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Abstract: Over the past several years, port congestion has become a severe problem, as ships are
often not able to reach a series of ports based on the designed schedule, which induces changes
in the schedules associated with port operations. Moreover, customers can not receive their cargo
in a timely manner because of port congestion. This is not only an internal problem within the
shipping industry but also calls for collaboration between shipping lines and their upstream or
downstream members in the maritime supply chain, including shippers and port operators. This
study concentrates on the tactical planning problem for optimizing ship schedules to determine
the number of ships, the projected maximum speed, and the ship service schedule, which is set
for a company on a certain route. We develop a novel multi-objective programming model for the
green vessel scheduling problem under port congestion, and queuing theory is used to calculate
the uncertain queuing times at ports. The ultimate goal of developing this model is to maximize
cost efficiency, service reliability, and environmental benefits. A multi-objective grey wolf optimizer
algorithm is introduced for solving this problem, which shows some computational advantages
compared to the NSGA-II algorithm commonly used at the most advanced level. Experimental results
verify the application of the model and confirm that more congested periods induce more service
unreliability issues rather than additional costs and emissions generated. To this end, the proposed
methodology would allow designing better liner shipping schedules to alleviate port congestion and
provide sustainable shipping services.

Keywords: ship scheduling; port congestion; emissions; multi-objective optimization; queuing methodology

1. Introduction

Over the past thirty years, as the fastest-growing category of the maritime industry,
container shipping still maintains a good momentum [1,2]. Maritime transport carries
more than 80 percent of the total merchandise trade in volume in the world, which bears
the mainstay of worldwide integration and is located in the kernel part of cross-national
transportation that sustains supply chains and facilitates international trade [3]. In the
meantime, the surge in global trade volumes has unavoidably led to a rise in ships’ green-
house gas (GHG) emissions. Among the seaborne trade volumes (including liquid bulk,
bulk cargo, container, and normal cargo), 52% of carried goods in terms of value are trans-
ported through containerized vessels [4]. With the increasing maritime traffic volumes,
more ship delays have occurred and caused disorder in port operational plans, which has
further induced port congestion. In April of 2017, the Port of Shanghai suffered from severe
port congestion issues, and the original schedules of 146 ships were seriously affected
during this period, which can be explained by the main 10 liner shipping companies having
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restructured into 3 major alliances and undertaken extensive shipping route adjustments
starting from 1 April. The situation at the port only became better in May. According to
the 2015 Drewry report, some statistics showed that the average variance between the
estimated time of arrival (ETA) and actual time of arrival (ATA) on three main Asia–Europe
routes was 45.6 h in January and 50.4 h in February of 2015, respectively [5]. Many different
sources of uncertainties may cause port delays and congestion, such as new shipping
alliances (like the OCEAN alliance) which result in extensive shipping line adjustments,
changes in port productivity, unexpected waiting time, or poor communication between
marine terminal operators and shipping lines. Thus, there is a need for collaborative efforts
from upstream to downstream stakeholders of maritime supply chains to optimize the
shipping schedule and service efficiency.

Generally, the vessel scheduling problem involves fleet arrangement, schedule plans,
speed choice, and routing design in a dynamic procedure, which signifies planning at both
tactical and operational levels [6]. Various factors of liner shipping operations may lead
to port congestion, such as increased ship delays, lower port operating efficiency, poor
communication between marine terminal operators and shipping lines, and changes in the
schedules of collaborating alliance partners. The uncertainties could be classified into two
main categories [7]. One type refers to regular factors, e.g., port congestion (before berthing
or before container handling), fluctuating terminal production rates, and accidental waiting
time in the port channel [8]. Another type refers to rare incidents, e.g., poor weather
and worker strikes [9]. According to Notteboom (2006) [8], port congestion (accidental
waiting times before berthing or before starting handling) could account for 65.5%, the
port production rate being lower than the standard expected could account for 20.6%, and
the waiting time at anchorage for pilotage or towage could account for 4.7%. Clearly, over
90% of the schedule unreliability issues are related to port operations. A better contractual
relation between shipping lines and ports would facilitate proper decisions and enhance
service quality.

A lack of proper scheduling of terminal operations would lead to port congestion and
uncertainties in vessel service at the port. Delayed vessel arrivals at the port have a negative
influence on the seaside operations involving berth allocation, quay crane arrangement,
container storage plan, and even cargo routing. Improper utilization of the available
handling resources can cause ship delays and vice versa, e.g., container stacking and
reshuffling operations [10] and berth and yard planning systems with low efficiency [11].
Waiting times and delays at ports put pressure on maritime supply chain stakeholders
not only in terms of schedule reliability but also in terms of additional costs, including
operational and fuel costs of the shipping line, container handling costs imposed on port
operators, and cargo re-routing costs of shippers. Moreover, the vessel emissions produced
by auxiliary engines during the port handling operations constitute a large portion of port
pollutants, which will worsen the atmospheric environment and even threaten the daily
life of people in the port vicinity.

To alleviate the negative impacts of port congestion, in this study, we allocate buffer
times for each voyage leg according to the uncertain waiting times of vessels at ports, which
are estimated by adopting the queuing methodology and calculated for each vessel queued
at the anchorage point before the mooring period, which also fills the gap of modeling
the implications of congested ports on the vessel schedule design. More specifically, a
series of tactical planning decisions are addressed for designing effective vessel schedules.
These decisions include the number of vessels for deployment, the queuing times, the
sailing speeds, and the actual service schedule, considering the port congestion and arrival
time windows. In this research, it is supposed that the shipping line acquires the port
information in advance to enable tactical planning. Our goal is to realize the trade-offs
between environmental, economic, and social objectives via multi-objective optimization.
The applicability of the developed multi-objective mathematical model is tested by two
metaheuristic approaches (i.e., the grey wolf optimizer algorithm and non-dominated
sorting genetic algorithm II), which are able to generate Pareto optimal solutions for
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decision-makers in a timely manner. The computational performance of both algorithms is
evaluated in detail.

The remaining portion of the paper is organized including the following parts. Section 2
gives a brief summary of the relevant literature. Section 3 constructs container shipping sys-
tem dynamics (Section 3.1), discusses the applicability of queuing methodology (Section 3.2),
and formulates a multi-objective optimization model to focus on port congestion and envi-
ronmental issues (Section 3.3). Section 4 depicts two multi-objective metaheuristic algorithms
adopted in this study to produce Pareto feasible solutions, while Section 5 demonstrates some
computational experiments to validate the presented multi-objective optimization model and
analyze the statistical results. Finally, Section 6 draws a conclusion by debating the major
findings and trends along with the key future research directions.

2. Literature Review

Some relevant literature is summarized from content to methodology in four areas:
the literature mentions operational strategies in liner shipping to alleviate uncertainties,
utilizing the first-come-first-served (FCFS) rule for examining port terminal operations,
cutting vessel emissions, and multiple sustainable objectives in the maritime industry.

Certain studies have investigated how the uncertainty at ports (such as uncertain
waiting times, unexpected handling times, and so on) could be mitigated through tactical
measures in liner shipping. Qi and Song (2012) [12] designed an optimal service schedule
by assigning proper buffer times into the schedule to alleviate the uncertainties. The total
expected fuel consumption and emissions were minimized within the speed constraints
and different service levels. Wang and Meng (2012) [13] proposed a tactical-level liner
ship route schedule problem by considering time uncertainties at sea and at ports, aiming
to determine the arrival time of ships at each port of call, as well as the sailing speed
within the transit time constraints. The authors come up with an exact cutting-plane-based
solution algorithm, which was intended to solve the mixed-integer non-linear stochastic
programming model. The validity of the model was demonstrated through numerical
experiments. Wang and Meng (2012) [11] developed the above work by introducing the
hedges against the uncertainties in terminal operations, which included the uncertain
waiting time because of port congestion and the unexpected handling time. The robust
model was designed for the recovery of vessel schedules by fast steaming. The presented
mathematical model was solved by utilizing the sample average approximation approach,
linearization technical skills, and a decomposition mode. The studies mentioned above
regarding to vessel scheduling did not particularly apply the queuing methodology for
modeling port congestion.

Container terminals that generally apply the FCFS rule to analyze the daily operating
schedule for serving shipping lines are called multi-user terminals [14–16]. Some studies
have applied queuing theory to minimize the waiting cost in the queuing system [17–20],
while others have evaluated the efficiency or performance of ports by minimizing the waiting
time [21–24]. Several studies have determined the best number of berths by reducing the
total cost [25–29]. The present study will utilize queuing theory to calculate the waiting time
of vessels entering ports, as a part of the port time used in the vessel scheduling problem.

Increased vessel emission has attracted the attention of shipping lines to environmental
impacts along with the task of cutting environmental costs, which is a critical matter on
the agenda of the International Maritime Organization (IMO). In accordance with the third
IMO GHG (greenhouse gas) study [30], the total CO2 emissions from the seaborne industry
reached 796 million tonnes in 2012, which is expected to rise by 250% in 2050 with this
growth rate. From the economic and environmental perspectives, various research studies
have been performed on the vessel scheduling problem, reducing fuel consumption and
CO2 emissions [13,31]. In addition, some studies have captured the vessel CO2 emissions
generated in the port areas. For instance, Qi and Song (2012) [12] intended to minimize the
total expected fuel consumption (and emissions) by considering uncertain port times. Tai
and Lin (2013) [32] studied the emission reductions of air pollutants for global container



J. Mar. Sci. Eng. 2024, 12, 114 4 of 28

shipping carriers utilizing slow steaming and daily service frequency strategies. The ship
operations were categorized into three periods: berthing time, maneuvering, and at sea.
Dulebenets (2018) [33] extended the cost objective to accommodate carbon emission costs
at sea and ports. The experiments revealed that the design of vessel schedules would be
substantially changed with various carbon dioxide taxation values, while the impact on
port operations was found to be very limited.

Some extant literature has considered multiple objectives for sustainable developments
in the shipping business. Mansouri et al. (2015) [34] examined environmental sustainability
and the trade-offs of balancing economic and operational benefits by implementing multi-
objective optimization as a decision support system to improve sustainability of maritime
shipping. Cheng et al. (2015) [35] defined a ‘Sustainable maritime supply chain’, which
intends to improve the competitiveness of the supply chain from customer satisfaction,
social, and environmental requirements by integrating maritime organizational units and
coordinating materials, information, and financial flows. To help in maintaining the
sustainability of container shipping, port operations and vessel sailing voyages could be
considered simultaneously. Dulebenets (2022) [31] studied multi-objective collaborative
agreements between shipping lines and port terminal operators to assist with the selection
of appropriate time windows for the arriving vessels and appropriate handling rates for
their service. The proposed collaborative agreements incorporated the major economic and
environmental perspectives. A novel multi-objective optimization approach stimulated by
the goal programming and epsilon-constraint methods was proposed to resolve the issue.

Despite the fact that the aforementioned vessel scheduling studies captured the im-
pacts of uncertainty at ports, the implications of congested ports on the vessel schedule
design have not been analytically modeled. Therefore, we utilize queuing theory to predict
the uncertain waiting times at ports before mooring. In addition, the queuing time of
delayed vessels is used to address port congestion in vessel schedule design by allocating
buffer times. Therefore, our novel mathematical model can be used to facilitate cooperation
between shipping lines and port operators to provide vessel service. Due to the grow-
ing interest of shipping lines in environmental considerations, the overall carbon dioxide
emissions are directly incorporated as well. Furthermore, to study the effects of multiple
objectives, a multi-objective grey wolf optimizer (MOGWO) algorithm is introduced to
resolve the developed optimization model and offer optimal or near-optimal solutions.
The experimental results show that the introduced algorithm is better compared with the
non-dominated sorting genetic algorithm II (NSGA-II), which is a popular multi-objective
optimization algorithm.

3. Mathematical Formulation
3.1. The System Dynamics

Liner service possesses the characteristics of regularity differing from other shipping
sectors. A fleet of vessels call at a sequence of ports on a loop to provide a particular
service frequency (normally weekly or bi-weekly), and they are operated by a global liner
shipping company. From the practical perspective, the type of deployed ships, port rotation,
and designed schedule on a shipping route is usually announced 3–6 months in advance.
The whole voyage is separated into segments connecting each pair of contiguous ports,
namely, the sailing cycle as the sum of transit time from each segment. However, small
modifications to the service schedule, ship deployment, or port call sequence may still
occur in case of disruptions.

According to Meng et al. (2014) [36], the decisions in containership routing and
scheduling include three different planning levels: strategic, tactical, and operational
levels. In this work, we concentrate on ship deployment, speed optimization, and schedule
construction in tactical planning, with the assumption that the strategic level decisions
(e.g., the service route, fleet size, and mix) are already given. Various uncertainties existing
both at sea and at ports may induce vessels to deviate from the planned schedule, so ship
delays have become a common phenomenon in recent years. Approximately 93.6% of ship
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delays are induced by port-related uncertainties (e.g., uncertain loading/unloading volume,
congestion, mechanical breakdowns, availability of handling equipment) [8]. Based on the
existing studies, the containerships are commonly assumed to arrive at a port following
Poisson’s distribution [29,37]. We will utilize the queuing methodology to estimate the
queuing time of containerships at congested ports. There are two different cases in practice
when it comes to vessel queuing at ports. The first one uses the long-term cooperative
agreements between ports and shipping liners applied to larger containerships, which
determines the berthing location and yard allocation in advance. Ships arriving at the
terminal will wait in a queue if the available berths are occupied, (i.e., the single server’s
queuing law is applicable). The other case is to assign public berths randomly for ships,
i.e., using the multi-server’s queuing law, which has also been used to obtain the optimal
number of berths in some studies. Moreover, the extensive time wastage during the vessel
arrival and departure processes cannot be neglected. The statistical analysis conducted
by the Journal of Commerce (JOC) shows that up to USD 480 million could be acquired for
400,000 port calls made every year in the shipping industry if at least one hour of every
port call could be eliminated and converted to slower sailing [38]. Therefore, liner shipping
companies need to pay particular attention to the time spent at ports of call, rather than only
focusing on the sailing time. During the execution stage, the vessel operator will not be able
to travel any faster than the maximum speed to recover the delayed schedule. Moreover, a
sailing speed increase may not be economically practical due to the rapid increase in fuel
consumption at very high speeds, especially for larger container vessels [39].

This study models a typical liner ship route consisting of fixed ports of call based on
Qi and Song (2012) [12], and each port can be called on more than once. It is assumed that
homogeneous vessels would be arranged to retain weekly service frequency. Each port
has a specific arrival time window, which varies for busy and idle ports. Hence, this study
investigates the vessel scheduling problem with arrival time windows and transit time
constraints deploying multiple vessels on one specific ship route. We will pay attention
to the port time uncertainty and divide the whole voyage into the sailing periods and
port periods, as depicted in Figure 1. This represents that the port period consists of
queuing time at anchorage, wasted time (i.e., the time between the end of queuing time
and the beginning of vessel handling time), and handling time. The type and number of
arranged vessels, the service schedule, the transit times between ports, and the planned
speed selection will be optimized herein.
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Figure 1. Service of the arriving vessels at a port.

Real data of vessel arrivals at one of the Shanghai Port terminals have verified that
vessel arrivals follow the Poisson distribution (as discussed more in Section 5.1). Therefore,
we assume that the arrivals of containerships calling at each port follow the Poisson
distribution, and the multi-server FCFS law is applied for vessel service; here, vessels in
this article refer particularly to containerships. Then, the queuing methodology can be used
to calculate the waiting time of containerships in a queue. The other assumptions that will
be further used in this study are summarized below:

a. The same type of vessel is deployed on the given liner route with a fixed sequence of
ports of call, and all vessels are chartered;



J. Mar. Sci. Eng. 2024, 12, 114 6 of 28

b. Even if any service schedule on these ship routes is adjusted, all vessels still arrive
randomly following the Poisson distribution;

c. If the berthing positions of vessels are known in advance, the single server queuing
law (M/M/1) will be applied to calculate the waiting times. However, if the berthing
positions are not yet known, the multi-server queuing law (M/M/c) will be applied;

d. The loading and unloading volume at each port is assumed to be constant (i.e., the
total amount of import containers unloaded from vessels and the total amount of
export containers loaded on vessels are assumed to be fixed);

e. If a vessel arrives at a port earlier than the planned arrival time, it will be required to
wait for handling until the planned arrival time starts [39,40];

f. The speed on each leg can be changed and optimized in the range between the
minimum speed and the planned maximum speed. However, the use of higher
vessel sailing speeds will cause higher fuel consumption.

Before formally describing the proposed model formulation, we introduce the notation
in the Abbreviation part.

3.2. Queuing Time at Single-Berth and Multi-Berth Facilities

Queuing theory, as a branch of operational research, is generally used to calculate
waiting time in lines or queues [41]. Previous studies that have applied queuing theory
in maritime shipping often focused on assessing port performance, estimating the best
number of berths or addressing the congestion issues. As Jansson and Shneerson (1982) [37]
declared, ships often arrive at a port randomly and mostly follow Poisson’s distribution.
During the berthing process, ships arrive at a port and need to wait at the anchorage point
for the available berths to receive a container handling service, where ships and berths can
be regarded as customers and servers, respectively. As mentioned above, one approach
is to apply the M/M/1 queuing system in c queues if ships have fixed (or pre-assigned)
berthing positions, as shown in Figure 2. The other approach is to apply the M/M/c
queuing system for assigning ships to the available berths at random, as shown in Figure 3.
The following assumptions were adopted for the queuing process:

(a) The arrival process—ships arrive at random, subject to a Poisson probability distribu-
tion, and wait at the same anchorage point, even if vessel types can be different;

(b) The queuing discipline—one waiting line and a ‘first-come-first-served’ rule. The
arriving ships will wait when the berthing system is busy, and the queue length has
an upper restriction;

(c) The server discipline—each berth is mutually independent and has the same service
ratio for the same type of ships. The service time is set as a random variable, subject
to the negative exponential probability distribution.
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1. M/M/1 queuing system

The same type of vessels will wait in a queue at the anchorage point for the same berth.
The expected number of ship arrivals at berth c is λc, and the mean service rate at berth c is
µc. The largest number of vessels that the queue accommodates is X, and the queue limit at
each berth c is Xc. According to the M/M/1/N/∞ queuing theory, the mean occupancy
rate is ρ = λ/µ, while the other variables can be calculated in the following manner [42].

The probability that no ship will be served at berth P0, and the probability that n ships
will be served at berth Pn, can be obtained from the following relationships:

P0 =
1 − ρ

1 − ρN+1 ρ ̸= 1 (1)

Pn =
1 − ρ

1 − ρN+1 ρnρ ̸= 1, n ≤ X (2)

The mean queuing length Lc and the mean queuing time qc at berth c can be calculated
as follows:

Lc =
Xc

∑
n=1

(n − 1)Pn =
ρ

1 − ρ
− (Xc + 1)ρXc+1

1 − ρXc+1 − (1 − P0)ρ ̸= 1 (3)

qc =
Lc + (1 − P0)

µc(1 − P0)
− 1

µc
ρ ̸= 1 (4)

2. M/M/c queuing system

Since the different types of ships arrive and wait at the same anchorage point, the
expected arrival rate λ (ships/day) (the mean arrival interval between two ships—1/λ)
is constant for all the ships. As shown in Figure 3, given the mean queue service rate of
ships at berth µ (the mean service time per ship—u = 1/µ), the number of berths c, and
the mean occupancy rate ρ(λ/cµ), the M/M/c queuing system can be applied.

First, the mean service time per ship at each port of call (in days), i.e., the weighted
average service time for all the ships, can be calculated using the subsequent equation:

u = ∑
v

uvλv/∑
v

λv (5)

where uv is the mean service time of ship-type v, and λv is the arrival number of ship-type v.
Then, according to Jansson and Shneerson (1982) [37], the probability of no ships

arriving P0 and the probability Pn that n ships arrive for service per day can be expressed
using Equations (6) and (7) and considering the service intensity ρ < 1:

P0 =

[
c−1

∑
n=0

1
n!

(
λ

µ

)n
+

1
c!
· 1

1 − ρ
·
(

λ

µ

)c
]−1

(6)
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Pn =


1
n!

(
λ
µ

)n
P0(n ≤ c)

1
c!cn−c

(
λ
µ

)n
P0(n > c)

(7)

Furthermore, let p = Pn(n ≥ c) be the probability that a delay will occur, namely, there
will be a delay when n ships arrive at a port with c berths, where n ≥ c. Then, p can be
computed as follows:

p =
∞

∑
n=c

Pn =
1

c!(1 − ρ)

(
λ

µ

)c
P0 (8)

Hence, the multi-berth queuing time q can be calculated using Equation (9) while
ρ < 1 (Jansson and Shneerson, 1982):

q =
u

c(1 − ρ)
· p (9)

However, when the service intensity is larger than 1 (ρ > 1), we will limit the capacity
of the queuing system to avoid the infinite queue of vessels waiting at the anchorage point.
Then, the queuing time can be computed as follows [42].

The probability that no ship will be served at berth P0 can be computed using the
next equation:

P0 =
1

∑c
k=0

(cρ)k

k! + cc

c! ·
ρ(ρc−ρX)

1−ρ

ρ ̸= 1 (10)

where X represents the largest number of vessels allowed in the queuing system containing
the vessels at berth and waiting at anchorage.

The probability that X ships are in the terminal system (i.e., the system is full) can be
computed using the next equation:

PX =
cc

c!
ρXP0 (11)

The mean queuing length L can be computed using the next equation:

L =
P0ρ(cρ)c

c!(1 − ρ)2

[
1 − ρX−c − (X − c)ρX−c(1 − ρ)

]
(12)

The mean queuing time q can be computed using the next equation:

q =
L

λ(1 − PX)
(13)

3.3. Multi-Objective Modeling

Not only in academic studies, but also at the execution stage of shipping operations,
slow steaming has developed to become a popular and mature experience, both economi-
cally and environmentally beneficial. However, slow steaming may cause ship delays and
late arrivals at consecutive ports of call. Considering port congestion, we formulate the
green vessel scheduling model that aims to determine sailing speeds and service schedules
by minimizing the annual total costs and carbon emissions, meanwhile minimizing the
schedule unreliability as well.

MinMCOST = nv·
[

Cho
K

K
∑

k=1

N
∑

i=1
di·g(si,k) +

1
K

K
∑

k=1

N
∑

i=1

[
qi,k

(
Fho

v Cho + Fdo
v Cdo

)
+ (ω+li)Fdo

v Cdo
24

]]
· 365

T/24 + nv·Cv·365
[

Cho
K
∑

k=1

N
∑

i=1
di·g(si,k) +

K
∑

k=1

N
∑

i=1

[
qi,k

(
Fho

v Cho + Fdo
v Cdo

)
+ (ω+li)Fdo

v Cdo
24

]]

·365
7K

+ nv·Cv·365 (14)
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MinMCO2 = γ·nv·
365

T/24
·
[

1
K

K

∑
k=1

N

∑
i=1

di·g(si,k) +
1
K
·

K

∑
k=1

N

∑
i=1

[
qi,k

(
Fho

v + Fdo
v

)
+

(ω + li)Fdo
v

24

]]

γ·
[

K

∑
k=1

N

∑
i=1

di·g(si,k) +
K

∑
k=1

N

∑
i=1

[
qi,k

(
Fho

v + Fdo
v

)
+

(ω + li)Fdo
v

24

]]
·365

7K
(15)

MinMSU =
1

K·N
K

∑
k=1

N

∑
i=1

I
{

ta
i,k > ti,k + Wi

}
(16)

First, we introduce the annual total cost minimization objective MCOST . As liner
shipping is a capital-intensive industry, shipping lines pursue cost efficiency as their main
goal, which consists of the fuel consumption cost during both the sailing period and port
period, and the annual operating cost of all the vessels arranged on the route. Here, the
operational cost refers to the charter hire for time-chartered ships.

Note that the component 1
K ∑K

k=1 ∑N
i=1 di·g(si,k) represents the mean average

fuel consumption per ship sailing on a shipping route. Furthermore, the component
1
K ∑K

k=1 ∑N
i=1

[
qi,k

(
Fho

v Cho + Fdo
v Cdo

)
+ (ω+li)Fdo

v Cdo
24

]
denotes the expected fuel consumption

per ship at each port of call (in a day). More specifically, the ship engine consumes both
heavy oil and diesel oil while waiting at anchorage, and consumes only diesel oil while
being served at the assigned berthing position [32]. qi,k is the queuing time at each port of
call that can be calculated using Equations (4), (9) and (13).

Second, the objective MCO2 is set to minimize the annual total carbon emission through-
out the whole voyage, which is proportional to energy consumption and takes the emission
factor γ as the coefficient. During the mooring period, the ship engine still consumes fuel
and produces carbon emissions, which make up a small part of ship emissions but a major
portion of port pollutants. Worsening the atmospheric environment in port surroundings
is expected to threaten the health of those living in coastal communities [43].

To maintain customer satisfaction and good service quality, the third objective MSU ,
which represents the service reliability, is introduced as an important factor in liner shipping
planning. In liner service, the delay arrival time of vessels can be used to measure the
customer service level [43,44]. According to the schedule unreliability assessment [39], I{}
can be used as the indicator function, which will take the value of “1” on the condition
that the ship arrives after the designed arrival time plus the time window duration; “0” is
used otherwise.

The problem is to optimize the decision and auxiliary variables by minimizing the
three objective functions simultaneously directly considering the following constraint sets:

Constraints (17)–(19) ensure the consecutiveness of shipping voyages and the relation
between the actual and planned arrival times of ships, in line with Song et al. (2015) [39].

t1,k+1 = tN+1,k, f or k = 1, 2, · · · , K (17)

ti,k = (k − 1)T +
i−1

∑
j=1

τj, f or k = 1, 2, · · · , K, i = 1, 2, · · · , N + 1 (18)

ta
1,1 = t1,1; ta

1,k+1 = ta
N+1,k, f or k = 1, 2, · · ·K (19)

The constraints in (20) endogenously imply the actual arrival time for the dynamic
speed decision.

ta
i,k =


td
i−1,k + di−1/smini f si−1,k = smin

ti,ki f smin < si−1,k < sv
td
i−1,k + di−1/svi f si−1,k = sv

f or k = 1, 2, · · · , N + 1, k = 1, 2, · · · , N

(20)
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Constraint (21) represents the sailing speed calculation.

si,k =
di

ta
i+1,k − td

i,k
, f or k = 1, 2, · · · , K, i = 1, 2, · · · , N (21)

The constraints in (22) imply the departure time from port i under two conditions. In
detail, a ship will wait for berthing until the designed arrival time if it arrives earlier at the
port. Otherwise, it will need to wait in a queue if it arrives after the designed arrival time.

td
i,k =

{
ti,k + li + ω i f ta

i,k ≤ ti,k
ta
i,k + 24·qi,k + li + ω i f ta

i,k > ti,k

f or k = 1, 2, · · · , K, i = 1, 2, · · · , N
(22)

Constraint (23) maintains the weekly service [39].

τ1 + τ2 + · · ·+ τN−1 + τN = T = 168·nv (23)

Constraint (24) represents that the planned maximum sailing speed must be within
the established bounds.

smin ≤ sv ≤ smax (24)

Constraint (25) estimates the lowest bound for transit time on each leg [39].

τi ≥ li +
di

smax
, f or i = 1, 2, · · · , N (25)

The constraints in (26) express the fuel consumption formula (in ton/nm) obtained
from empirical data [45].

g(si,k) = 0.0036s2
i,k − 0.1015si,k + 0.8848

f or k = 1, 2, · · · , K, ∀i = 1, 2, · · · , N
(26)

The constraints in (27) define the ranges for all of the variables.

nv ∈ Z+; sv, τi, T, td
i,k, si,k, g(si,k), qi,k ∈ R+

f or i = 1, 2, · · · , N + 1, k = 1, 2, · · · , K
ta
i,k, ti,k ≥ 0

f or i = 1, 2, · · · , N + 1, k = 1, 2, · · · , K + 1

(27)

4. Algorithm Design

This section elaborates on the applied solution methodology for the multi-objective
green vessel scheduling problem, including the following main solution algorithms:
(1) multi-objective grey wolf optimizer (MOGWO); and (2) multi-objective genetic al-
gorithm (MOGA). A more detailed description of the key algorithmic steps, procedures,
and operators is presented next.

4.1. Multi-Objective Grey Wolf Optimizer (MOGWO)

As the main factor influencing vessel service schedule, the sailing speed is often
optimized to give a reduction in fuel consumption and carbon emissions at the operational
level. The actual sailing speeds will be dependent on three decision variables (nv, sv, τi)
to be determined based on the proposed optimization model. Since fuel consumption
approaches the third power of the sailing speed, this decision problem can be classified
as a non-linear continuous procedure. A few computing methods have been proposed to
solve this nonlinear speed optimization problem, but most of the previous research has
only built single-objective mathematical formulations to minimize the total costs [13,46,47],
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while Song et al. (2015) [39] deployed a MOGA to resolve the multi-objective schedule
planning problem.

In the optimization procedure, we assess three objectives (the cost, the emissions, and
the unreliability) as the goal and try to obtain a very accurate approximation of Pareto
optimal solutions, which refer to a set containing all of the non-dominated solutions [48].
A solution prevails over another solution on the condition that it has no worse values
in all objectives and is strictly better in terms of at least one of the objectives. The non-
dominated solutions denote that it is not possible to identify which one is better, and the
Pareto optimal front is composed of all non-dominated solutions. Contrary to the grey wolf
optimizer (GWO), it has no single solution to track when addressing the trade-offs between
objectives. As a recently proposed multi-objective metaheuristic, MOGWO is extended
based on GWO, which originated based on the inspiration from the hunting behaviors
of grey wolves. Different from the single-objective GWO, MOGWO has integrated two
new components: (1) Utilize an archive to save non-dominated Pareto optimal solutions
throughout the algorithmic run; (2) Select the leader wolves from the archive.

The computational steps for MOGWO adopted in this paper are interpreted as follows
and shown in Figure 4. Note that the nomenclature adopted in this subsection is inde-
pendent from the one used in the model formulation and was strictly introduced to better
interpret the MOGWO algorithm.

Step 1: Set the archive size na = 100, the number of grey wolves ng = 100, and the
maximum number of iterations MaxIt = 100. Note that the values of the aforementioned
parameters were set on the basis of the preliminary parameter tuning analysis. Initialize
random values for a, A, and C calculated as A = 2 · a · r1 − a, C = 2 · r2, where r1, r2
are random vectors in the [0, 1] range and a linearly falls from 2 to 0 in the process of
iterations. We fix nv and sv, and produce the initial grey wolf population {τi} from the
feasible solutions.

Step 2: Assess the objective values (Cost, Emissions, and Unreliability) for each
search agent.

Step 3: Obtain the non-dominated solutions and store them to an initial archive.
Step 4: Choose the three best non-dominated solutions, denoted as α, β, and δ wolves,

from the archive based on the roulette-wheel method.
Step 5: Renew the positions for the current search agent, which are computed as

Dp = C ·Xp(t)−X(t), X(t + 1) = 1
3 ∑p=α,β,γ

(
Xp(t)− A·Dp

)
, where X represents positions

of wolves, Xp denotes positions of prey; t is the current iteration; C and A are coefficient
vectors. The above equations define the encircling behavior of grey wolves. In order to hunt
for prey, the α, β, and δ will guide ω wolves (i.e., the other wolves in the initial population)
toward promising regions located close to the prey position.

Step 6: Compute the fitness values for all search agents, obtain the non-dominated
solutions from them, then compare them to the current archive, and update the
archive accordingly.

Step 7: Check the number of members in the archive. If the archive is full, firstly
run the grid mechanism to omit one of the current archive members; secondly, insert the
new solution to the least crowded segment for increasing the diversity of the final Pareto
optimal front.

Step 8: Renew the leader wolves Xα, Xβ, and Xδ; Update a, A and C.
Step 9: The iteration counter is updated as follows: t = t + 1. This process will turn

back to Step 5 and be repeated until a termination criterion is satisfied (i.e., the number of
iterations reaches the maximum).



J. Mar. Sci. Eng. 2024, 12, 114 12 of 28J. Mar. Sci. Eng. 2024, 12, 114 12 of 29 
 

 

 

Figure 4. Flowchart of MOGWO based on Mirjalili et al. (2016) [48]. 
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Figure 4. Flowchart of MOGWO based on Mirjalili et al. (2016) [48].

4.2. Multi-Objective Genetic Algorithm (MOGA)

To verify the effectiveness of MOGWO, we deploy the widely used multi-objective
metaheuristic, non-dominated sorting GA (NSGA-II) [49], which will also be applied to the
proposed multi-objective mathematical model for the vessel schedule planning problem
along with MOGWO [39]. The NSGA-II is a fast and elitist MOGA, which applies a fast
non-dominated sorting technique and a crowding-distance assignment to strengthen the
algorithmic capabilities, so that it can maintain a diversity of Pareto optimal front sets. The
elitist keeping technique used in NSGA-II guarantees that the new parent generation is
performed using the best set of solutions, whereas the final non-dominant Pareto front may
be remote from the true Pareto optimum during the local search.

After all, MOGWO can be theoretically more effective in contrast to other multi-
objective metaheuristics in terms of the subsequent steps: (1) The best-nondominated
solutions obtained thus far can be saved effectively to the external archive; (2) Only three key
parameters (a, A, and C) need to be modified, and due to the randomness of the parameters
A and C, the alternative solutions could obtain hyper-spheres by setting different random
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radii; and (3) The adaptive values of the parameters a and A guarantee the convergence
rate of MOGWO, transiting smoothly between the exploration and exploitation phases.

5. Numerical Experiments and Analysis

5.1. χ2 Fit Test

The data regarding the total number of ship arrivals were adopted from the six
container terminals of the Port of Shanghai for one month (29 days in February 2016). To
verify whether the data gathered conform to the queuing methodology, we conducted a chi-
squared test to analyze the distribution pattern of ship arrivals, taking the Zhendong Branch
Company as an example (which is one of the six container terminals considered). The
chi-square statistic can be calculated using Equation (28), and the results of the performed
statistical analysis are displayed in Table 1. The primary (or “null”) hypothesis was
assumed that the frequency distribution of the daily ship arrivals at the port follows
Poisson’s distribution.

χ2 =
g

∑
j=1

(
Aj − Ej

)2

Ej
=

g

∑
j=1

(
Aj − ηpj

)2

ηpj
(j = 1, 2, 3, · · · , g) (28)

where Ai denotes the actual frequency, Ei implies the expected frequency, η is the total
frequency, and pi is the possibility of grouping i under the primary hypothesis.

Table 1. The χ2 test results for ship arrival rates to the Zhendong terminal.

No. of Ship
Arrivals The Practical Frequency Ai The Possibility pi

Chi-Square
χ2

0 1 0.0136 0.9299
1 0 0.0583 1.6907
2 5 0.1254 0.5112
3 6 0.1798 0.1184
4 6 0.1933 0.0277
5 4 0.1662 0.1394
6 2 0.1191 0.6120
7 3 0.0732 0.3625
8 1 0.0393 0.0171
9 0 0.0188 0.5452
10 0 0.0001 0.0029
11 1 0.00004 —

Totalη = 29 Total = 1.00 Total = 4.9570

The degree of freedom equals the number of groups minus the number of predicted
parameters and 1, presented as DF = 12 − 1 − 1 = 10 (considering that were 12 ship
arrivals). The confidence coefficient α is set to 0.05, then χ2

α(10) = 18.31. If χ2 < χ2
α, then

we cannot reject the primary (or “null”) hypothesis, which confirms that the ship arrival rate
follows Poisson’s distribution. Otherwise, the null hypothesis should be denied. Since the
estimated χ2 value was found to be lower than the critical value χ2

α(10) (χ2 = 4.9570), then
the null hypothesis cannot be rejected; hence, the ship arrivals at the Zhendong terminal
follow Poisson’s distribution.

Similar to the Zhendong terminal, the χ2 fit test was conducted for other five terminals
located at the Port of Shanghai, including the Pudong, Hudong, Mingdong, Shengdong,
and Guandong terminals. The results of additional tests are provided in Table 2. We set
α = 0.05, all χ2 < χ2

α, so the null hypothesis could not be rejected. Therefore, the ship
arrivals at all the considered terminals of the Port of Shanghai follow Poisson’s distribution,
conforming the effectiveness of the queuing methodology utilized for ships arriving at
the port.
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Table 2. The χ2 test results for ship arrival rates to six container terminals.

Company No. of Ship Arrivals No. of Berths When α=0.05

Zhendong 124 5 χ2 < χ2
α(10)

Pudong 112 3 χ2 < χ2
α(8)

Hudong 182 4 χ2 < χ2
α(9)

Mingdong 215 4 χ2 < χ2
α(11)

Shengdong 146 9 χ2 < χ2
α(8)

Guandong 134 7 χ2 < χ2
α(8)

5.2. Scenario Settings

This study considered a trans-Pacific container shipping journey provided by Maersk
Line [12], which was directly used to weigh the achievement of the suggested multi-
objective optimization model and the algorithm. The shipping route consists of nine
ports of call (and eight ports), including the subsequent ports: Kwangyang, Busan, Qing-
dao, Nagoya, Yokohama, Long Beach, Oakland, Dutch Harbor, Yokohama, and back to
Kwangyang. The numerical data adopted throughout this study to conduct the computa-
tional experiments are provided in Table 3.

Table 3. Numerical data.

Parameter Value Source (s)

Expected number of ship arrivals λ U[11, 13]/U[4, 6] Gharehgozli et al. (2017) [10]

Number of berths c U[4, 6] Gharehgozli et al. (2017) [10]

Ship capacity φv (TEUs) N
[
10000, 20002] Gharehgozli et al. (2017) [10]

Loading and unloading ratios ψ U(0.1, 0.3) Gharehgozli et al. (2017) [10]

Handling efficiency ri (TEU/h) [50; 75; 100; 125]/[50;60;70;75] Dulebenets (2018) [40]

Average wasted time ω (mins) 50 JOC (2017) [50]

Minimum (maximum) sailing
speed smin(smax) (knots) 14.1 (26) Song et al. (2015) [39]

Fuel price Cho(Cdo) (USD/ton) 450 (700) BunkerIndex (2018) [51]

Daily chartering cost for a 10,000-TEU
containership (USD/day) 35,000 Clarkson (2018) [52]

Vessel’s arrival time window Wi (h) busy ports: 4/idle ports: 6 Song et al. (2015) [39];
Lee et al. (2017) [53]

Main engine fuel economy Fho
v

(
Fdo

v

)
(tons/h) 2.50 (0.06) Tai and Lin (2013) [32]

Carbon emission factor γ (tons/ton) 3.17

Tai and Lin (2013) [32];
Buhaug et al. (2009) [54];

Liao et al. (2009) [55];
Chang and Wang (2010) [56]

In this experiment, we deployed five 10,000-TEU containerships to provide a weekly
service, where it was assumed that ship-type v = 1, n1 = 5, and µ1 = 10, 000. Given
ten voyages K = 10, the distances between ports were used in the existing schedule,
and the planned operating times for a 10,000-TEU ship at each port were computed
as li = 2µ1ψ/ri (h). Similarly, the mean service time of ship-type v was estimated as
uv = 2µvψv/24r (day). In addition, the time wastage in the arrival and departure process
time was set to 50 min at least when there were no physical restrictions [50]. The vessels
were assumed to consume both heavy and light fuel oil at high sea and during the waiting
period at anchorage, while only light fuel oil was assumed to be used during handling
operations [32]. The main engine fuel economy by different oil types Fho

v

(
Fdo

v

)
(tons/h)
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was set based on the data available for the ships above 7500–10,000 TEUs. The carbon
emission factor was assumed to be constant for ho and do.

Based on previous literature (Gharehgozli et al., 2017 [10]; Saeed and Larsen, 2016 [29];
Dulebenets, 2018 [40]), the ports of call could be defined as ‘larger ports’ if they were listed
in the ‘Top 20 world container ports’ and ‘smaller ports’ otherwise. Then, we adopted
some basic settings and assumptions to calculate the queuing time, on the basis of the data
shown in Table 3. The following parameters could be generated based on different uniform
distributions: the expected number of ship arrivals λ ∼ U[11, 13]/U[4, 6], the number of
berths c ∼ U[4, 6], the loading and unloading ratios ψ ∼ U(0.1, 0.3), where the loading
and unloading volumes are equal. The sizes of ships were assumed to follow the normal
distribution µv ∼ N

[
10000, 20002]TEUs, where mainly five types of ships were expected

to arrive at ports. The container handling rates were set to ri[50; 75; 100; 125]TEUs/h or
ri[50; 60; 70; 75]TEUs/h according to different congestion situations. Let the arrival time
window be Wi = 4 h or Wi = 6 h for any busy (idle) ports.

Two multi-objective metaheuristics that were used in this study, MOGWO and NSGA-II,
were both carried out applying Matlab running on a PC with an Intel Core i5 processor
(2.30 GHz) and 8 GB RAM. In the MOGWO, the archive size was set to 100, the number of
grey wolves was set to 100, and the maximum number of iterations was restricted to 1000.
In the NSGA-II, the population size was fixed to 100, the mutation ratio was fixed to 0.02,
and the maximum number of generations was restricted to 1000. Note that the values of
the aforementioned parameters were set on the basis of the preliminary parameter-tuning
analysis for MOGWO and NSGA-II. The averaged performance metric values were obtained
through 15 time runs for each algorithm.

The following sections discuss the achieved performance of the model and the algo-
rithm in three groups of experiments. In the first group, two queuing theories: M/M/1 and
M/M/c, were applied to calculate the queuing times at ports, and the results under two
queuing systems were compared. Then, we compared the two proposed solution methods
and illustrated the impacts of decision variables on the considered objective functions
under the basic assumptions. Furthermore, the Pareto optimal solutions from the better
method were analyzed for differing values of fuel price and berth occupancy rate in order
to examine the impacts of key factors on the three objectives.

5.3. Computational Results

In this section, we examined the Pareto optimal sets acquired by MOGWO and NSGA-II
in contrast to check the effectiveness of the algorithms. Based on the basic parameter settings
above, we let nv = {4, 5, 6, 7, 8, 9} and sv = {15, 18, 20, 23, 26}. For various combined groups
of nv and sv, the experimental results applying the two queuing theories with MOGWO
were compared in Tables 4 and 5. Compared with assigning berths based on the M/M/1
policy in Table 4, it is more efficient to allocate public berths to ships stochastically using
M/M/c in Table 5, which could obtain lower costs and carbon emissions, and also a higher
service reliability. Therefore, we applied M/M/c/N/∞ to calculate the queuing times at
ports firstly, and then executed both metaheuristics for different combinations of nv and
sv. The experimental results with the obtained MOGWO and NSGA-II solutions nv, sv are
presented in Tables 5 and 6. Moreover, Figure 5 shows the identical combination of solutions
in a three-dimensional space.

Based on the obtained results, MOGWO can obtain better Pareto solutions compared
to NSGA-II under each scenario of nv and sv. The four columns present the objective
function values under each best single objective and runtime. Therefore, we can conclude
that our proposed MOGWO deployed for the green vessel scheduling model can obtain
better objective values than the NSGA-II used by Song et al. (2015) [39]. A couple of
observations from the results are noteworthy. For both metaheuristic approaches, the best
COST and CO2 values can be obtained simultaneously, and they have the same variation
trend of decreasing with the increase in nv under each fixed sv. The best COST and CO2
values have a declining trend with not only the increased vessel number but also with the
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decrease in planned speed. The best SU values do not seem to have a clear relationship
with nv and sv. However, the best SU values are generally observed for the scenarios with
a larger number of deployed vessels, which implies sufficient transit time. Note that there
can be an abrupt change to the SU objective when adding nv from 6 to 7 with fixed sv = 18
(e.g., MOGWO has a sharp decline from 56% to 11%, while NSGA-II decreases from 100%
to 11%). For some cases of MOGWO and NSGA-II, nv = 5, sv = 23 could not obtain any
solution due to the insufficient number of deployed vessels.

Table 4. Computational results with M/M/1 queuing theory–MOGWO.

Min COST CPU
Time

(s)

Min CO2 CPU
Time

(s)

Min SU CPU
Time

(s)COST ($) CO2
(tons) SU (%) COST ($) CO2

(tons) SU (%) COST ($) CO2
(tons) SU (%)

nv sv = 26
5 198,845,792 953,743 22.5 276.8 198,845,792 953,743 22.6 295.8 210,299,255 1,032,856 11 312.1
6 139,875,293 538,721 33.7 297.5 139,875,293 538,721 33.7 262.9 144,793,425 570,023 0 293.2
7 119,176,237 396,742 0 258.2 119,176,237 396,742 0 273.1 119,176,237 397,529 0 289.5
8 116,043,260 369,379 11 303.9 116,043,260 369,379 11 301.9 118,437,429 384,592 0 291.2
9 113,871,396 354,738 0 297.5 113,871,396 354,738 0 278.3 113,875,303 353,190 0 286.1
nv sv = 23
6 132,581,521 485,432 22.5 305.7 132,581,521 485,432 22.7 274.5 141,317,289 546,742 0 293.4
7 117,536,973 379,209 0 295.6 117,536,973 379,209 0 285.7 117,526,781 379,568 0 297.1
8 115,289,727 363,576 11 296.2 115,289,727 363,576 11 289.8 115,532,980 365,341 0 274.3
9 114,042,975 353,709 0 283.9 114,042,975 353,709 0 292.2 114,041,289 35,709 0 286.9
nv sv = 20
6 128,794,567 458,209 22 312.6 128,794,567 458,209 22 281.9 135,881,809 508,029 11 281.3
7 119,551,283 393,129 22 309.1 119,551,283 393,129 22 273.8 122,652,891 415,901 0 271.8
8 114,152,709 355,190 11 268.3 114,152,709 355,190 11 276.9 118,052,132 382,318 0 287.9
9 113,832,781 352,771 0 256.3 113,832,781 352,771 0 291.2 113,837,819 353,110 0 245.1
nv sv = 18
6 128,931,249 459,231 56.9 281.3 128,931,249 459,231 57 271.4 128,929,170 459,243 57.1 291.8
7 116,829,817 373,742 33.9 235.7 116,829,817 373,742 33.4 275.3 119,189,451 389,798 11 259.8
8 114,398,028 359,450 0 280.3 114,398,028 359,450 0 273.8 114,397,688 35,610 0 278.5
9 113,837,891 353,142 0 292.5 113,837,891 353,142 0 273.5 113,834,123 352,579 0 269.8
nv sv = 15
7 114,319,725 356,328 45 273.5 114,319,725 356,328 44.9 286 114,319,725 356,328 33 239.7
8 113,838,694 353,172 0 287.2 113,838,694 353,172 0 272.1 113,838,694 353,172 0 297.3
9 113,838,694 353,172 0 280.1 113,838,694 353,172 0 276.5 113,838,694 353,172 0 282.1

Table 5. Computational results with M/M/c queuing theory–MOGWO.

Min COST CPU
Time

(s)

Min CO2 CPU
Time

(s)

Min SU CPU
Time

(s)COST ($) CO2
(tons) SU (%) COST ($) CO2

(tons) SU (%) COST ($) CO2
(tons) SU (%)

nv sv = 26
5 198,836,964 950,957 22 273.1 198,836,964 950,957 22 284.2 210,298,399 1,031,697 11 305.9
6 139,861,951 535,511 33 263.3 139,861,951 535,511 33 263.1 144,751,373 569,954 0 287.2
7 119,165,893 389,719 0 285.9 119,165,893 389,719 0 289.3 119,165,893 389,719 0 275.8
8 116,030,160 367,629 11 294.3 116,030,160 367,629 11 302.2 118,416,911 384,442 0 268.7
9 113,869,903 352,096 0 301.8 113,869,903 352,096 0 298.1 113,869,903 352,096 0 267.9
nv sv = 23
6 132,570,091 484,144 22 295.3 132,570,091 484,144 22 267.3 141,305,733 545,682 0 283.2
7 117,514,984 378,089 0 284.1 117,514,984 378,089 0 278.5 117,514,984 378,089 0 287.1
8 115,287,658 362,399 11 285.4 115,287,658 362,399 11 279.8 115,521,633 364,047 0 269.5
9 114,038,902 353,602 0 273.8 114,038,902 353,602 0 281.5 114,038,902 353,602 0 278.3
nv sv = 20
6 128,793,787 457,542 22 305.2 128,793,787 457,542 22 269.4 135,875,406 507,113 11 296.1
7 119,547,195 392,405 22 304.1 119,547,195 392,405 22 268.3 122,641,977 414,206 0 297.3
8 114,146,407 354,359 11 296.2 114,146,407 354,359 11 285.1 118,041,516 381,798 0 295.3
9 113,825,165 352,096 0 297.1 113,825,165 352,096 0 287.5 113,825,165 352,096 0 296.3
nv sv = 18
6 128,927,798 458,171 56 279.2 128,927,798 458,171 56 269.3 128,927,798 458,171 56 289.5
7 116,823,463 372,902 33 268.3 116,823,463 372,902 33 281.5 119,183,279 389,526 11 293.4
8 114,396,338 355,805 0 285.1 114,396,338 355,805 0 285.3 114,396,338 355,805 0 293.0
9 113,825,165 352,096 0 269.7 113,825,165 352,096 0 283.4 113,825,165 352,096 0 289.8
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Table 5. Cont.

Min COST CPU
Time

(s)

Min CO2 CPU
Time

(s)

Min SU CPU
Time

(s)COST ($) CO2
(tons) SU (%) COST ($) CO2

(tons) SU (%) COST ($) CO2
(tons) SU (%)

nv sv = 15
7 114,307,116 355,491 44 269.0 114,307,116 355,491 0.4444 299.3 114,377,076 355,984 33 296.8
8 113,825,165 352,096 0 283.2 113,825,165 352,096 0.0000 289.0 113,825,165 352,096 0 268.3
9 113,825,165 352,096 0 276.5 113,825,165 352,096 0.0000 297.3 113,825,165 352,096 0 291.0

Table 6. Computational results with M/M/c queuing theory–NSGA-II.

Min COST CPU
Time

(s)

Min CO2 CPU
Time

(s)

Min SU CPU
Time

(s)COST ($) CO2
(tons) SU (%) COST ($) CO2

(tons) SU (%) COST ($) CO2
(tons) SU (%)

nv sv = 26
5 200,068,969 959,636 44 677.5 200,068,969 959,636 44 643.4 201,399,247 969,007 11 651.4
6 152,320,338 622,958 11 643.8 152,320,338 622,958 11 684.1 186,994,507 867,218 0 682.3
7 124,364,311 426,023 0 653.7 124,364,311 426,023 0 692.7 124,364,311 426,023 0 691.4
8 119,083,322 388,822 0 649.1 119,083,322 388,822 0 644.0 119,083,322 388,822 0 671.3
9 113,960,518 353,050 0 653.8 113,960,518 353,050 0 692.1 113,960,518 353,050 0 682.9
nv sv = 23
6 134,778,503 499,386 22 674.2 134,778,503 499,386 22 684.1 150,745,194 611,862 11 667.3
7 120,369,192 397,880 11 669.2 120,369,192 397,880 11 691.9 135,647,581 505,508 0 682.2
8 116,181,824 368,382 11 673.8 116,181,824 368,382 11 685.6 116,516,878 370,743 0 691.0
9 114,845,060 358,966 0 681.7 114,845,060 358,966 0 645.0 114,845,060 358,966 0 689.1
nv sv = 20
6 133,570,541 490,876 56 682.5 133,570,541 490,876 56 652.0 136,668,643 512,701 22 693.0
7 121,314,125 404,537 33 689.4 121,314,125 404,537 33 653.0 125,899,408 436,837 0 667.2
8 115,244,387 361,779 22 672.5 115,244,387 361,779 22 666.2 118,182,647 382,477 0 663.2
9 114,154,602 354,102 0 675.8 114,154,602 354,102 0 692.1 114,154,602 354,102 0 682.3
nv sv = 18
6 129,914,312 465,120 100 690.2 129,914,312 465,120 100 684.3 129,914,312 465,120 100 681.4
7 119,980,723 395,144 33 683.5 119,980,723 395,144 33 674.5 120,835,603 401,166 11 665.3
8 115,708,515 365,048 0 675.9 115,708,515 365,048 0 685.6 115,708,515 365,048 0 671.8
9 114,002,427 353,030 11 677.4 114,002,427 353,030 11 690.9 114,338,240 355,395 0 693.0
nv sv = 15
7 114,530,757 356,752 56 682.0 114,530,757 356,752 56 680.8 114,541,963 356,830 33 682.3
8 113,926,911 352,498 0 680.1 113,926,911 352,498 0 657.1 113,926,911 352,498 0 660.5
9 113,870,770 352,102 0 652.1 113,870,770 352,102 0 646.2 113,870,770 352,102 0 648.7
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Figure 5. Obtained Pareto front solutions by MOGWO and NSGA-II.

By comparing Tables 5 and 6, it can be concluded that the solutions attained by utilizing
MOGWO are up to 4%, 6%, and 44% better than the ones generated by NSGA-II for the
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COST, CO2, and SU objectives, respectively. Specifically, MOGWO achieves the min COST
value (USD 113, 825, 165) and CO2 value (352, 096 tons) when nv = 9 and sv = 15, while
NSGA-II obtains the min COST value (USD 113, 870, 770) and CO2 value (352, 102 tons)
for the same nv = 9 and sv = 15; hence, the difference between them can be viewed as
quite small. However, a bigger difference can be observed when considering the relatively
worse COST values (USD 201, 399, 247 vs USD 210, 298, 399) and CO2 values (969, 007 tons
vs 1, 031, 697 tons) when nv = 6 and sv = 18. It can be seen that both the COST and CO2
objectives are more dominated by the MOGWO solution located closer to the left-bottom
corner, which is more obviously visualized in Figure 5. Moreover, the CPU runtime of
MOGWO was on average twice as fast than that of NSGA-II for 1000 iterations.

Tables 7 and 8 give the top 20 Pareto solutions (which have superior Pareto fronts) and
the decision variables of MOGWO and NSGA-II after running each algorithm 15 times for
each combination of nv and sv, where si denotes the average sailing speed over 10 voyages
on each leg. A couple of interesting implications can be denoted. Firstly, the objective
values in the MOGWO solution set range from USD 113, 825, 165 to USD 118, 041, 516
(COST), 352, 096 tons to 381, 798 tons (CO2), and 0 to 44% (SU), while the objective values
in the NSGA-II solution set range from USD 113, 870, 770 to USD 119, 083, 322, 352, 102 tons
to 3888 tons, and 0 to 56%. These results also imply that MOGWO can generate higher
quality solutions. Secondly, it can also be observed that the number of deployed vessels
has a narrow range (7–9 vessels), while the planned speed ranges widely from 15 knots
to 26 knots. However, most of the practical sailing speeds are closer to the lowest bound
(14.1 knots). Especially, the best COST and CO2 objectives are all associated with 14.1 knots
for the solutions produced by MOGWO (nv = 9, sv = 20; nv = 9, sv = 26; nv = 8, sv = 15)
and by NSGA-II (nv = 9, sv = 15). Note that in the cases when nv = 9, sv = 18;
nv = 8, sv = 15; and nv = 9, sv = 15, the dominated solutions can also be obtained
using MOGWO. This may imply that the cost and emission performances are sensitive
to the sailing speed, which justifies slow steaming as an operational practice to save fuel
regardless of whether the vessels have been delayed. Thirdly, the optimal number of
deployed vessels is 8 in 19 of 40 cases. Deploying 7–9 vessels can obtain better solutions in
terms of the considered objectives than those deploying 5–6 vessels in all cases.

Table 7. Top 20 Pareto solutions of MOGWO under the basic setting.

COST ($) CO2
(tons)

SU
(%) nv

sv
(knots) {τi, i = 1, 2,. . .,N} (h) {si, i = 1, 2,. . .,N} (knots)

113,825,165 352,096 0 9 20 {132,70,138,81,378,62,231,222,222} {14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1}
113,869,903 352,096 0 9 20 {94,93,176,53,391,104,186,248,223} {14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1}
113,936,131 352,878 33 8 15 {124,228,105,100,354,42,197,330,57} {14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1}
113,974,212 353,146 22 8 15 {118,89,111,89,284,211,182,229,84} {14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1}
114,038,902 353,602 0 9 18 {33,74,100,71,356,97,361,280,140} {14.1,14.1,15.4,14.1,14.5,14.1,14.1,14.1,14.1}
114,146,407 354,359 11 8 20 {354,249,104,37,366,118,232,213,132} {19.3,14.1,14.6,14.1,14.1,14.1,14.1,14.1,14.1}
114,307,116 355,491 44 7 15 {181,68,108,41,210,175,199,214,59} {14.1,15,15,14.1,14.5,14.1,15,15,14.1}
114,377,076 355,984 33 7 15 {110,204,106,37,164,194,256,204,31} {14.1,14.6,14.1,14.1,15,15,14.1,14.8,15}
114,396,338 355,805 0 8 18 {236,90,112,100,340,82,188,273,80} {14.1,14.1,14.1,14.1,15.2,14.1,14.1,14.1,14.5}
114,476,122 356,682 44 7 15 {291,74,73,55,153,298,146,255,78} {14.1,14.1,14.3,14.1,15,15,14.6,15,15}
114,583,222 357,436 33 7 15 {14,203,103,50,172,185,235,147,151} {14.1,14.1,14.1,14.1,14.1,15, 15,15,15}
115,287,658 362,399 11 8 23 {292,180,95,96,352,82,164,242,191} {22,14.1,16.6,14.1,14.7,14.1,14.8,14.1,14.1}
115,521,633 364,047 0 8 23 {208,89,149,69,325,113,160,292,97} {14.1,14.1,14.1,14.1,16,14.1,15.2, 14.1,14.1}
115,592,605 364,547 22 8 18 {197,122,103,51,333,228,192,180,77} {14.1,14.1,16.6,14.1,16,14.1,15.2,14.1,14.1}
116,120,133 368,263 0 8 18 {218,183,95,151,324,64,160,211,92} {14.1,14.1,16.6,14.1,16,14.1,15.1,14.1,14.1}
116,823,463 372,902 33 7 18 {193,175,97,88,303,46,163,202,151} {17.6,17.6,17.6,14.1,15.5,14.1,14.1,14.5,14.1}
118,041,516 381,798 0 8 20 {17,146,182,34,304,100,163,197,107} {14.8,14.1,14.1,15.2,17.1,14.1,15,15.2,14.1}
114,171,243 354,534 11 9 20 {62,61,112,157,342,51,302,295,129} {19.3,14.1,14.1,14.1,14.4,14.1,14.1,14.1,14.1}
114,431,927 356,370 0 9 20 {360,170,171,38,426,108,186,259,193} {14.1,14.1,14.4,14.1,15.3,14.1,14.1,14.1,14.1}
116,030,160 367,629 11 8 26 {13,290,110,34,336,75,238,247,187} {26,14.1,14.1,15.7,15.4,14.1,14.1,14.1,14.1}
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Table 8. Top 20 Pareto solutions of NSGA-II under the basic setting.

COST ($) CO2
(tons)

SU
(%) nv

sv
(knots) {τi, i = 1, 2,. . .,N} (h) {si, i = 1, 2,. . .,N} (knots)

113,870,770 352,102 0 9 15 {207,247,74,125,204,100,152,200,204} {14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1}
113,902,053 352,323 22 9 15 {95,80,200,23,321,172,42,400,203} {14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1}
113,926,911 352,498 0 8 15 {338,157,88,87,24,233,302,106,42} {14.1,14.1,14.1,14.1,14.5,14.1,14.1,14.1,14.1}
113,960,518 353,050 0 9 26 {127,79,152,64,352,65,235,328,186} {14.1,14.1,14.1,14.1,14.7,14.1,14.1,14.1,14.1}
113,967,387 352,783 33 8 15 {314,20,115,211,30,37,229,246,142} {14.9,14.9,14.1,14.1,14.1,14.1,14.1, 14.1,15}
114,002,427 353,030 11 9 18 {200,230,272,53,100,212,11,242,192} {19.6,14.1,14.1,14.1,14.1,14.1,14.1,14.1,14.1}
114,154,602 354,102 0 9 20 {144,142,163,196,139,247,225,64,192} {14.1,14.1,14.1,14.1,14.9,14.1,14.1,14.1,14.1}
114,173,055 354,232 11 9 20 {90,264,77,351,143,110,84,281,112} {20,14.1,14.1,14.1,14.1,14.1,14.1, 14.1,14.1}
114,338,240 355,395 0 9 18 {98,195,223,258,184,51,43,236,223} {14.1,14.1,14.1,14.1,14.1,18,14.1,14.1,14.1}
114,530,757 356,752 56 7 15 {167,151,88,116,146,131,65,118,194} {14.1,14.6,15,15,15,14.1,14.1,15,15}
114,541,963 356,830 33 7 15 {193,206,36,135,227,69,163,99,48} {14.1,14.1,15,14.2,15,15,14.7,15,14.1}
114,845,060 358,966 0 9 23 {42,247,65,185,125,297,302,100,148} {14.1,14.1,14.1,14.1,15.6,14.1,14.1,14.1,14.1}
115,244,387 361,779 22 8 20 {244,87,193,139,105,48,151,164,213} {19.5,14.1,14.1,14.1,14.1,20,14.1,14.1,14.1}
115,373,967 362,691 11 9 23 {188,210,267,163,120,15,242,267,40} {23,14.1,14.1,14.1,15.5,14.1,14.1,14.1,14.1}
115,708,515 365,048 0 8 18 {258,142,76,72,228,99,22,184,263} {14.1,14.1,14.1,14.1,16.2,14.1,14.1,14.3,14.1}
116,181,824 368,382 11 8 23 {180,157,184,186,168,35,47,213,205} {22.1,14.1,14.1,14.1,16.1,14.1,14.1,14.1,14.1}
116,516,878 370,743 0 8 23 {46,146,265,197,100,23,266,212,88} {14.1,14.1,14.1,15.2,16.6,14.1,14.1,14.1,14.1}
116,922,940 373,603 11 8 18 {65,121,18,107,290,240,110,207,196} {14.1,14.1,18,14.1,16.1,14.1,14.1,14.1,14.1}
118,182,647 382,477 0 8 20 {106,82,162,55,104,148,243,230,215} {14.8,14.8,14.8,14.1,17.3,14.1,14.1,14.1,14.1}
119,083,322 388,822 0 8 26 {182,384,158,227,64,202,46,39,42} {14.1,14.1,14.1,14.1,17.7,14.1,14.1,14.1,14.1}

Two additional points should be highlighted. The lower levels of sailing speed
(sv = 15, 18) were adopted when nv = 7 with a positive service unreliability, whereas
the deployment of 9 vessels had a wide range of speed choices with high customer sat-
isfaction, and many of them adopted high speed levels. Moreover, fewer vessels had a
shorter voyage time (sum of the transit times). For instance, the voyage time ranged from
1124 h to 1423 h in Table 7 and 1165 h to 1176 h in Table 8 when nv = 7, but it ranged from
1511 h to 1911 h and 151 h to 151 h when nv = 9. This finding could be interpreted as fewer
vessels being required to provide the weekly service frequency at ports when sailing at
high speeds. However, when shipping operators prefer to slow the vessels down to decline
the total cost and carbon emission, the schedule reliability could be negatively affected.
Nevertheless, an insufficient number of vessels (e.g., nv = 5, 6) cannot provide schedule
reliability against uncertainties even when sailing at high speeds, which will cause high fuel
consumption in the meanwhile. To sum up, allocating the optimal number of vessels in the
mid-term planning should be considered as the primary measure, and then adjusting the
speed selection strategy to absorb various uncertainties could be adopted as an operational
measure. For shipping lines, the buffer times on sailing legs should be considered to combat
the negative effects of the uncertain port times, thus preventing arriving too early at a
busy container terminal by adjusting the sailing speed, which leads to an improved service
reliability and reduced fuel consumption and emissions in the sailing period. For port
operators, variable vessel arrivals should also be considered in advance when allocating
berth resources, which helps to control vessel emissions in the mooring period.

5.4. Sensitivity Analysis

In this section, we present sensitivity analyses with two groups of parameters. One
of the most important parameters in vessel scheduling is the fuel unit cost, which af-
fects the operational cost of shipping and has fluctuated recently. Therefore, a sensitivity
analysis with fuel prices was performed for different values of the fuel unit cost, includ-
ing 450USD/ton, 600USD/ton, 750USD/ton, and 900USD/ton. Here, 750USD/ton and
900USD/ton represent the unit cost of very-low sulphur fuel oil (VLSFO), which is used
to replace HFO outside ECAs (emission control areas) since 2020 for conforming with the
IMO emission regulations. Figures 6–9 visualize the 60 best obtained results subject to
different fuel prices (450USD/ton, 600USD/ton, 750USD/ton, and 900USD/ton) gener-
ated by MOGWO, including the Pareto fronts in a three-dimensional space (Figure 6) and
trade-offs between each pair of two objectives in two-dimensional space (Figures 7–9).
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Among all of the solutions under combinations of nv and sv for different fuel prices,
each combination was evaluated for 15 run times using MOGWO. The cost ranged
from USD 113, 825, 165 to USD 227, 826, 362, and the carbon emission ranged from
352, 096 tons to 1, 155, 171 tons when Cho = 450; the cost ranged from USD 130, 522, 927 to
USD 294, 422, 199, and the carbon emission ranged from 352, 096 tons to 1, 218, 031 tons
when Cho = 600; the cost ranged from USD 147, 175, 951 to USD 339, 854, 554, and the
carbon emission ranged from 352, 096 tons to 1, 166, 484 tons when Cho = 750; the cost
ranged from USD 163, 828, 976 to USD 353, 034, 474, and the carbon emission ranged from
352, 096 tons to 1, 018, 520 tons when Cho = 900; and all of the schedule unreliability ranged
anywhere from 0 to 100%. The subsequent observations can be obtained from the computa-
tional results: (1) the cost value increases by 44% to 55%, while the CO2 increases by 5.4%
then decreases by 16% as the fuel prices increase 100% (from 450USD/ton to 900USD/ton);
and (2) as illustrated in Figures 6 and 7, with the fuel price is rising, the sharp slope of
the Pareto front and the CO2–COST curve turns into a moderate slope, which means that
the changes in emissions become less substantial than the cost changes. The best emission
value is constant even with different fuel prices and can be obtained together with the best
cost value. However, the variation in emissions can give some insights to the shipping
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industry, as the increasing bunker unit cost or fuel surcharge or adopting VLSFO can have
a positive impact in terms of reducing carbon emissions only to a certain extent, although
with an increase in cost.
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varying fuel prices.

Similar nv, sv to the results in Section 5.3, it can be seen that the voyage time was
shorter when deploying 7 vessels. However, the optimal value of nv was found to be 9 and
all values of si were below 20 in the top 20 solutions for higher fuel prices. This can be
analyzed through the causes that the vessel operators had no other choice but to use slow
steaming in order to control cost, and even deploy more vessels to maintain the service
reliability. The operating cost of adding one more vessel was not as significant as the bunker
cost of speeding up vessels when the fuel price was higher. As shown in Figures 8 and 9,
the service unreliability was quite sensitive to carbon emissions compared to the cost in the
top 60 Pareto solutions, as the variation in carbon emissions was smaller than the variation
in cost. The solutions were found to be more disjointed and sparser with Cho = 900 than
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those with Cho = 450. Meanwhile, the negative relationship between unreliability and
cost (emissions) fluctuates more heavily with the increase in fuel price. Such a finding can
be explained by the fact that deploying more vessels under high fuel prices can not only
control bunker costs and carbon emissions but also maintain customer satisfaction with the
shipping service.

The berth occupancy rate for different container terminals in various periods could also
change. Another group of sensitivity analyses was conducted for different occupancy rates.
Here, 50%, 75%, 125%, and 150% represent different variation degrees in vessel service
intensities in relation to the basic setting. Figures 10–13 illustrate the 60 best obtained
results subject to different service intensities generated by MOGWO, including the Pareto
fronts and trade-offs between each pair of two objectives.
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Figure 11. The cost versus carbon emission of the top 60 Pareto front solutions for varying occu-
pancy rates.

For each case under the combination of nv and sv for different service intensity sce-
narios, MOGWO was executed 15 times in order to obtain the Pareto fronts. It was found
that the cost ranged from USD 113, 662, 002 to USD 211, 855, 561, the carbon emission
ranged from 350, 650 tons to 1, 042, 370 tons, and the service unreliability ranged from 0
to 67% when the occupancy rate was set to 50% of the base case; the cost ranged from
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USD 113, 668, 147 to USD 213, 183, 148, the carbon emission ranged from 350, 693 tons to
1, 051, 721 tons, and the service unreliability ranged from 0 to 67% when the occupancy rate
was set to 75% of the base case; the cost ranged from USD 114, 068, 400 to USD 263, 304, 166,
the carbon emission ranged from 353, 477 tons to 1, 404, 760 tons, and the service unreliabil-
ity ranged from 0 to 100% when the occupancy rate was set to 125% of the base case; the
cost ranged from USD 114, 362, 577 to USD 263, 598, 343, the carbon emission ranged from
355, 522 tons to 1, 406, 805 tons, and the service unreliability ranged from 0 to 100% when
the occupancy rate was set to 150% of base case. The following observations can be con-
cluded from the computational results: (1) the cost value increases from 0.6% to 24%, and
the CO2 increases from 1.4% to 35%, while the service unreliability increases from 0 to
33% as the degree of port congestion triples (from 50% to 150%); and (2) Figures 12 and 13
illustrate the similar trend between unreliability and cost, as well as between unreliability
and emissions. The Pareto fronts and SU–COST (CO2) curves for the variation degrees 50%
and 75% are more disjointed and sparser compared with the variation degrees 125% and
150%. In other words, the variation range of unreliability is larger when the cost (emissions)
varies within the same range. This implies that the service unreliability is more sensitive to
port congestion (i.e., waiting time of vessels at ports) rather than that corresponding to cost
and emissions. The wasted time or uncertainties at ports have a more significant impact on
the schedule reliability than on fuel consumption and associated emissions.
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There are also some interesting patterns for nv and sv among the top 20 Pareto front
solutions. In the cases when the occupancy rate is below the basic setting (50% and
75%), which means more empty berths could provide service, 5 (4) of 20 solutions deploy
nv = 7, and 14 of 20 solutions use sv = 15, 18. When the occupancy rate is over the
basic setting (125% and 150%), which represents the situation when the ports experience
heavy congestion, two sets of 20 solutions deploy nv = 8, 9, and 12 (14) of 20 solutions use
sv = 20, 26. This can be explained in practice by the fact that shipping lines need to deploy
more vessels to recover longer voyage times caused by various uncertainties at ports, as the
increase in waiting time at ports will not incur a sharp increase in fuel consumption and
emissions but will cause big sudden step changes to the schedule unreliability objective.

As shown in Figures 10 and 11, when the fuel price is fixed, the slope factor of cost
and emissions is invariable, which implies a linear relationship between the two objectives.
Even considering the fact that the carbon emission model includes the portion of emission
at ports, which comprises a very small percentage compared to the carbon emissions of
vessels sailing at the sea, it does not have any impact on the linear correlation.

6. Concluding Remarks

In this paper, we present a tactical planning problem of optimizing ship schedules. The
study also considers cost efficiency, service reliability, and environmental effects relevant
to the context of congestion at ports. Due to the conflicting nature between cost, carbon
emission, and schedule reliability objectives, the trade-offs among these objectives have
been investigated. More specifically, we established an original formulation of the green
liner shipping schedule problem by associating the multi-objective vessel scheduling
model [39] and a queuing methodology (M/M/1 and M/M/c), which was employed to
calculate the anticipated waiting time and capture the congested time periods at ports. The
bunker fuel consumption and emissions during the waiting process incurred by auxiliary
engines were also included in the proposed mathematical formulation. In addition, a multi-
objective metaheuristic, multi-objective grey wolf optimizer (MOGWO), was raised to
efficiently settle the developed multi-objective optimization model and then was compared
with NSGA-II to adequately evaluate the computational performance of MOGWO.

Regarding the computational aspects, several experiments were conducted to generate
a series of non-dominated solutions, and the sensitivity analyses of fuel price and berth
occupancy rate were examined under different scenarios. Firstly, the non-dominated Pareto
fronts generated by MOGWO were up to 4%, 6%, and 44% better than the ones generated by
NSGA-II for the cost, carbon emission, and schedule unreliability objectives. Furthermore,
MOGWO was much more effective in terms of computational time compared to NSGA-II.
Secondly, the service unreliability objective was found to be more sensitive to the carbon
emission objective compared to the cost objective. Hence, slow steaming can be viewed as
an efficient operational method to give a decrease in fuel consumption, and the optimal
carbon emission objective could be obtained with the optimal cost objective under all the
scenarios meanwhile. However, the prior decision should be the allocation of the best
number of vessels at the mid-term planning level to maintain the service reliability in the
face of uncertainties.

The analytical results demonstrated a few managerial insights with practical appli-
cability. The proposed mathematical formulation calls for a strong collaboration between
shipping lines and port terminals. Shipping lines would benefit from the detailed operation
plans provided by port operators (e.g., the berth assignment and quay crane allocation)
when sailing towards the port. This would allow optimizing the speed strategy to recover
the uncertainties incurred when the port experiences congestion. The willingness of port
operators to participate in such a scheme and provide the accurate information to shipping
lines can facilitate port operations as well and assist with making proper berth allocation
decisions (along with alleviating port congestion). This calls for cooperation between both
groups of stakeholders to mitigate the port congestion and provide more sustainable ship-
ping services. For example, the ports of Los Angeles and Long Beach have implemented a
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voluntary speed reduction program for approaching vessels since 2001; Singapore Port has
provided flexible berthing strategies to the assigned shipping lines since 2016 in practical
applicability. Some observations were also drawn from the conducted sensitivity analy-
ses. To comply with the air emission regulations enforced in 2020, adopting the VLSFO
with higher prices or increasing the fuel surcharge could curb the carbon emissions to a
certain extent but would lead to a rise in the fuel cost. Furthermore, port congestion has
a more negative impact on service reliability but its effects on the fuel consumption and
carbon emissions could be rather limited. The deployment of more vessels to recover the
uncertainty induced by port congestion, i.e., to allocate the buffer times on sailing legs
in advance would be a more effective strategy for shipping lines rather than the sailing
speed adjustment.

Although a significant number of important insights were discovered as a part of
this study, additional investigations in several areas could be conducted further. Some
well-known stochastic optimization techniques could be tested to solve our multi-objective
formulation, and their performance could be further evaluated. Certain port operations,
such as berthing and reshuffling, could be considered in the modeling under congested
port scenarios. The differentiation of vessel types, including not only the vessels with
different capacities but also the vessels that consume clean energy (e.g., LNG vessels), can
be considered as well.
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Abbreviation
Parameters used for the queuing system modeling:

λ the anticipated number of ship arrivals in one day, 1/λ is the time interval between ships;
µ the mean service rate in a queuing system;
u the mean service time per ship, u = 1/µ (day);
c the number of berths;
ρ the mean occupancy rate;
v the type of vessel;

uv the expected service time of ship-type v (day);
λv the expected number of ship-type v arriving at the port;
X the largest number of vessels that are allowed in the queuing system.

Other relevant parameters:
φv the capacity of ship-type v (TEUs);
ψ the loading and unloading ratios of each ship;
ri container handling efficiency of port i (TEUs/h);
N the total number of ports of calls in a voyage, i.e., a single round trip;
K the number of voyages by a vessel sailing along the shipping route continuously within the planning cycle;
di the distance between the ith port of call and the (i + 1)th port of call (nm);
li the planned operating time at the ith port of call (h);

ω
the average wasted time during the arrival and departure process (between berthing and first move and between last move and
departure) (h);
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smin(smax) the minimum (maximum) sailing speed (knots);
Co the fuel price for a different type of oil o, which contains heavy oil (ho) and diesel oil (do) (USD/ton);
Cv the daily operating cost for ship-type v (USD/day);
Wi the vessel’s arrival time window at the ith port of call (h);
Fo

v the main engine fuel economy of ho and do, where v denotes the vessel-type (tons/h);
γ carbon emission factor (tons/ton).

Decision variables:
nv the number of deployed vessels on the shipping route;
sv the designed maximum sailing speed subjects to smin ≤ sv ≤ smax (knots);
τi the designed transit time between the ith port of call and the (i + 1)th port of call (h).

Auxiliary variables:
T the journey time of a voyage (h);

ti,k the planned arrival time of a vessel at the ith port of call on the kth voyage;
ta
i,k the actual arrival time of a vessel at the ith port of call on the kth voyage;

td
i,k the actual departure time of a vessel at the ith port of call on the kth voyage;

si,k the actual sailing speed of a vessel on the leg from the ith port of call to the next port of call on the kth voyage (knots);
g(si,k) the fuel consumption in the unit distance at sailing speed si,k (tons).

Relevant variables used for queuing process modeling:
p the probability that a delay will occur;
p0 the probability that there are no ships at berths;
pm the probability that there are m ships at berths;
L the mean queuing length (ρ > 1);

qi,k the mean queuing time per ship at ith port on kth voyage (day);
MCOST the annual total costs of all the vessels on the shipping route;
MCO2 the annual total CO2 emissions of all the vessels on the shipping route;
MSU the mean schedule unreliability of all ports of call on all voyages within the planning cycle.
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