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Abstract: Container terminal yards are automated terminal yards. The rail-mounted gantry crane
(RMGC) and rail-mounted gantry crane tracks (RMGCTs) that frequently operate in terminal yards
need to be inspected regularly to ensure the safe operation of container transportation in the yard.
This paper proposes a framework for the path planning of RMGCT visual inspection using a UAV in
container terminal yards in a port environment. The framework consisted of two main aspects. First,
a global path to all inspection viewpoints was planned according to the inspection requirements using
the A* algorithm and the improved minimum snap method. Second, the intelligent bidirectional
rapidly exploring random trees star (IB-RRT*) algorithm was introduced to plan the local path during
the flight of the UAV. Finally, the feasibility of the path-planning framework was demonstrated using
simulation experiments.

Keywords: unmanned aerial vehicle (UAV); path planning; A* algorithm; intelligent bidirectional
rapidly exploring random trees star (IB-RRT*) inspection; container terminal yards; rail-mounted
gantry crane tracks (RMGCTs)

1. Introduction

The container terminal yard in a port environment is an automated yard. In the yard
environment, rail-mounted gantry cranes (RMGCs) are critical to the picking and placing of
containers [1]. However, due to the long-term exposure and frequent operation of RMGCs,
rail-mounted gantry crane tracks (RMGCTs) are prone to wear, rust, cracks, and other
damage. Therefore, the regular inspection of RMGCTs is crucial. However, the traditional
method of manual inspection is subjective and inefficient. In recent years, unmanned aerial
vehicles (UAVs) have been applied to the inspection of large equipment and power lines
because of their high degree of freedom, maneuverability, and ability to carry various
inspection equipment [2].

In scientific research and engineering applications, UAVs have attracted the attention
of researchers due to their high maneuverability, good operation performance, and low
cost. They have conducted in-depth research on path planning for UAVs. Regarding
the problem of path planning, many researchers have given solutions, for example, the
Dijkstra [3,4], A* [5,6], probabilistic road map (PRM) [7,8], and rapidly exploring random
tree (RRT) [9–11] algorithms. Dijkstra and A*, which involve search-based pathfinding,
can find the optimal path. They take a relatively long time to find the path, especially if
the map is relatively large or in a three-dimensional environment. But they can be used
in global path planning regardless of time constraints. The PRM and RRT algorithms are
sampling-based path-planning algorithms, unlike the previous two algorithms (Dijkstra
and A*). They all work by randomly generating a large number of points in the map
and connecting these points through a simple local path planner or tree. But PRM is not
widely used because of its low efficiency when finding the path. The RRT algorithm has
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higher efficiency than the PRM algorithm, where it can find a feasible but not optimal
path in a shorter time. The RRT* algorithm [12] is one of the most significant variants
of the RRT algorithm. Just like the RRT algorithm, RRT* can generate the initial path to
the target rapidly. Although it can finally find an optimal path, it takes a long time to
converge on the optimal solution. Based on the RRT* algorithm, a bidirectional version of
RRT* was presented, which was named BI-RRT* [13]. BI-RRT* uses a slight variation of
the greedy RRT-Connect heuristic for a connection with two trees [14], which can further
reduce the time to find a feasible route each time. However, this method cannot guarantee
the asymptotic optimality of each feasible route. To improve the superiority over the BI-
RRT* algorithm, an intelligent bidirectional-RRT* (IB-RRT*) algorithm was proposed [15],
which can reduce the planning time for each feasible path while ensuring the asymptotic
optimality of each feasible path. With these dual advantages, the IB-RRT* algorithm has
more efficient path-planning capability.

UAV trajectory planning is an important part of determining the UAV path after path
planning. It optimizes the generated paths by considering the kinematic and dynamical
constraints of the UAV so that the generated trajectories can be directly used for the flight
of the UAV. The current UAV-trajectory-planning algorithms have been studied by a large
number of scholars. The most common methods are the direct configuration method and the
shooting method [16,17]. They can generate optimal local paths, but this is computationally
intensive, relatively demanding on the environment, and rarely applied to practical UAV
flight scenarios. Moreover, the most commonly used trajectory-planning algorithms include
B-spline curves [18], Bezier curves [19], the K-trajectory algorithm [20], and the minimum
snap algorithm [21,22]. The B-spline curve is suitable for the optimization of the initial
path planned by the artificial potential field algorithm. The Bezier curve is suitable for the
path optimization of a robotic arm. The K-trajectory algorithm is suitable for trajectory
optimization in the presence of obstacles and narrow passages. In this study, the path
of the UAV was optimized in the environment of a port container yard, and, thus, the
above algorithms did not apply to the scenario of this study. The minimum snap method
is suitable for the trajectory optimization of UAVs with high degrees of freedom, which
can satisfy the constraints on the speed and acceleration of UAVs during flight; therefore,
it is often used for UAV trajectory planning. However, a UAV trajectory planned by the
original minimum snap method has a long length and large trajectory deviation, and, thus,
needs to be improved, such as via geometric pre-processing. To improve the efficiency
and accuracy of RMGCT inspections, this paper proposes a framework for path planning
for the inspection of RMGCTs using a UAV. The framework consists of five main parts, as
shown in Figure 1.
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(1) Model building: In the initial phase of model building, a comprehensive represen-
tation of the container terminal yard (as shown in Figure 1) was synthesized, incorporating
both the rail-mounted gantry crane terminals (RMGCTs) and the containers by integrating
satellite imagery of the area.

(2) Determine the viewpoint: Upon the completion of the model, the determination
of the viewpoint ensued. This stage was critical within the inspection protocol, as it
significantly influenced the ultimate efficiency and efficacy of the inspection process. In
this part, the detection viewpoint was determined according to the detection requirements
and the parameters of the detection equipment carried by the UAV.

(3) Global path planning: After determining the appropriate viewpoint, the A* algo-
rithm was used to plan the global path to all inspection viewpoints. This global path did
not consider the constraints of man–machine kinematics and dynamics, and, thus, it cannot
be used in real scenarios.

(4) Path optimization: In the third part of the framework, although the A* algorithm
facilitated the establishment of a preliminary global path, it neglected the kinematic and
dynamic constraints inherent to the UAV. Consequently, in this part, the minimum snap
criterion was invoked to refine this global trajectory. However, the initial optimization via
the minimum snap method yielded suboptimal results, prompting the implementation of
geometric optimization. This additional refinement step is crucial for the synthesis of an
enhanced global path that adheres more closely to the UAV’s operational capabilities.

(5) Local path planning: Upon completion of the global path optimization, attention
shifted to the execution of local path planning, a crucial step for circumventing static and
dynamic obstacles in real-time. Within this context, a comparative analysis of the IB-RRT*,
RRT*, and BI-RRT* algorithms was undertaken to ascertain their efficacy in this scenario.
The IB-RRT* algorithm emerged as the preferred method for local path planning, owing
to its superior performance in navigating the intricacies of the immediate operational
environment.

The above method describes the framework for UAV inspection trajectories. This
strategy improves the effectiveness of the inspection process, improving the economic
benefits, and increases the safety and reliability of UAV inspection.

2. Problem Formulation

The objective of this paper is to find a path to all RMGCT inspection viewpoints. This
inspection path should satisfy four main objectives: (1) avoiding all obstacles; (2) covering
all viewpoints; (3) satisfying the flight constraints of the UAV; and (4) having the shortest
possible flight time. First, this paper uses the A* algorithm and the improved minimum
snap algorithm to plan a global path for UAV inspection through all viewpoints in a region.
Second, the IB-RRT* algorithm is used for local path planning to avoid static real-time
obstacles to UAV flight, such as trucks, during RMGC flight.

2.1. Description of Inspection

In recent years, inspection technology has been applied to various fields, such as the
inspection of large buildings or mechanical equipment such as bridges and wind turbines.
In the process of inspection, the UAV’s body, obstacle avoidance system, and control system
and the inspection equipment carried have a great influence on the completion of the task.
Among them, the body of the UAV serves as the carrier for various equipment and systems,
and it is also the main body of mission execution. The purpose of the obstacle avoidance
system is to avoid real-time obstacles to local path planning. Within this, the common
equipment needed to avoid obstacles mainly includes lidar sensors and vision sensors.
The control system mainly controls the UAV to fly along the designated path according
to the planned global path and local path. The inspection equipment on board plays a
very important role in the collection of inspection objects. Common inspection equipment
includes lidar [23], infrared thermal imagers [24], high-resolution visible-light cameras [25],
and so on. This article mainly collected images, so a high-resolution visible-light camera
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was selected as the inspection equipment. In addition, since the power supply of the UAV
was not the main research focus of this paper, this paper was assumed to be finding a UAV
path in an ideal scenario without considering the battery capacity.

2.2. Image Visual Inspection Description

In recent years, visual inspection technology has rapidly developed. In this paper,
a UAV equipped with a high-resolution camera was used for image acquisition, and the
collected images were used for visual inspection to finally obtain the inspection information
for the inspection surface, which improved both the efficiency of image acquisition and the
quality of defect inspection.

The steps of visual inspection are shown in Figure 2, which include acquisition image
pre-processing, feature extraction, automatic defect inspection, and intelligent identification.
Image pre-processing is mainly to solve the problems of noise interference, blurring, jitter,
distortion, etc. in the images captured by the UAV and to binarize the images. Next, feature
extraction is performed on the image after image pre-processing. The purpose of feature
extraction is to extract the defect features in the image for subsequent defect inspection and
intelligent recognition. Then, the extracted defect features are compared with the defect
features in an image library to determine the defect types in the gantry crane tracks. The
defect features in the image library represent the feature library that has been extracted
and confirm the defect types. Through the above steps, this paper determines the defect
locations and defect types in gantry cranes. The literature [26–28] provides a detailed
description of visual inspection. This paper focuses on the trajectory planning method for
the UAV. Therefore, the process of image acquisition will not be presented.
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2.3. Environment Modelling

To be able to facilitate the study of the UAV path planning method, this paper es-
tablishes a 3D model based on the container yard environment in Figure 3. This model
visually represents the container terminal yard environment, comprising key elements
that could influence path planning outcomes, such as RMGCs, RMGCTs, and contain-
ers. The establishment of this 3D model lays the foundation for subsequent UAV path
planning research.
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2.4. Viewpoint Selection

The collection of viewpoints necessitates a series of high-resolution visible-light camera
settings. The high-resolution visible-light camera carried by the UAV only needs to capture
the surface of the RMGCTs under examination (see Figure 4a). The choice of viewpoint is
a very important step in the inspection process, and it is related to the final inspection’s
efficiency and quality.

In this paper, a high-definition visible-light camera is utilized as the inspection device,
and the field-of-view (FOV) constraints of the high-definition visible-light camera are mod-
elled first. The FOV of a high-resolution visible-light camera is regarded as a rectangular
grid. The angle θ represents the FOV of the camera lens. The size of the grid is related
to the vertical viewing angle αv and horizontal viewing angle αh of the high-definition
visible-light camera and the distance d, which is the vertical distance from the UAV to the
orbital surface. In Figure 4b, the relationship between the various variables is shown. The
equations that must be satisfied are

v ≈ 2 ×
(

d
tan|θ| −

d
tan
(
|θ|+ αv

2
)), (1)

h ≈ 2 ×
(

d
tan|θ| −

d
tan
(
|θ|+ αh

2
)), (2)

where v and h are the horizontal and vertical dimensions of the field-of-view grid, respectively.
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UAVs are subject to various interferences during flight, such as wind disturbance,
positioning errors, and other anomalies. Therefore, it is very necessary to compensate for
errors generated during the flight of the UAV. The direction of the error is mainly horizontal
and vertical. As shown in Figure 5, the black area is the ideal FOV for a high-resolution
visible-light camera. The yellow area in the FOV is under the error of the high-resolution
visible-light camera. The blue area is the FOV of the high-resolution visible-light camera
after error correction. H and V represent the maximum errors in the vertical and horizontal
directions, respectively. Therefore, the position change range of the UAV in the vertical
direction h∗ is

h − H ≤ h∗ ≤ h + H, (3)

and the range of positional change in the horizontal direction v∗ is

v − V ≤ v∗ ≤ v + V. (4)

Then take the minimum h* and v* that satisfy the above inequalities (3) and (4), substituted
into the following formulas:

dminH =
h* × tan|θ| × tan

(
|θ|+ αh

2
)

2
(
tan
(
|θ|+ αh

2
)
− tan|θ|

) , (5)

dminV =
v* × tan|θ| × tan

(
|θ|+ αv

2
)

2
(
tan
(
|θ|+ αv

2
)
− tan|θ|

) . (6)
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The shortest distance based on height dminH and the shortest distance based on breadth
dminV from the high-resolution visible-light camera to the RMGCTs can be obtained.
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Therefore, the shortest distance dmin from the high-resolution visible-light camera to
the RMGCTs is

dmin = max(dminV , dminH). (7)

2.5. Precise Positioning of the UAV

The positioning problem of the UAV is very important in the process of UAV inspection,
and it is related to whether the UAV can effectively execute the planned flight plan. When
the UAV performs its task in an open outdoor scene, the GPS positioning system can meet
the positioning requirements of the UAV due to the relatively high signal strength of the
GPS. However, when the UAV flies to a location where the GPS signal is blocked, the GPS
positioning system becomes ineffective.

In this paper, it is necessary to consider the positioning of the UAV when it flies under
the main beam of the gantry crane or when there is an obstructed part of the container.
To ensure the UAV reaches its precise location, this paper employs the UAV cooperative
positioning method to locate the GPS signal when it is blocked. As shown in Figure 6, the
red UAV is a co-positioning UAV, which can receive signals from satellites at the same time
as the inspection UAV. It needs to carry a vision sensor to achieve precise positioning of the
inspection UAV in the case of a weak GPS signal. Here, d represents the distance between
the two UAVs, while µ and τ denote the pitch and azimuth angles of the inspection UAV
relative to the co-location UAV. They must satisfy the following conditions:

∆z = d × sin µ, (8)

∆x = d × cos µ cos τ, (9)

∆y = d × cos µ sin τ. (10)

Utilizing the aforementioned method, even if the main positioning UAV cannot directly
obtain accurate positioning due to the weak GPS signal, the co-positioning UAV can
indirectly obtain the precise positioning of the main positioning UAV.

2.6. Obstacle Avoidance

When the UAV is performing an inspection task, it will encounter many local condi-
tions, such as a small car, other UAVs in flight, pedestrians, etc. The appearance of these
unpredictable obstacles will affect the flight of the UAV so that the UAV can no longer
fly along the planned global path, thus necessitating local path planning. An unexpected
scenario is assumed in this paper, as shown in Figure 7. This scenario assumes that the
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UAV encounters a moving car during flight, which then needs to force the UAV to change
its previous planned trajectory. This paper uses the IB-RRT* algorithm for localized path
planning. In Figure 7, the blue box represents the stationary car, the red dashed line rep-
resents the global path, and Sl and El represent the start and end points of the local path,
respectively, both of which intersect with the global path. The yellow paths represent the
local paths planned using the IB-RRT* algorithm. Avoiding real-time static obstacles using
the IB-RRT* algorithm allows the UAV to eventually continue the flight of the global path.
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2.7. Geometric Optimization of the Path

The A* algorithm does not consider the velocity and acceleration constraints of the
UAV when planning the route, resulting in paths that are prone to abrupt changes. As
the angle of the two-line direction vectors gets larger, the path cannot meet the flight
requirements of the UAV. In trajectory planning, the deviation of the generated trajectory
from the planned path will be bigger. Conversely, when the angle of the direction vector of
the two lines is smaller, the path can meet the flight requirements of the UAV. In trajectory
planning, the smoother the generated trajectory is, the smaller the deviation from the
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planned path. Two vectors with large angular variations can be equivalently replaced by a
combination of multiple vectors with small directional variations. Utilizing this principle,
this paper geometrically optimizes the UAV’s path by transforming the intersection of two
vectors with large angles into a combination of multiple vectors with small angles, so that
the trajectory of the UAV is smooth and the deviation distance is small.

In this paper, the method of constructing an isosceles triangle was employed, convert-
ing the large angle of two lines into two small angles, as shown in Figure 8. The original
path A-D-G is transformed into A-B-H-I-F-G by constructing the isosceles triangles ∆BDF,
∆BCH, and ∆EFI, which means the direction of the UAV does not change very much at
one time. The specific steps involved are as follows:
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(1) Construct an isosceles triangle ∆BDF. Ensure that the hypotenuse BF of the triangle
does not intersect with the yard model. The lengths of BD and DF are denoted as lBD and
lDF, respectively. The steering angle of the UAV before optimization is α.

(2) On line segment BD and line segment DF, take points C and E, respectively. Connect
point C and point E, and select point H and point I, respectively, on segment CE. Points
H and I equally trisect the line segment CE. The lengths of line segments BC, CH, IE, and
EF are denoted as lBC, lCH , lIE, and lEF, respectively. The above lengths and angles must
satisfy the following equations:

lBD = lDF, (11)

lBC = lCH = lIE = lEF, (12)

lBC =
2(lBD−lBC)sin(α/2)

3
. (13)

(3) Connect point B to point H and point I to point F. The optimized path A-B-H-I-F-G
can be obtained. The steering angle after geometric optimization of the UAV is β. Obviously,
α and β satisfy the following equation:

β =
180◦ − α

4
. (14)
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Utilizing the aforementioned method, the inspection path length of the UAV is short-
ened. At the same time, the UAV’s individual steering angles are also reduced. This process
is referred to as geometric optimization.

2.8. Trajectory Optimization

Following UAV path planning and geometric pre-processing of the path, a path for
container terminal yard inspection is obtained in this paper. Next, UAV trajectory planning
is conducted based on this path. The minimum snap method is adept at facilitating
trajectory planning for UAVs with high degrees of freedom. This method can plan a series
of sparse path points into a smooth curve or dense path points. However, the trajectory
length of a UAV trajectory planned by the original minimum snap method is long and the
deviation of the trajectory from the path is large. Therefore, UAV trajectory planning is
carried out using the minimum snap method with the flight corridor constraint added,
where the UAV trajectory can be restricted to a certain range to plan, which makes the UAV
trajectory length shorter and the trajectory deviation smaller. Define ti as the unit vector
extending from ri to r(i+1), where ri represents the coordinates of the i-th path point. The
vertical distance vector di (t) from line segment i is defined as follows:

di(t) = (rT(t)− ri)− ((rT(t)− ri)·ti)ti, (15)

the width δi of the corridor under the infinite criterion is satisfied by [29],

||di(t)||∞ ≤ δi. (16)

The UAV trajectory effect after adding the flight corridor constraint, which makes
the UAV trajectory shorter and the trajectory deviation smaller, improves UAV inspection
efficiency and saves energy.

3. Description of Methods

To improve the inspection efficiency of RGMCTs, a high-resolution visible-light-
camera-equipped UAV path planning method is proposed in this paper.

3.1. Conditional Constraints of the UAV

(1) Equipment that should be carried on the UAV: The equipment that the UAV should
carry is shown in Figure 9. The UAV should be equipped with a high-resolution visible-light
camera for image collection, a real-time obstacle avoidance system for avoiding real-time
obstacles, a positioning system for UAV positioning, an image transmission system for
image transmission, and a flight control system for aircraft flight.
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(2) Requirements of the high-resolution visible-light camera: The high-resolution
visible-light camera position used in this article is the solution of most commercial UAVs on
the market, which install the high-resolution visible-light camera under the UAV. As shown
in Figure 10, this is exemplified by the DJI series of UAV, equipped with a high-resolution
visible-light camera. The position of the camera on the UAV should be able to capture the
inspection surface, and the high-resolution visible-light camera can rotate at a certain angle
to adapt to different situations.
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(3) Requirements of the real-time obstacle avoidance system: This system mainly
senses real-time obstacles, performs real-time path planning, and transmits the planned
path to the flight control system. The system should include a 2D lidar sensor and a local
path planning module. When the 2D lidar sensor inspects an unpredictable obstacle, the
local path planning module can avoid the real-time obstacle with local path planning and
finally return to the planned global path.

(4) Requirements of the positioning system: This system is mainly used for positioning
during the flight of the UAV to obtain the real-time position. In this paper, the UAV is
equipped with a GPS and a SLAM system for synchronous modeling and positioning of the
UAV. The SLAM system uses the 2D lidar sensor described in (3) for real-time synchronous
modeling and positioning.

(5) Requirements of the image transmission system: This system mainly sends the
collected image information to the ground station system.

(6) Requirements of the ground station system: This system is mainly used for the
global path planning of the UAV, and conveys the planned path information to the flight
control system of the UAV. In addition, the ground station system is also used to receive
the image information sent back by the UAV.

(7) Requirements of the flight control system: This system of the UAV mainly receives
the planned path information to control the UAV so that the UAV can fly along the planned
path. In the process of control, the speed and acceleration constraints of the UAV must be
taken into consideration to minimize the deviation of the final flight trajectory from the
planned path.

(8) The airframe requirements of the UAV: The UAV’s structure must accommodate six
degrees of freedom, as shown in Figure 11. They are the displacement degrees of freedom
in the three directions of x, y, and z and rotational degrees of freedom around the three axes,
that is, yaw, roll, and pitch. To ensure the safety of flying in the yard, the airframe material
of the UAV should be constructed from anti-static materials. The size of the airframe should
be minimized to ensure the safety of the UAV during flight. But the size should not be too
small; it must be balanced with load and power.
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(9) The distance from the high-resolution visible-light camera to the RMGCTs: In the
choice of distance, the primary consideration is ensuring the clarity of the captured image.
Secondly, it is vital to compensate for any errors. The horizontal and vertical errors in
the camera’s FOV are compensated by changing the distance between the high-resolution
camera and the shooting surface by the method described in Section 2.4.

The aforementioned nine points serve as constraints for the UAV, which are very
necessary in this paper.

3.2. Experimental Environment Setup

In this paper, the 3D model of a container terminal yard is converted into a simulation
model for UAV path planning. During the conversion process, a conversion ratio of 100:1
was selected. The unit of measurement for the converted model is meters. For some
detailed parts of the container terminal yard, appropriate simplifications are made without
affecting the inspection. For example, RMGCs in the environment do not affect the results
of UAV path planning; these gantry cranes can be omitted for environmental parsimony.
The converted simulation model is shown in the red graph in Figure 12.
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3.3. Global Path Planning

In this paper, a UAV path planning method based on container terminal yard inspec-
tion is proposed. In the container terminal yard environment, this paper combines local
path planning and global path planning. The strategy of this paper is to plan a superior
global UAV path and also to plan a shorter path in a shorter time when the UAV encounters
static real-time obstacles.

The framework of this paper is shown in Figure 13. First, the model of the container
terminal yard is established. Second, the UAV’s inspection viewpoint is determined. The
location of the viewpoint mainly aligns with the normal direction of the inspection surface.
Next, the shortest path through all viewpoints is planned with the A* algorithm. Fourth, a
UAV trajectory is planned by an improved minimum snap method. Fifth, when the UAV
encounters a real-time static obstacle, a path is planned in a shorter time by the IB-RRT*
algorithm to avoid the real-time obstacle and return to the global trajectory.
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3.4. Local Path Planning

During the flight, the UAV may encounter unforeseen obstacles, such as a port trolley,
that were not present in the original scene. In the face of an emergency, the UAV must
make changes to the original path in response to the emergent quasi-conditions to perform
local path planning. During the local path planning process, the UAV needs to avoid real-
time obstacles and finally return to the predefined path. Sensors are critical at this stage.
UAVs need to obtain obstacle information through sensors to acquire their relative posi-
tion changes and explore unknown environments so that they can perform simultaneous
localization and mapping (SLAM) at the same time and find a local path [30,31].

In Figure 14, the block diagram for UAV planning and control is shown. It can be seen
from Figure 14 that local path planning plays an important role in the entire framework.

4. Simulation
4.1. Global Path Planning
4.1.1. Simulation Experiment Result

The simulation experiment was conducted on a computer with an Intel(R) Core (TM)
i7-3540M CPU @3.00GHz. The simulation experiment environment was the simulation
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environment established in Figure 12. After UAV path planning, the global path for UAV
inspection obtained in this paper is shown in Figure 15.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 25 
 

 

3.4. Local Path Planning 
During the flight, the UAV may encounter unforeseen obstacles, such as a port 

trolley, that were not present in the original scene. In the face of an emergency, the UAV 
must make changes to the original path in response to the emergent quasi-conditions to 
perform local path planning. During the local path planning process, the UAV needs to 
avoid real-time obstacles and finally return to the predefined path. Sensors are critical at 
this stage. UAVs need to obtain obstacle information through sensors to acquire their 
relative position changes and explore unknown environments so that they can perform 
simultaneous localization and mapping (SLAM) at the same time and find a local path 
[30,31]. 

In Figure 14, the block diagram for UAV planning and control is shown. It can be 
seen from Figure 14 that local path planning plays an important role in the entire 
framework. 

 
Figure 14. The block diagram for UAV local path planning and control. 

4. Simulation 
4.1. Global Path Planning 
4.1.1. Simulation Experiment Result 

The simulation experiment was conducted on a computer with an Intel(R) Core (TM) 
i7-3540M CPU @3.00GHz. The simulation experiment environment was the simulation 
environment established in Figure 12. After UAV path planning, the global path for UAV 
inspection obtained in this paper is shown in Figure 15. 

Figure 14. The block diagram for UAV local path planning and control.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 15. UAV global path planning schematic using the A* algorithm. (a) Diagonal view. (b) Top 
view. 

The blue line in Figure 15 was the planned global path using the A* algorithm. The 
length of the path was 1834.897 m. This was a path planned without considering the 
kinematic and dynamical constraints of the UAV, and the path was a fold at the turn, so it 
could not be directly used for the flight of the UAV. 

Next, trajectory planning for the UAV was carried out; i.e., a smooth trajectory was 
generated along the global path using the minimum snap method, which is shown in 
Figure 16a. From Figure 16a, it can be seen that the UAV trajectory had a large deviation 
at and near the turn (the trajectory deviation was the error distance between the generated 
UAV trajectory and the path). Figure 16b shows the global path optimized using the 
minimum snap algorithm after geometric optimization. This trajectory was significantly 
improved at the corner compared to the original trajectory. 

Figure 15. UAV global path planning schematic using the A* algorithm. (a) Diagonal view. (b) Top view.

The blue line in Figure 15 was the planned global path using the A* algorithm. The
length of the path was 1834.897 m. This was a path planned without considering the
kinematic and dynamical constraints of the UAV, and the path was a fold at the turn, so it
could not be directly used for the flight of the UAV.

Next, trajectory planning for the UAV was carried out; i.e., a smooth trajectory was
generated along the global path using the minimum snap method, which is shown in
Figure 16a. From Figure 16a, it can be seen that the UAV trajectory had a large deviation at
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and near the turn (the trajectory deviation was the error distance between the generated
UAV trajectory and the path). Figure 16b shows the global path optimized using the
minimum snap algorithm after geometric optimization. This trajectory was significantly
improved at the corner compared to the original trajectory.
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4.1.2. Simulation Results Analysis

The above experimental results show the schematic diagram of the trajectory effect
before and after trajectory optimization. From Figure 16, it can be seen that the optimized
UAV had a large improvement in trajectory deviation. To prove the validity of the con-
clusion, five simulation experiments were conducted for the trajectory planning method
before the improvement and the trajectory planning method after the improvement, and the
trajectory length and trajectory deviation before and after the improvement was compared.
Table 1 shows the trajectory lengths for the UAV before and after the improved method
and the percentage improvements. From Table 1, it can be seen that the average trajectory
length planned by the improved method before the five experiments was 1927.468 m, the
average trajectory length planned by the improved method was 1872.565 m, the average
improved trajectory length was 54.903 m, and the average improvement ratio for the trajec-
tory length was 2.85%. Within five experiments, the maximum improvement length for
the UAV trajectory planned by the improved method was 76.347 m compared with the
pre-improved method, and the maximum improvement ratio was 3.92%.
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Table 1. Comparison of UAV trajectory length before and after the minimum snap optimized A*
algorithm with geometric optimization.

Experimental Serial
Number

Length of Trajectory
before Improvement (m)

Length of Trajectory
after Improvement (m)

Optimized Trajectory
Length (m)

Improvement
Percentage

1 1917.223 1873.703 43.520 2.27%
2 1946.701 1870.354 76.347 3.92%
3 1917.223 1874.921 42.302 2.21%
4 1937.157 1874.120 67.037 3.25%
5 1919.038 1869.729 49.309 2.57%

Average 1927.468 1872.565 54.903 2.85%

Therefore, the improved method using the minimum snap algorithm with the addition
of geometric optimization had a shorter UAV trajectory compared with the planned UAV
trajectory before the improved method, and the improved UAV trajectory could improve
inspection efficiency and save the energy of the UAV.

Trajectory deviation is an important indicator to evaluate the trajectory of a UAV. The
smaller the trajectory deviation, the more the trajectory can meet UAV inspection require-
ments. Figure 17 shows the trajectory deviation graphs of five simulation experiments
before and after the improved method. From Figure 17, it can be seen that the trajectory
deviation of the UAV after the improvement method was improved compared with the
trajectory deviation before the improvement method. Table 2 presents the average devia-
tions before and after improvement, optimized average deviations, and the UAV trajectory
deviation percentages for the five experiments employing the minimum snap optimized
A* algorithm with geometric optimization. According to Table 2, the maximum average
improvement deviation distance was 2.279 m and the improvement percentage was 67.0%.
In the five UAV trajectory planning experiments, the average trajectory deviation distance
before the improvement was 3.253 m, the average trajectory deviation distance after the
improvement was 1.109 m, the average improvement deviation was 2.144 m, and the
average improvement percentage was 65.9%.

Table 2. Comparison of UAV trajectory length before and after the minimum snap optimized A*
algorithm with geometric optimization.

Experimental Serial
Number

Average Deviation before
Improvement (m)

Average Deviation
after Improvement (m)

Optimized Average
Deviation (m)

Improvement
Percentage

1 3.162 1.114 2.048 64.7%
2 3.363 1.114 2.249 66.9%
3 3.162 1.106 2.056 65.0%
4 3.403 1.124 2.279 67.0%
5 3.175 1.086 2.089 65.8%

Average 3.253 1.109 2.144 65.9%

Therefore, it can be seen that the UAV trajectory deviation generated using the mini-
mum snap algorithm with the addition of geometric optimization was greatly improved in
terms of trajectory deviation. Thus, the trajectory deviation of the UAV trajectory was small.

4.1.3. Trajectory Tracking

Through the above experimental results and analysis, it can be seen that the UAV
trajectory adding geometric optimization and corridor constraints was improved in terms
of trajectory length and trajectory deviation. The trajectory tracking effect was another
important criterion to evaluate the planned UAV trajectory, and this paper judged whether
the planned UAV trajectory was reasonable by the deviation of the tracking.
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After tracking the trajectory, one of the groups of UAV trajectory tracking effects
obtained in this paper is shown in Figure 18, where the coloured lines are the planned UAV
trajectory and the black lines are the trajectory traced by the UAV. From Figure 18, it can be
seen that the black lines almost cover the coloured lines, which meant that the trajectory
was better after optimizing the UAV path using the minimum snap algorithm with the
addition of geometric optimization.

Figure 19 shows the deviations of trajectory tracking before and after the improved
method. The trajectory deviation was mainly the x, y, z position error and yaw angle
error. The position error and yaw angle error of x, y, z before the improvement were up

to 0.05 m, 0.06 m, 7 × 10−3 m, and 8 × 10−6
◦
, and the position error and yaw angle error

of x, y, z after the improvement were up to 0.02 m, 0.02 m, 2.5 × 10−3 m, and 2.5 × 10−7
◦
.

Therefore, the UAV trajectory error after the improvement was much smaller than before
the improvement. The tracking error was much smaller than before the improvement, and
it met the flight requirements of UAVs.
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4.2. Local Path Planning

When the UAV flies along the planned global trajectory, it will encounter some local
obstacles. At this time, the UAV needs to change the global flight trajectory and perform
local path planning. The purpose of this part of the experiment is to plan a short local path
in a short time to avoid local obstacles. The environment selected for this local experiment
is the one in Figure 7, assuming that the UAV in flight encounters a parked car.

The scene was transformed into a binarized map, as shown in Figure 20a. Next, the
local obstacles were enlarged; i.e., the outline of the cart was extended outward to the safe
flight distance R of the UAV, as shown in Figure 20b. The final obtained binarized map
after the extended map is shown in Figure 20c, so that the map of local path planning
was established.
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The coordinate system shown in Figure 21 was established for this map, the coor-
dinates of the starting point were (6.7,29.6), the coordinates of the ending point were
(39.9,29.6), and the paths between the two points were planned using the RRT, RRT*, BI-
RRT*, and IB-RRT* algorithms, respectively, where the number of iterations of the RRT*,
BI-RRT*, and IB-RRT* algorithms was set to 700. The planning effects of the paths and the
data are shown in Figure 22.
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Figure 22. The effectiveness of the RRT, RRT*, BI-RRT*, and IB-RRT* algorithms for the paths planned
in the local path planning process.

From Figure 22, it can be seen that the IB-RRT* algorithm plans shorter paths and
took less time to plan the paths compared with the RRT, RRT*, and BI-RRT* algorithms,
which is very beneficial for local path planning for UAVs. To prove the accuracy of the
experimental results, 10 experiments were conducted using each of the four algorithms
in the experimental environment to obtain their path planning times and the lengths of
the paths.

Table 3 shows the average values of path planning time and path length for the
four algorithms across ten experiments. These results were obtained under the same
computational conditions. Additionally, the table includes the percentage improvements
for the RRT*, BI-RRT*, and IB-RRT* algorithms compared with the RRT algorithm. The
table shows that the paths planned by the RRT* and BI-RRT* algorithms were shorter and
straighter in path length than the paths planned by the RRT algorithm, but that the path
planning time was longer. the IB-RRT* algorithm had a relatively shorter path planning
time and path length compared with the RRT, RRT*, and BI-RRT* algorithms. Its average
time for path planning in ten experiments was 1.080 s, which is a 54.08% improvement
over the time required for path planning by the RRT algorithm. The average path length
planned in ten experiments was 35.286 m, which is a 21.86% improvement over the path
length planned by the RRT algorithm. This shows that the IB-RRT* algorithm was superior
to the RRT, RRT*, and BI-RRT* algorithms in terms of planned path time and path length.
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Table 3. Path length and time planned by the RRT, RRT*, BI-RRT*, and IB-RRT* algorithms in ten
experiments.

Algorithm Name Average Processing
Time (s)

Average Time
Improvement

Percentage

Average Path Length
(m)

Average Path-Length
Improvement Percentage

RRT 2.352+0.595
−0.572 - 45.155+7.353

−7.166 -
RRT* 5.218+0.979

−1.839 −121.85% 35.619+1.125
−0.744 21.12%

BI-RRT* 2.421+0.115
−0.127 −2.93% 35.355+0.451

−0.350 21.70%
IB-RRT* 1.080+0.158

−0.071 54.08% 35.286+0.434
−0.303 21.86%

5. Conclusions

In this paper, a UAV trajectory planning framework for RMGCT inspection on a con-
tainer terminal yard in a port environment has been proposed. The framework consists
of two main parts. (1) The first is establishing an automated container yard experimen-
tal environment, selecting viewpoints, and performing a global UAV trajectory planning
framework. This paper uses the A* algorithm for global path planning and the improved
minimum snap algorithm for global trajectory planning. The final simulated experimen-
tal results show that the UAV trajectory length and trajectory deviation planned by the
improved minimum snap algorithm improved by 2.85% and 65.9%, respectively, com-
pared with those before the improvement, and that the trajectory tracking effect was good.
(2) Local path planning for the UAV is carried out to avoid real-time static obstacles during
UAV flight and continue the global flight. In this process, the sampling-based IB-RRT*
algorithm was selected for local path planning in this paper, and the path length and path
time planned by this algorithm were compared with the RRT, RRT*, and BI-RRT* algorithms
for their planned path times and path lengths. The final simulated experimental results
indicate that the IB-RRT*, in ten simulation experiments, showed improvements of 54.08%
in planning time and 21.86% in average path length compared with the RRT algorithm. This
shows that the UAV trajectory planning framework has definite superiority. However, the
framework in this paper also has some shortcomings, such as it not considering trajectory
planning for UAVs in a dynamic environment; that the experiment was only carried out
in a computer simulation environment; and that the actual algorithm running speed of
the UAV was not taken into account. Furthermore, in this paper, optimizations of the
global path algorithm and the local path algorithm were compared, and the ones with
better performance were selected. The overall algorithm has not been compared with other
algorithms that can be applied to the scenario. In the future, we will have to conduct more
in-depth research in this area.
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