification, and γs(k), γn(k), and
γ(k) are the information vectors.
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In practice, there are other affecting uncertainties. Equation (21) can be expressed as
an ARMAX model

Aα(z−1)y(k) = Bα(z−1)u(k) + w(k). (23)

The proposed parameter estimation algorithms in this paper are based on the pa-
rameter identification model in (22). Many identification methods are derived based on
the identification models of systems [73–77] and can be used to estimate the parame-
ters of other linear systems and nonlinear systems [78–82] and can be applied to other
fields [83–87] such as information processing and process control systems. The objective is
to develop innovative identification algorithms that can objectively evaluate parameters of
ship’s motion and the frequency of the wave’s peak.

3. The Multi-Innovation Stochastic Gradient Algorithm

In this section, an MI-SG algorithm based on the input–output representation of
the ship–wave model is proposed by combining the multi-innovation theory with the
stochastic gradient algorithm. The stochastic gradient (SG) algorithm [88,89] can ascertain
the parameter matrix τ in Equation (22):

τ̂(k) = τ̂(k − 1) +
γ(k)
Υ(k)

ϵ(k), (24)

ϵ(k) = yT − γT(k)τ̂(k − 1), (25)

Υ(k) = Υ(k − 1) + ∥γ(k)∥2, Υ(0) = 1. (26)

Here, ϵ(k) ∈ R1×m is a row vector that shows an innovation and element of ϵ(k) is an
individual innovation at present moment.

To enhance the convergence rate of the SG algorithm, a MI-SG algorithm is presented.
Refer to [90–96] and update the SG algorithm by expanding the scalar innovation ϵ(k) to a
multi-innovation vector:

Γ(p, k) =


ϵ(k)

ϵ(k − 1)
...

ϵ(k − p + 1)

 ∈ R1×p, (27)

where p refers to the length of innovation, and

ϵ(k − i) = y(k − i)− γT(k − i)τ̂(k − i − 1) ∈ R1×p. (28)

Normally, the estimation of τ̂(k− 1) is closer than τ̂(k− i) at k− i(i = 2, 3, 4, . . . , p− 1).
Therefore, it is more sensible to take the innovation vector.

Γ(p, k) =


y(k)− γT(k)τ̂(k − 1)

y(k − 1)− γT(k − 1)τ̂(k − 1)
...

y(k − p + 1)− γT(k − p + 1)τ̂(k − 1)

 ∈ R1×p. (29)

The stacked information matrix Π(p, k) and stacked output vector ℵ(p, k) are defined as

Π(p, k) = [γ(k), γ(k − 1), . . . , γ(k − p + 1)] ∈ Rn0×p, (30)

ℵ(p, k) = [y(k), y(k − 1), . . . , y(k − p + 1)]T ∈ Rp, (31)
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Γ(p, k) as the innovation vector is an expression of an equivalent form

Γ(p, k) = ℵ(p, k)− ΠT(p, k)τ̂(k − 1). (32)

Since Γ(1, k) = ϵ(k), Π(1, k) = γ(k),ℵ(1, k) = y(k), Equations (24) and (25) are equiv-
alently expressed as

τ̂(k) = τ̂(k − 1) +
Π(1, k)

Υ(k)
[ℵ(1, k)− ΠT(1, k)τ̂(k − 1)]. (33)

The value of multi-innovation length p is set to 1. By substituting 1’s in Π(1, k) and
ℵ(1, k) with p, the MI-SG algorithm with the innovation length p can be derived.

τ̂(k) = τ̂(k − 1) +
Π(1, k)

Υ(k)
Γ(p, k), (34)

Γ(p, k) = ℵ(p, k)− ΠT(p, k)τ̂(k − 1), (35)

Υ(k) = Υ(k − 1) + ∥γ(p, k)∥2, Υ(0) = 1, (36)

ℵ(p, k) = [y(k), y(k − 1), . . . , y(k − p + 1)]T , (37)

Π(p, k) = [γ(k), γ(k − 1), . . . , γ(k − p + 1)], (38)

γ(k) := [y(k − 1), y(k − 2), y(k − 3), y(k − 4),

u(k − 2), u(k − 3), u(k − 4), e(k − 1), e(k − 2), e(k − 3), e(k − 4)]. (39)

As the innovation matrix Γ(p, k) ∈ R1×p is present, when p = 1, the MI-SG algo-
rithm is reduced to the SG algorithm defined in Equations (24)–(26). To initiate the MI-SG
algorithm, ˆτ(0) is a small real vector, such as ˆτ(0) = 1n0 /p0, and p0 = 106. Figure 2
represents the flowchart of the MI-SG algorithm for identifying parameter estimates
of τ̂(k).

Start

Initialize: k=1

Collect data u(k) and y(k)

From γ(k), Π(p, k) and ℵ(p, k) by Equations (37)–(39)

Compute Γ(p, k) and Υ(k) by Equations (35) and (36)

Update τ̂(k) by Equation (34)

Compute γ(k) using Equation (39)

k := k + 1

Figure 2. Flowchart of the MI-SG algorithm identification process.

4. The Maximum Likelihood-Based Multi-Innovation Stochastic Gradient Algorithm

In this section, the ML-MI-SG algorithm is derived by introducing the theory of
maximum likelihood in order to improve the recognition accuracy and convergence rate of
the algorithm.

For the provided dataset, gN := [g(1), g(2), . . . , g(N)] and ϱN := [ϱ(1), ϱ(2), . . . , ϱ(N)],
and the likelihood function F(gN |ϱN−1, κ) is identical to f (gN |ϱN−1, κ). ϱ(k), g(k) and κ
are not correlated with v(k). The gN , ϱN and κ can be represented as



J. Mar. Sci. Eng. 2024, 12, 142 10 of 23

F(gN |ϱN−1, κ) = f (gN |ϱN−1, κ)

= f (y(N)|gN−1, ϱN−1, κ) f (g(N − 1)|gN−2, ϱN−2, κ), . . . , f (g(1)|g(0), ϱ(0), κ)

=
N

∏
k=1

f (g(k)|g(k − 1), ϱ(k − 1), κ)

=
N

∏
k=1

f (ζT(k)κ + v(k)|g(k − 1), ϱ(k − 1), κ)

=
1

(2πσ2)
N
2

exp
(
− 1

2σ2

N

∑
k=1

v2(k)
)
+ ρ, (40)

which ρ as constant. The algorithm is acquired through optimizing the F(gN |ϱN−1, κ),
which signifies,

κ̂ = argκmaxF(gN |ϱN−1, κ). (41)

From Equation (40), defining f (gN |ϱN−1, κ) as a log-likelihood function,

k(gN |ϱN−1, κ) := ln f (gN |ϱN−1, κ) = ln η − N
2

ln 2π − N
2

ln σ2 − 1
2σ2

N

∑
k=1

v2(k). (42)

where η is a constant that can be obtained from observations up to moment k. Maximum
likelihood estimation of the noise variance σ2 leads to the function k(gN |ϱN−1, κ) = max.
Setting f (gN |ϱN−1, κ) to zero produces

∂k(gN |ϱN−1, κ)

∂σ2 |σ̂2= 0, (43)

where the value of σ̂2 is determined by

σ̂2 =
1
N

N

∑
k=1

v2(k). (44)

Substituting Equation (44) into Equation (42) yields

k(gN |ϱN−1, κ) = ln η − N
2
(1 + ln 2π)− N

2
ln[

1
N

N

∑
k=1

v2(k)]

= ρ1 −
N
2

ln[
1
N

N

∑
k=1

v2(k)], (45)

where ρ1 = ln η − N
2 ln 2π − N

2 .
From Equation (45), the maximum value of k(gN |ϱN−1, κ)|κ̂ can be obtained by mini-

mizing the objective function

∆2(κ̂) :=
1
2

N

∑
k=1

v2(k)|κ̂ , (46)

where

v(k) =
1

C1(z−1)
[Aα(z−1)y(k)− Bα(z−1)u(k)]. (47)

Therefore, to obtain the κ̂ of the ARMAX model, the objective function ∆2(κ̂) must
be minimized.
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Using the estimated parameter κ̂ to construct the estimates of C1(z) at a particular
time t:

Ĉ1(k, z) := 1 + ĉ1(k)z−1 + ĉ2(k)z−2 + ĉ3(k)z−3 + ĉ4(k)z−4. (48)

Applying the gradient search, minimizing Equation (46) yields the desired result.

κ̂(k) = κ̂(k − 1)− Λ1(k)grad[∆2(κ(k − 1))], (49)

where Λ1(k) as convergence factor. Equation (46) expresses the cost function as follows:

∆2(κ(k)) = ∆2(κ(k − 1)) +
1
2

v2(k). (50)

Define Ξ f (k) := −(∂v(k)/∂κ)|κ̂(k−1). ∆2(κ(k − 1)) can be rewritten as

grad[∆2(κ(k − 1), k)] = grad[∆2(κ(k − 1), k − 1)] + Ξ f (k)v(k)|κ̂(k−1). (51)

The approximation of the gradient would be

grad[∆2(κ(k − 1), k)] = Ξ f (k)v(k)|κ̂(k−1). (52)

Here, Λ1(k) is chosen in the following manner:

Λ1(k) =
1

Υ1(k)
, Υ1(k) = λ1Υ1(k − 1)+ ∥ Ξ f (k) ∥2 . (53)

Calculating v(k)′s partial derivative in (47), the aj, bj, and cj at the point κ̂(k − 1) gives

∂v(k)
∂τs

|κ̂(k−1) =[
∂v(k)
∂a1

,
∂v(k)
∂a2

,
∂v(k)
∂a3

,
∂v(k)
∂a4

,
∂v(k)
∂b1

,
∂v(k)
∂b2

,
∂v(k)
∂b3

]

=[
z−1ŷ(k)

T̂(k − 1, z)
,

z−2ŷ(k)
T̂(k − 1, z)

,
z−3ŷ(k)

T̂(k − 1, z)
,

z−4ŷ(k)
T̂(k − 1, z)

,

z−1û(k)
T̂(k − 1, z)

,
z−2û(k)

T̂(k − 1, z)
,

z−3û(k)
T̂(k − 1, z)

]

=[ŷ f (k − 1), ŷ f (k − 2), ŷ f (k − 3), ŷ f (k − 4),

û f (k − 1), û f (k − 2), û f (k − 3)], (54)

∂v(k)
∂τn

|κ̂(k−1) =[
∂v(k)
∂c1

,
∂v(k)
∂c2

,
∂v(k)
∂c3

,
∂v(k)
∂c4

]

=[
z−1v̂(k)

T̂(k − 1, z)
,

z−2v̂(k)
T̂(k − 1, z)

,
z−3v̂(k)

T̂(k − 1, z)
,

z−4v̂(k)
T̂(k − 1, z)

=[−v̂ f (k − 1),−v̂ f (k − 2),−v̂ f (k − 3),−v̂ f (k − 4)], (55)

where ŷ f (k), û f , and v̂ f (k) are defined as

ŷ f (k) :=
ŷ(k)

T̂(k − 1, z)
= ŷ(k)−

4

∑
i=1

ĉi(k − 1)ŷ f (k − i), (56)

û f (k) :=
û(k)

T̂(k − 1, z)
= û(k)−

4

∑
i=1

ĉi(k − 1)û f (k − i), (57)

v̂ f (k) :=
v̂(k)

T̂(k − 1, z)
= v̂(k)−

4

∑
i=1

ĉi(k − 1)v̂ f (k − i). (58)
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The Ξ f (k) rewritten as

Ξ f (k) := −∂v(k)
∂τ

|κ̂(k−1)

= −[
∂v(k)
∂a1

,
∂v(k)
∂a2

,
∂v(k)
∂a3

,
∂v(k)
∂a4

,
∂v(k)
∂b1

,
∂v(k)
∂b2

,
∂v(k)
∂b3

,

∂v(k)
∂c1

,
∂v(k)
∂c2

,
∂v(k)
∂c3

,
∂v(k)
∂c4

]Tκ̂(k−1). (59)

The ΞT(k) and Ξ f (k) are expanded into £T(p, k) and £T
f (p, k), where

£T
f (p, k) := [Ξ f (k), Ξ f (k − 1), · · · , Ξ f (k − l + 1)] ∈ Rn0×p. (60)

The ML-MI-SG algorithm to estimate κ̂(k) based on maximum likelihood.

κ̂(k) = κ̂(k − 1) +
Ξ̂ f (k)
Υ1(k)

[ŷ(p, k)− £̂T(p, k)κ̂(k − 1)], (61)

Υ1(k) = λ1Υ1(k − 1)+ ∥ £̂ f (p, k) ∥2 . (62)

Then, an ML-MI-SG algorithm may be obtained to estimate the parameter vector κ.

κ̂(k) = κ̂(k − 1) +
Ξ̂ f (k)
Υ1(k)

[ŷ(p, k)− £̂T(p, k)κ̂(k − 1)], (63)

Υ1(k) = λ1Υ1(k − 1)+ ∥ £̂ f (p, k) ∥2, (64)

y(p, k) = [y(k), y(k − 1), . . . , y(k − p + 1)]T , (65)

£̂(p, k) : = [Ξ̂(k), Ξ̂(k − 1), . . . , Ξ̂(k − l + 1)], (66)

£̂ f (p, k) : = [Ξ̂ f (k), Ξ̂ f (k − 1), . . . , Ξ̂ f (k − l + 1)], (67)

Ξ̂ f (k) : = [−ŷ f (k − 1),−ŷ f (k − 2),−ŷ f (k − 3),−ŷ f (k − 4),

− û f (k − 1),−û f (k − 2),−û f (k − 3),

v̂ f (k − 1), v̂ f (k − 2), v̂ f (k − 3), v̂ f (k − 4)] (68)

ŷ f (k) : =
ŷ(k)

T̂(k − 1, z)
= ŷ(k)−

4

∑
i=1

ĉi(k − 1)ŷ f (k − i), (69)

û f (k) : =
û(k)

T̂(k − 1, z)
= û(k)−

4

∑
i=1

ĉi(k − 1)û f (k − i), (70)

v̂ f (k) : =
v̂(k)

T̂(k − 1, z)
= v̂(k)−

4

∑
i=1

ĉi(k − 1)v̂ f (k − i). (71)

v̂(k) = y(k)− Ξ̂T(k)κ̂(k). (72)

The proposed algorithms in this paper can combine other parameter estimation
algorithms [97–102] to study new parameter identification approaches of different sys-
tems [103–107] and can be applied to other fields. To start the ML-MI-SG algorithm, set
the initial values κ̂(0) = In0 /l, Υ1(0) = 1, λ1 = 0.99, ŷ f (k) = 1/l, û f (k) = 1/l, v̂ f (k) = 1/l,
v̂(k) = 1/l, with i ≤ 0 and l = 106. The identification process for computing κ̂(k) with the
ML-MI-SG algorithm is presented in Figure 3.
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Start

Initialize: k = 1

Collect data u(k) and y(k). Form y(p, k) by Equation (65).

Form £̂(p, t) and £̂ f (p, k) by Equations (66) and (67), respectively

Compute Υ1(k) using Equation (64)

Update κ̂(k) by Equation (63)

Compute v̂(k) using Equation (72)

Compute ŷ f (k), û f (k) and v̂ f (k) using Equations (69)–(71), respectively

k := k + 1

Figure 3. The flowchart of the MI-SG algorithm identification process

5. Wave Peak Frequency and Ship Motion Parameter Calculation

Based on Section 2, the ship motion parameter and wave peak frequency can be
calculated from Equation (21), where

τ := [τ̂s(k), τ̂n f (k)] = [a1, a2, a3, a4, b1, b2, b3, c1, c2, c3, c4], (73)

where

τ(11) = c4 =
h − T

T
, τ(5) = b1 =

Kh2

T
, τ(1) = a1 =

4T − h − 2ζωnhT
T

.

Thus, the parameters K and T and the wave peak frequency ωn can be acquired using
the following equations:

T =
h

τ(11) + 1
, K =

τ(5)T
h2 , ωn =

4T − τ(1)T − h
2ζhT

. (74)

6. Simulation Results and Analysis
6.1. Identification Input Design

To confirm the efficacy of the ML-MI-SG algorithm, a standard ship model is used
instead of the ship’s motion in second-order waves. Subsequently, the simulation model’s
parameters were identified separately using the MI-SG and ML-MI-SG algorithms.

The mathematical model of the vessel is anchored in the Nomoto model which has
been expounded in Equation (8). The specifications of the vessel needed for establishing
the Nomoto model have been rendered in Table 1. The precise values of the Nomoto model
parameters for Yu Peng were derived using Visual Basic from the particulars relating to
Yu Peng presented in Table 1 ([43]). The obtained values have been depicted in Table 2.
A simulation of the 30 Z-shaped maneuvers was carried out utilizing the fourth-order
Runge–Kutta method. Subsequently, data on the rudder angle and heading angle were
collected and presented in Figure 4.

Remark 1. Yu Peng is a new type of teaching and training ship at Dalian Maritime University,
which is a collection of modern ship design, manufacturing and equipment technology, advanced
design; is well-equipped with a large number of the world’s most intelligent and advanced, highly
efficient and environmentally friendly equipment, which is mainly used for teaching internships
for students of nautical majors; and is applicable to the loading of bulk and general cargoes, major
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complete sets of project equipment and containers, as well as scientific research and experiments in
disciplines such as traffic information engineering and control, navigation science and technology,
engine engineering, and environmental engineering, etc., and has been tested with sufficient
data. Therefore, the data are relatively complete and help to validate the identification of ship
modeling parameters.

Table 1. Detailed parameters of Yu Peng.

Length between perpendiculars L (m) 189.0

Breadth (molded) B (m) 27.8

Designed draft D (m) 11.0

Volume of displacement ∇ (m3) 42,293.0

Block coefficient Cb 0.72

Trial speed V (kn) 17.3

Rudder area AR (m2) 38

Longitudinal center of gravity xc (m) −1.8

Table 2. Mathematical model parameters for Yu Peng.

Turning ability index K (1/s) 0.38

Following index T (s) 297.75

α 11.95

β 23,928.91

time/s

r

Figure 4. 30° Z−shaped maneuver simulation.

The ship’s rudder system consists of a control drive, a servo motor, a reduction drive,
and a sensor. Currently, large ships mostly use hydraulic servos to steer the ship. The
hydraulic rudder is a hydraulic servo system with variable parameters and variable load.
Without load, the rudder system can be regarded as a first-order inertial link, and the true
rudder angle δ is similar to a square wave considering the saturation effect of the rudder
and the dynamic characteristics. Therefore, it is assumed that the simulated data generated
using the first-order Nomoto model coincide with the actual ship motion and can therefore
be used as real data for model parameter identification purposes.
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Wave disturbance is primarily considered for the effect of second-order wave distur-
bance force. This paper employs a variance of σ2 = 0.01 and a sampling time of t = 1 s
with Gaussian white noise, as illustrated in Figure 5.

Remark 2. The input used in this paper is Gaussian white noise, which is an implicit model
for unknown external perturbations. When the assumed input–output order exceeds a certain
minimum value, the perturbation information will be completely absorbed into the identified model
coefficients, which has little effect on the identification of parameters. Because Gaussian white noise
can reflect the noise situation in the actual communication channel, it can reflect some characteristics
of channel noise more realistically, and it can be expressed by specific mathematical expressions,
which is suitable for analyzing and calculating the system’s anti-noise performance, and it is widely
used in theoretical analysis of communication systems.

time/s

W
av

e-
no

is
e

Figure 5. Simulation results of wave noise.

Remark 3. The PM spectrum ([71]) is introduced to analyze the variation in the peak frequency of
waves under different sea states. The PM spectrum is written:

S(w) = Aw−5exp(−Bw−4) (75)

where A = 8.1 × 10−3g2, B = 0.74 × ( g
Vs
)4, Vs is the wind speed, and g is the gravity constant.

Assuming that waves can be represented as Gaussian random processes and that S(w) is narrow-
banded, the PM spectrum can be reformulated in terms of significant wave height:

A = 8.1 × 10−3g2, (76)

B = 0.0323 × (
g

Vs
)2 =

3.11
H2

s
. (77)

This implies that there is a relationship between wind speed Vs and significant wave height Hs
and wave peak frequency w0 as

Hs = 0.21 × V2

g
, (78)

w = 0.4 ×
√

g
Hs

. (79)
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The PM spectra at different values of Hs are shown in Figure 6. From Figure 6, it can be seen
that as the degree of the sea state increases, the wave peak frequency will decrease. In order to verify
the effect of the proposed algorithm, the following section will identify the wave peak frequency with
different sea states.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
/rad/s

0

2

4

6

8

10

12

14

16

S(
w

)/
m

2 s

w
0
 = 0.4, Hs = 9.8 m

w
0
 = 0.5, Hs = 6.2 m

w
0
 = 0.6, Hs = 4.2 m

Figure 6. Simulation results of the PM spectrum at different values of Hs.

6.2. Parameter Identification Experiments

Built on the data that were gathered, the parameters of the ship motion model were es-
tablished through employment of the ML-MI-SG algorithm at innovation lengths (p = 1, 2, 3).
It is important to note that it is similar to the ML-SG algorithm in that the innovation length
p = 1. To ascertain algorithm efficacy for identification at ωn = 0.4, we identified model
parameters using Equations (63)–(72) of the ML-MI-SG algorithm and the aforementioned
Z-type test data to validate Equation (21). To assess the recognition algorithm’s online
capabilities, the recognition time was an extension of 4000 s. At t = 2000 s, the ship speed
of the unmanned ship was varied so that the K-T parameter of the ship was changed, and
the identification results obtained were compared.

The following figure compares the wave frequency estimation ωn, the ship motion
parameter estimation K,T, the error estimation accuracy δ for the same ω0, the MI-SG
algorithm and the ML-MI-SG algorithm under the same innovation length, and the ML-MI-
SG algorithm under different innovation lengths, where δ := ||τ̂(k)− τ(k)||/||τ(k)||.

The results of the simulation depicted in Figures 7–9 demonstrate the accurate estima-
tion of ship K-T parameters and wave peak frequency by both the MI-SG and ML-MI-SG
algorithms. To confirm the superiority of the ML-MI-SG algorithm, its performance is
compared to that of the MI-SG algorithm under the condition of an innovation length
of p = 2. To examine the impact of various innovation lengths on the algorithms, the
performance at different innovation lengths is compared. The findings from Tables 3 and 4
and Figures 7–9 indicate the following outcomes.

• The estimation errors of both the MI-SG algorithm and the ML-MI-SG algorithm
decrease over time. Please refer to Figure 7. The ML-MI-SG algorithm demonstrates
superior convergence speed and identification accuracy when compared with the
MI-SG algorithm, enabling it to more effectively identify and obtain the parameters of
the ship–wave model, as depicted in Figure 7.

• In the case of the same innovation length p, the convergence speed and recognition
accuracy of the ML-MI-SG algorithm are better than that of the MI-SG algorithm; by
means of the control variable method, comparing the ML-MI-SG algorithms with
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different innovation lengths p in the case of the other states being the same, the
convergence speed and the recognition accuracy are directly proportional to the
change of the innovation length p, as illustrated by Tables 3 and 4 and Figure 8.

• For ship state changes, the ML-MI-SG algorithm is able to respond quickly to K and
T parameter changes due to ship speed and load changes and accurately identify
the new K and T parameters of the ship in a short period of time, showing excellent
real-time performance, as depicted in Figure 9.

Table 3. Comparison of K and T parameter identification of ML-MI-SG algorithm with different
innovation lengths.

K ML-MI-SG T ML-MI-SG

time/s p = 1 p = 2 p = 3 time/s p = 1 p = 2 p = 3

100 0.18729 0.27794 0.32097 100 199.25624 244.77772 268.22143

200 0.25862 0.32483 0.35365 200 225.48425 271.49848 287.99145

500 0.33842 0.37251 0.37825 500 274.01053 295.54320 295.77890

1000 0.36728 0.37637 0.37624 1000 294.89304 296.94850 296.48548

2000 0.37371 0.37306 0.37267 2000 296.40574 295.71300 295.67858

4000 0.37648 0.37602 0.37574 4000 296.91472 296.97271 296.99007

true value 0.38 0.38 0.38 true value 297.75 297.75 297.75

time/s

K

MI-SG:p=2

ML-MI-SG:p=2

K=0.38

(a) K

time/s

T

MI-SG:p=2

ML-MI-SG:p=2

T=297.75

(b) T

time/s

n

MI-SG:p=2
ML-MI-SG:p=2
original value

(c) ωn

time/s

MI-SG:p=2
ML-MI-SG:p=2

(d) δ

Figure 7. Identification results for comparing MI-SG and ML-MI-SG algorithms at a different
innovation length of p = 2.



J. Mar. Sci. Eng. 2024, 12, 142 18 of 23

time/s

K

ML-SG:p=1

ML-MI-SG:p=2

ML-MI-SG:p=3

K=0.38

(a) K

time/s

T

ML-SG:p=1

ML-MI-SG:p=2

ML-MI-SG:p=3

T=297.75

(b) T

time/s

n

ML-SG:p=1
ML-MI-SG:p=2
ML-MI-SG:p=3
original value

(c) ωn

time/s

ML-SG:p=1
ML-MI-SG:p=2
ML-MI-SG:p=3

(d) δ

Figure 8. Identification results of each parameter for different innovation lengths.
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Figure 9. Identification results when K and T parameters are varied for different innovation lengths.
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Table 4. Comparison of ωn and δ parameter identification of ML-MI-SG algorithm with different
innovation lengths.

ωn ML-MI-SG δ ML-MI-SG

time/s p = 1 p = 2 p = 3 time/s p = 1 p = 2 p = 3

100 1.06125 0.62012 0.51603 100 0.38632 0.23137 0.15548

200 0.75940 0.50463 0.44432 200 0.29932 0.15322 0.10550

500 0.49931 0.41674 0.40427 500 0.15572 0.09959 0.08865

1000 0.42119 0.40333 0.40288 1000 0.10179 0.08994 0.08179

2000 0.40430 0.40423 0.40258 2000 0.08874 0.08240 0.07207

4000 0.40244 0.40229 0.40118 4000 0.08081 0.06918 0.05526

true value 0.4 0.4 0.4

7. Conclusions

The paper presents a novel ship–wave model parameter identification algorithm based
on the maximum likelihood multi-innovation stochastic gradient. The algorithm combines
the essence of maximum likelihood and multi-innovation theory. The following conclusions
can be drawn based on simulations and comparisons.

• Typically, traditional methods require a large amount of test data to produce reliable pa-
rameter estimation results, while the system identification method can achieve reliable
parameter estimation with less test data; secondly, the data error is about 5%, which
effectively reduces the data error and improves the accuracy of parameter estimation.

• Compared with the MI-SG algorithm, the ML-MI-SG algorithm exhibits higher accu-
racy in parameter identification, with an improvement of about 10%. The ML-MI-SG
algorithm combines the key ideas of maximum likelihood and multi-innovation theory,
and further improves the accuracy of parameter identification through the introduc-
tion of maximum likelihood estimation methods.

• Additionally, the ML-MI-SG algorithm converges much faster than the MI-SG algo-
rithm. The discrimination curve is also smoother with a smaller fluctuation range,
resulting in better parameter acquisition performance for designing controllers and
observers and other related tasks.

The ML-MI-SG algorithm presented in this paper is expected to offer a dependable
solution to the issue of identifying the parameters of ship–wave models. This will promote
research and applications in the related fields. With less test data, the proposed algorithm
can provide reliable parameter estimation. It can be used to obtain model parameters in
aerospace, robotics, artificial intelligence, industrial processes, and other fields in order to
build accurate research models. Future research can predict ship maneuverability based
on the parameters obtained from system identification algorithms [108–111]. Intelligent
algorithms can be introduced to further improve identification results and advance related
technologies and applications.
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