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Abstract: In recent years, as intelligent ship-navigation technology has advanced, the challenge of
accurately modeling and predicting the dynamic environment and motion status of ships has emerged
as a prominent area of research. In response to the diverse time scales required for the prediction
of ship motion, various methods for modeling ship navigation environments, ship motion, and
ship traffic flow have been explored and analyzed. Additionally, these motion-prediction methods
are applied for motion control, collision-avoidance planning, and route optimization. Key issues
are summarized regarding ship-motion prediction, including online modeling of motion models,
real ship validation, and consistency in modeling, optimization, and control. Future technology
trends are predicted in mechanism-data fusion modeling, large-scale model, multi-objective motion
prediction, etc.

Keywords: intelligent ships; motion prediction; navigation environment modeling; route optimization;
motion control

1. Introduction

As the size and number of ships increase, the maritime navigation environment and
scenarios become increasingly complex, which poses new challenges to maritime safety.
Empowered by the integration of cutting-edge technologies such as artificial intelligence
(AI), machine learning, and big data, the modern ship is poised for a transformative leap in
operational efficiency and decision-making capabilities [1,2]. Autonomous ships represent
the pinnacle of maritime automation, operating with minimal or no human intervention.
The coexistence and mutual influence of intelligent ships and traditional ships are expected
to persist over the long term. Abnormal ship behaviors will increase the risks of collisions,
groundings, and reef encounters. Predicting ship behavior through the prediction of the
ship-navigation trajectory will effectively mitigate these navigation risks [3–6]. According
to statistics from the International Maritime Organization (IMO), approximately 80–85%
of accidents that occurred in the past two decades were attributed to human faults [7,8].
By implementing ship automation or assisted navigation systems, the probability of ship
accidents can be effectively reduced. Accurate prediction of ship motion not only enhances
the intelligence of maritime navigation but also decreases risks during navigation and
energy consumption, thereby reducing pollution and greenhouse gas emissions during
voyages [9–11].

The prediction of ship motion represents the temporal aspect of a ship Guidance,
Navigation, and Control (GNC) system [12]. Ship motion prediction can be divided into
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different time scales during specific applications in the maritime domain. The long-term
prediction is used for traffic-flow management or long-voyage trajectory prediction, short-
term prediction is used for collision avoidance or path planning, and extreme short-term
prediction is used for ship motion control. Ship motion is influenced by both the maritime
environment and ship maneuvering. ship-motion prediction models at different time scales
can be established based on either mechanics or data. These models provide the foundation
for collision-avoidance path planning, path tracking control, traffic flow simulation, and
the optimization of long-distance ship routes. They are integral to the realization of
intelligent navigation. Currently, various researchers are conducting studies on the short-
term prediction of ship motion, collision-avoidance trajectory prediction and planning, and
long-term trajectory prediction [13–15].

To study motion prediction systematically for intelligent navigation, we provide an
overview and analysis of the methods and applications of motion prediction across different
time scales. In previous studies [16–18], motion prediction is taken only as a part of route
planning, motion control, or traffic simulation individually. It is essential to consider the
overall motion-prediction models, algorithms, and systems for different time scales. Many
people are trying to solve this problem in terms of different aspects, and many models
and applications have been presented for the motion prediction and control [19,20]. Since
different types of the weather conditions will affect the ship’s navigating state and safety,
the influence of the environment must be considered, and the high-precision weather
forecast can provide effective data support [21–23]. Meanwhile, with the development of
new technologies, data collection with high-precision sensors, the state of ship motion, and
environmental condition can be measured with high frequency, which will promote motion
prediction [24–27]. More and more new technologies will be used in the shipping industry,
and it is important to analyze the new direction for trends in technological development.

This review investigates the landscape of ship-motion prediction algorithms and
their application in intelligent navigation. This paper is organized as follows: Section 2
systematically analyzes existing algorithms and research advancements through a thor-
ough literature review. Section 3 delves into the environmental factors influencing motion
prediction, exploring diverse methods for their modeling and forecasting. Section 4 intro-
duces a range of motion models and prediction algorithms suitable for various time scales.
Section 5 demonstrates the practical potential of motion prediction through representative
applications. In Section 6, we critically analyze key challenges and emerging research
trends identified in the reviewed literature, and Section 7 provides insights for future
development. Section 8 concludes this paper.

2. Research Progress on Motion Prediction Based on the Literature Review

In order to analyze the current status and trends in research on ship-motion prediction,
this paper conducts a search in the Web of Science (WOS) for literature on methods for
ship-motion prediction from the past decade. Keywords from the relevant literature are
analyzed using visualization tools to identify research hotpots and trends. Figure 1 depicts
a keyword cluster map for the prediction of ship motion. The upper part of the figure
illustrates keyword hotspots, while the lower part displays the evolution of research topics
over time. Through this literature review, it is evident that earlier research tended to
utilize standard ship models, employing methods such as Computational Fluid Dynamics
(CFD) or empirical formulas. These methods use data from towing tank experiments with
scaled ship models to describe mathematical models of ship motion. Mathematical models
are used to characterize the nonlinear motion of ships, taking ship maneuverability and
hydrodynamics into account. Research on ship maneuverability, navigation resistance, and
hydrodynamics is often combined with the ship’s own control and seaworthiness. Over
time, as computational resources advance, and with the accumulation of experimental
data and developments in research methods, recent studies have increasingly incorporated
ship Automatic Identification System (AIS) data. Artificial intelligence, machine learning,
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and deep learning techniques are utilized to predict ship motion and trajectories, which
contribute to enhancing ship navigation safety and collision avoidance applications.

Figure 1. Knowledge graph for the prediction of ship motion.

As shown in Figure 2, the ship’s navigation and motion control system represent a com-
plex framework. This includes the ship-motion model and control algorithms. Moreover, it
requires the utilization of perception, positioning, and observation systems to determine
the ship’s real position relative to other ships. Based on the navigational environment of the
ship’s destination port and sailing area, a safe and rational sailing route is charted. Then,
this route, in turn, integrates with the ship’s power control system for the ship-motion
control by a seafarer or an autonomous system [28].
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Figure 2. Intelligent ship navigation environment perception, motion models, and control systems.

Figure 3 depicts the process of ship-motion prediction. Before the ship embarks on a
voyage, route planners use weather forecasts for the ship’s navigational area, environmental
constraints such as navigational facilities within the waterways, and the ship state model to
establish the ship’s navigation trajectory. During the voyage, the ship receives information
from other ships through AIS, including their navigation trajectories and departure ports.
Ship operators, relying on their navigation experience or traffic-flow-prediction algorithms,
predict the ship’s long-distance voyage, taking into account the ship’s current status, and
then plan a new route if necessary.

In situations where navigation trajectories are insufficient or when encountering
complex traffic scenarios, ship operators traditionally communicate through Very High-
Frequency (VHF) communication to determine navigation priorities and ship routes during
these encounters. For unmanned autonomous ships, however, obtaining navigation pri-
orities and predefined routes directly through VHF is challenging. Instead, these ships
rely on onboard perception systems to sense the navigation environment. They consider
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navigation collision-avoidance rules and the predicted trajectories of other ships to deter-
mine the optimal route and ensure a safe and reasonable collision-avoidance process. Thus,
for unmanned autonomous ships, short-term predictions (approximately 10–30 s) become
especially critical.
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Ship motion
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term motion
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Figure 3. Flowchart showing the process of ship-motion prediction.

During the motion control (trajectory tracking and path following) for the defined
route, an unmanned ship needs to predict the ship’s motion in an extremely short time,
obtain good motion control performance, and guarantee navigation safety, especially for
the model-based control methods, such as model predictive control (MPC) and optimal
control [29,30]. This motion prediction is defined as extremely short-term prediction
(approximately 0–10 s). Extremely short-term prediction should take into account the
ship’s motion states and environmental disturbances with sensors or observers and employ
suitable control algorithms to calculate the steering commands with time delays.

3. Ship-Navigation Environment Modeling and Prediction Methods
3.1. Characterizing Navigational Environmental Factors

The ship-navigation environment typically refers to the hydrological, meteorological,
topographical, and traffic conditions around ships’ navigational waters. For intelligent
ships, it is essential to obtain reliable information about the navigational environment
that can be exported to the navigation control system. This information can be acquired
through the use of AIS, radar, cameras, sonar, depthometer, pitometer, anemometer, and
other sensors and analyzed with the data processing and fusion [31]. Environmental factors
affecting ship navigation include both static and dynamic aspects. Specifically, the static
factors primarily refer to navigational water depth, shorelines, islands, reefs, and obstacles
like sunken ships, which are typically marked on paper or electronic charts and are used to
plan routes before a voyage begins. During the voyage, the ship continuously updates its
position, calculates distances from static obstacles, and ensures that it avoids accidents like
running aground or colliding with obstacles. The dynamic factors mainly involve wind,
waves, currents, visibility, traffic flows, and ship-behavior characteristics in the navigation
area. Dynamic factors are subject to change over time. They can be predicted dynamically
using ocean and weather forecasts, traffic flow predictions, ship behavior detection, or
real-time data collection from onboard sensors. These predictions are commonly used for
dynamic route optimization, collision avoidance, and navigation control.

3.2. Static Environmental Factors

Electronic charts (nautical charts) provide precise information about static obstacles
and can overlay dynamic data from sensors such as the Global Position System (GPS), radar,
and AIS onto the electronic chart. Due to the presence of measurement errors in radar
data, existing electronic charts and radar systems can introduce radar projection distortions
when radar data are directly overlaid on electronic charts. To address this issue, Naus et al.
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associated and matched electronic chart information with radar data, projecting radar echo
vector data into the coordinate system of the electronic chart [32]. This eliminates radar
measurement errors, enhances the accuracy of obstacle identification by radar, and allows
ship operators to better monitor the navigation situation.

During autonomous ship navigation, ships heavily rely on real-time data from sensors
and electronic charts. While electronic charts contain these data, there are relatively few
open-source interfaces for research and development. Blindheim et al. use Python and
Electronic Navigation Chart (ENC), an open-source electronic chart, to create interfaces
displaying water depths, islands, reefs, and shallows within a ship’s navigational area,
facilitating ship-route planning and optimization [33]. Zhang et al. employed machine
learning algorithms to analyze ship AIS data and quantified the risk of ship grounding
using proximity prediction and depth information [34]. This approach is validated on a
Ro-Pax ship in the Gulf of Finland, helping to prevent ship grounding and improving ship
navigation safety.

To study the impact of offshore wind farms on ship-navigation risks, Xue et al. applied
adaptive brainstorming with variable disturbances to collision-avoidance decisions in
encounters near wind farms [35]. This approach considers the safety of nearby ships
when following traditional collision-avoidance rules, and its effectiveness and reliability
have been verified through theoretical calculations and simulations for different encounter
scenarios near wind farms.

Addressing the issue of limited environmental perception for ships under restricted
sensing conditions, Shi proposes a method for modeling the navigation area map of un-
manned ships based on high-resolution satellite imagery [36]. This method employed
high-resolution maps for land-sea segmentation, obstacle detail enhancement, and mor-
phological transformation through image processing. It identifies obstacle areas and edge
points, constructing a navigation map for unmanned ships to aid in route planning. This
approach demonstrated effective recognition of static obstacles in unknown areas but
requires frequent updates of satellite imagery.

Current research has made significant progress in studying natural static obstacles
that ships encounter during navigation and those that may affect normal ship operations.
Various algorithms can reconsider the impact of obstacles and generate reasonable routes.
However, challenges arise when dealing with dynamic obstacles that change over time,
such as sunken ships and fishing nets. Some obstacles can be updated in electronic charts,
but others, like fishing nets, change dynamically with the operating areas of fishing ships.
During ship navigation, mariners often need to combine electronic charts with visual
observations to adaptively plan routes and avoid challenging situations that may affect
normal ship operations.

Let us take an example to illustrate the above issue. Our team conducted a task of
autonomous navigation journey in the East China Sea from July 2023 to August 2023. Since
all the functions of the ship are in the testing stage, some experienced captains were on
the ship during the test, and in emergency situations, the crew has a higher prioritization
than the algorithms and the auto navigation model. In Figure 4, the red route represents
the static route planned for a ship traveling from Zhoushan to Shanwei Port, taking into
account the ship draft and economical cruising speed. The black trajectory represents the
actual navigation route during the voyage, which encountered newly established wind
farms, navigation announcements from the maritime management groups, a cluster of
operational fishing vessels, and dynamic fishing nets during the fishing season. In response
to these real-time conditions, the ship crew adjusted the navigation route based on the
ship’s current status.
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Figure 4. Ship’s static planned route and actual navigation route.

3.3. Dynamic Environmental Factors

Dynamic navigational environmental factors primarily refer to disturbances within
the navigational area, such as wind, waves, and currents. Wind and current data can
be obtained directly through long-term observations and onboard sensors. However,
the accurate modeling and prediction of sea waves is challenging due to their stochastic
and complex nature. The navigational environment not only affects the safe operation
of ships but also introduces uncertainty in fuel consumption, impacting route planning
and optimization for long-distance ship voyages. Vettor et al. analyze different weather
forecast models and compare them with the navigation routes of a container ship traveling
in the North Atlantic [37]. The results show that the fuel consumption error caused by
environmental model variations is approximately 10%.

In high-sea wind conditions, the interaction between waves and currents can signif-
icantly impact ship navigation. Chen et al. use third-generation wave models to study
the effects of waves and currents on ship navigation [38]. Zwolan et al. incorporate wave
models into ship navigation simulators to simulate ships’ attitude and motion in waves,
providing valuable references for crew training and similar purposes [39]. Bingham et al.
used Gazebo simulation in ROS2 (Robot Operating System 2nd) to model ship navigation in
complex sea conditions, offering mathematical models for different wind, wave, and current
conditions to create a simulation test environment for marine robotics [40]. Daisuke et al.,
through the study of AIS data from ship navigation in areas with currents, observed signif-
icant deviations between the ship heading and bow direction [41], effectively predicting
currents within the ship’s navigational area. Yu employed wavelet transformation to de-
compose time series related to ocean wave factors and used the transformation results
for training and predicting significant wave heights using residual neural networks [42].
The results indicate that wavelet transformation can improve the predictability of signifi-
cant wave heights. Remya et al. used genetic algorithms to predict tidal currents, which
proved to be more effective than harmonic analysis and fluid-dynamics-based methods [43].
Kavousi-Fard et al. decomposed current data into harmonic components and used these
components in different Support Vector Regression (SVR) models for current prediction [44].
They tested this approach using data from a bay and found that it could achieve satisfactory
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prediction accuracy. This method, based on wavelet transformation and SVR, demonstrates
effective current prediction.

Chen et al. established a numerical simulation model for different weather conditions
combined with the Manoeuvering Modeling Group (MMG) model of the ship by using a
weather model for the sea area in Japan, and they studied the impact of different models
on the ship’s response to weather conditions [45]. This research is of great significance
for the environmental perception and modeling of ship. Additionally, machine learning
and numerical simulation methods have also been used for the modeling and numerical
prediction of ocean wind, waves, and currents [46–49]. Deep neural network models can
automatically learn and extract feature relationships in complex data. Xie extracted the
spatiotemporal coupled features of ocean currents, captured correlations and dependencies
between adjacent sea areas using the Spatial Channel Attention Module (SCAM), and used
the Gated Recurrent Unit (GRU) to model the temporal relationships of ocean currents [50].
They developed a deep network model called Spatiotemporal Coupled Attention Network
(STCANet), which outperforms traditional models such as History Average (HA) and
Autoregressive Integrated Moving Average (ARIMA). Traditional ocean current prediction
methods have difficulty considering both the temporal and spatial effects of the prediction
of ocean current. Thongniran et al. designed a prediction method that combines spatial
and temporal features [51]. This method uses Convolutional Neural Networks (CNNs) for
spatial prediction of ocean currents and Gated Recurrent Units (GRUs) for modeling
the temporal features of ocean currents. It is compared with traditional models like
ARIMA and K-nearest neighbors (KNN) using data from the Gulf of Thailand. The results
show that the method combining spatial and temporal features had better prediction
accuracy. To study the predictive performance of different machine learning algorithms
on oceanographic parameters, Balogun [52] combined ARIMA, Support Vector Regression
(SVR), and Long short-term Memory (LSTM) neural network models to model and predict
different oceanographic elements. They used data from the Malaysian Peninsula region
for validation. The results indicated that different prediction models had varying levels
of accuracy for different elements. The accurate prediction of specific ocean parameters
requires a reasonable choice of modeling methods and parameters. For the weather factors,
Figure 5 shows the ocean weather conditions, including the bathymetry, current and
significant sea height for the southeast coast of China, the different weather aspects affect
the ship navigation from the motion, fuel consumption, and even safety.

Figure 5. Metocean data for the southeast China Sea.

Different prediction algorithms used in the dynamic environmental factors are com-
pared in Table 1.
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Table 1. Summarizing the prediction algorithms used in the dynamic environmental factors.

Algorithms Advantages Disadvantages

LSTM [53] A model that inherits characteristics from RNNs
while incorporating gating mechanisms can effec-
tively learn and retain long-term dependencies,
addressing the limitation of traditional RNNs in
capturing lengthy sequences. These mechanisms
assist in gradient preservation, mitigating the is-
sue of vanishing gradients during backpropaga-
tion, which results from a stepwise reduction in
gradient magnitude.

The gradient issues of traditional RNNs have been
partially addressed in LSTM and its variants, but
challenges persist. While LSTM is capable of han-
dling sequences on the order of 100 time steps,
dealing with sequences of 1000 time steps or more
remains a formidable task. Each LSTM cell inher-
ently involves four fully connected layers (Multi-
Layer Perceptrons or MLP). When LSTMs cover
a substantial time span and are deep in terms
of network architecture, the computational load
becomes substantial, resulting in longer process-
ing times.

GRU [54] Thanks to the gating mechanisms that allow for se-
lective information retention and forgetting, mod-
els like LSTM excel in capturing long-term depen-
dencies compared to traditional RNNs. They typ-
ically require less training time than other types
of recurrent neural networks. With fewer parame-
ters than LSTM, they offer quicker training speeds
and are less prone to overfitting.

When modeling complex sequential dependencies,
it may not perform as well as LSTM. Explaining the
gating mechanisms and information flow within
the network can be more challenging compared to
traditional RNNs. Some hyperparameter tuning
may be required to achieve optimal performance.
When dealing with extremely long sequences, it
may encounter issues similar to other types of re-
current neural networks, such as the problem of
vanishing gradients.

ARIMA [55] ARIMA treats the data sequence generated by
the predictive subject over time as a stochastic se-
quence. It utilizes a specific mathematical model
to provide an approximation of this sequence.
Once the model is identified, it facilitates the pre-
diction of future values based on past and present
values within the time series. This approach is
fundamental in time series analysis and forecast-
ing.

The ARIMA model indeed requires data to exhibit
stationarity. As such, data need to undergo dif-
ferencing to achieve stationarity before modeling.
In essence, ARIMA models primarily capture lin-
ear data patterns and may not perform well in
predicting non-linear data. Oceanic factors often
encompass non-linear elements, which can pose
challenges for ARIMA models in effectively mod-
eling and forecasting such data.

STCANet
[50,56]

STCANet, through the integration of spatial and
temporal attention mechanisms, excels in captur-
ing the interactions between variables such as
wind, waves, currents, and tides. This results
in higher predictive accuracy compared to tradi-
tional models. Additionally, STCANet demon-
strates remarkable performance in modeling de-
pendencies in the context of ocean prediction,
which often relies on diverse data sources. It ef-
fectively handles the integration of multi-modal
data, a crucial aspect of ocean forecasting.

Ocean prediction tasks typically involve handling
large-scale spatiotemporal data, which may re-
quire substantial computational resources. While
STCAN can offer insights into which features
are important for prediction through its atten-
tion mechanisms, the inherent complexity of deep
learning models may make it challenging to fully
explain the model’s decision-making process.

3.4. Ship Navigation Behavior, Traffic Flow Modeling and Prediction

Maritime traffic flow is a manifestation of ship behaviors, and it contains a wealth of
information. It is the result of interactions among various elements involved in maritime
traffic according to certain rules. Modeling and analyzing maritime traffic flow can guide
ship-navigation decisions and control. The modeling of traffic flow is primarily based
on analyzing the characteristics and distribution patterns of historical data. It is then
combined with simulation methods to replicate traffic flow. Key aspects of modeling and
simulation involve data collection, processing, and traffic-flow-generation methods [57].
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Maritime traffic flow, as the macroscopic representation of ship behavior, characterizes the
navigational situation of ships in specific areas. Research on modeling maritime traffic
flow and ship behavior is beneficial for safety supervision and traffic flow organization
and planning.

AIS data are commonly used as a data source for maritime traffic flow. They are
utilized for extracting waterway traffic elements, clustering ship behaviors, and predicting
ship behaviors. AIS data have various applications in maritime traffic services and collision
risk assessments [58]. With the continuous accumulation of AIS data and data mining, there
are still many unexplored possibilities [59]. AIS data contain crucial information about
the ship-navigation status. In busy waterways, AIS data can be incomplete or missing.
To improve the accurate monitoring of ship speeds in such areas, Zhao et al. used UAV
(Unmanned Aerial Vehicle) onboard video for ship speed extraction [60]. They employed
a simple linear tracking method with depth correlation metrics to extract ship speeds.
Furthermore, satellite-based AIS stations enable the monitoring of global ship data. Yan
et al. combined support vector machines and random forest methods to classify different
types of ships and identify abnormal behaviors in satellite-based AIS data [61]. Considering
ship behavior features, the ship identification accuracy reached as high as 92.7%.

Due to the presence of anomalies and errors in ship AIS data, it cannot be directly
used for modeling and predicting traffic flows. Guo et al. collect knowledge about ship
movements from the raw AIS data [62]. They use interpolation to estimate potential errors
in the original trajectories. An improved K-means clustering method is then applied to
assign weights to datapoint errors. In another study, the authors analyzed parameters
affecting frequencies of ship encounters [63]. They introduced a method for predicting
traffic-flow behaviors and ship-encounter frequencies with a time constraint, which finds
applications in areas like offshore wind farms and fisheries. Liu et al. proposed a method
that incorporates an attention mechanism into GRU and optimizes the GRU parameters
using intelligent optimization algorithms for the detection of ship anomalies [6]. This ap-
proach trains on ship AIS trajectory data using the TensorFlow framework and reduces the
time required for ship anomaly identification. Han et al. introduced a density-based spatial
clustering method called DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) [64]. They adjusted clustering-algorithm parameters using a data-driven approach
to model ship behavior based on ship AIS trajectory points, identifying abnormal ship
behaviors. The effectiveness of behavior extraction is validated using AIS data from the
Gulf of Mexico and the Great Lakes.

Zhang et al. use an adaptive particle swarm optimization algorithm to adjust the
structure parameters of a BP neural network [65]. They developed an improved Particle
Swarm Optimization-Back Propagation (PSO-BP) prediction model to predict the total
ship traffic flow in a harbor area, which was validated in the Port of Los Angeles and
demonstrated good results. To enhance the accuracy of prediction of the ship’s traffic
flow, Ye et al. leveraged the advantages of the encoder-decoder structure to capture long-
term dependencies in time series data [66], this improvement aims to address the issue of
cumulative errors that traditional iterative methods often face. They proposed a multi-step
prediction method for ships’ traffic flow based on an LSTM encoder, which involves the
statistical analysis of ships’ traffic flow and is validated to be effective. Shi et al. based their
modeling of ships’ abnormal behavior on trajectory data, approaching it from a spatial
information perspective [3]. They modeled the rules of collective ship behavior and use
a graph-based approach to determine abnormal ship behavior from spatial information.
Then, they apply the Isolation Random Forest algorithm to detect abnormal ship behaviors.

For AIS data processing, the data cannot be used directly, as shown in Figure 6, and we
have taken an example of using different algorithms include Bi-directional Long short-term
Memory Recurrent Neural Networks (BLSTM-RNNs), Artificial Neural Network (ANN)
and Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) to restore the lost data;
the BLSTM-RNNs has a good result for the AIS data restoration for the curve and straight
trajectories in Hubei Wuhan, where the RMSE is near about 25 m, which is acceptable for
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the ship trajectories in inland area. Our analysis utilizes approximately one month of AIS
data from August 2022, focused on the Zhoushan region of Zhejiang province. This area
exhibits a highly complex traffic flow, encompassing numerous ferry routes between stops,
cargo ships from diverse ports, and anchorage activities. To analyze these historical AIS
trajectories, we employed a distance-based clustering method. This approach successfully
identified nine distinct groups, with each subgroup characterized by similar trajectory
patterns. Moving forward, we intend to leverage these insights to model individual ship-
navigation behavior, enabling future research endeavors in trajectory prediction, behavioral
discrimination, anomaly detection, and data mining.

Figure 6. Ship trajectory restoration using different algorithms and trajectories clustering using a
distance-based algorithm.

Navigation-environment modeling is relevant to ship route planning and optimiza-
tion, ship-collision-avoidance route design, and the best timing for switching the collision-
avoidance routes in real-time navigation control. The comprehensive modeling of the navi-
gation environment takes into account factors affecting ship navigation control, trajectory
prediction, and route optimization across different time dimensions. The ship-navigation
environment modeling and prediction methods are summarized in Table 2.

Table 2. Methods for characterizing the navigation environment.

Type Data
Source Impact Mode Scope of Application Perception Modeling Methods

Static
factors ENC

Navigational static objects,
including water depth in the
navigation area, islands and
reefs, bridges, shipwrecks,
navigation rules, and non-
navigable areas

Applied to global optimiza-
tion, local collision avoid-
ance, and navigation control.

Combine ship GNSS, electronic charts,
and perception sensors to sense the
static factors in the navigation area,
and use methods like artificial potential
fields, image recognition, etc., in combi-
nation with electronic charts to model
them [67,68].

Dynamic
factors

Weather
forecast-
ing and
prediction

Weather factors affecting
ship navigation, including
wind, waves, and currents.

Meteorological forecasts are
used for ship route opti-
mization, while short-term,
high-precision weather fore-
casts are applied to ship mo-
tion control.

Incorporate weather forecasts and on-
board sensors for prediction, utilizing
LSTM, CNN, ARMA, hydrodynamic
simulation, and more [43,44,69].

Traffic
flow

Ship radar,
AIS, vessel
traffic ser-
vices (VTS)
system.

Applied to global optimiza-
tion, local collision avoid-
ance, and navigation control.

At the level of maritime nav-
igation organization, mod-
eling traffic flows will im-
pact ships

Combining historical data with algo-
rithms such as random number genera-
tion, probability space modeling, spatial
clustering, CNN, DBSCAN, and LSTM
to model traffic flow. In the short term,
onboard sensors predict and anticipate
ship trajectories, which serve as inputs
for navigation decisions [41,45,63,64,70].
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4. Ship Motion Modeling and Prediction Methods
4.1. Ship Motion Model

The motion of a ship in the water involves six degrees of freedom, with a typical
consideration of sway, heave, and yaw as the primary three degrees of freedom. The
propulsion methods for ships mainly involve propellers and rudders. The number of
independent control variables is usually less than the number of motion degrees of freedom,
resulting in underactuated characteristics in ship motion. Additionally, since ships are
affected by external factors like wind, waves, and currents during navigation, predicting
unmanned ship motion is a complex task. The ship coordinate system and motion models
are illustrated in Figure 7.

6 Degrees of freedom model (6DOF)

Waves Wind

Current
Disturbances(winds, current and wave)

3 Degrees of freedom model (3DOF)

Figure 7. Six-DOF and three-DOF ship motion models.

ship-motion models are generally classified into hydrodynamic models and respond-
ing models [71]. Hydrodynamic models include multiple linear and nonlinear hydrody-
namic parameters and disturbance coefficients and can be further divided into Abkowitz
models and Maneuvering Modeling Group (MMG) models [12,72]. Abkowitz models
analyze and solve the forces acting on the ship hull, propellers, and rudders as a whole,
while MMG models create separate hydrodynamic models for the ship hull, propellers,
and rudders to analyze the individual hydrodynamic effects.

Responding models represent another form of mathematical ship-motion model.
Starting from an engineering control perspective, Nomoto views a ship as a dynamic
system, with the rudder angle as the system input and the heading angle or yaw rate as
the system output [73]. These models can be classified into first-order and second-order
linear models and nonlinear models. Depending on the level of simplification of the
mathematical model, they can be categorized as single-degree-of-freedom, three-degree-
of-freedom, four-degree-of-freedom, and six-degree-of-freedom models [73–76]. Different
mathematical motion models contain various dynamic parameters, which are estimated
through maneuvering experiments or derived from model-scale tests of hydrodynamic
parameters; the CFD can also be used for parameter calculations [12]. A three-degree-of-
freedom (DOF) Abkowitz motion model is shown in Equation (1).

m(u̇ − ru − xGr2) = X
m(v̇ + rv + xG ṙ) = Y
Izz ṙ + mxG(v̇ + rv) = N

, (1)

where m represents the actual mass of the ship; xG is the longitudinal coordinate of the
ship’s center of gravity along the x axis; and X, Y, and N represent the components of
hydrodynamic forces and moments acting on the ship in the three degrees of freedom u, v,
and r, respectively. Iz is the moment of inertia of the ship around the vertical axis through
its center of gravity, which governs its resistance to rotation around that axis. In the context
of ship navigation, when considering the impact of external factors such as wind, waves,
and currents on a ship’s motion, a coupled superposition approach is applied. The model
(1) involves combining the forces acting on the ship in these environmental conditions and,
guided by empirical formulas, integrating the ship’s dynamic state. This process is used to
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assess how the interference from these environmental factors affects the navigational state
of the ship.

Accordingly, a three-degree-of-freedom (DOF) MMG motion model is shown in
Equation (2). 

m(u̇ − rv − xGr2) = XH + XP + XR

m(v̇ + rv + xG ṙ) = YH + YP + YR

Izz ṙ + mxG(v̇ + rv) = NH + NP + NR

, (2)

where the ship’s inertia force term is included on the left side of the equation. On the right
side of the equation, XH , XP, and XR represent the hydrodynamic forces in the forward
direction caused by the viscous fluid, the propulsion force from the propeller, and the force
from the rudder, respectively. YP and YR represent the hydrodynamic forces in the lateral
direction caused by the viscous fluid, the propulsion force from the propeller, and the
force from the rudder, respectively. NH , NP, and NR represent the hydrodynamic moments
(causing rotation) in the yawing direction (yaw) caused by the viscous fluid, propulsion
torque from the propeller, and the torque from the rudder, respectively. When a ship is
affected by wind and waves, it is necessary to analyze the forces exerted on the ship by
these environmental factors. These forces are then decomposed into the ship’s direction of
motion, allowing for the quantification of the interference experienced by the ship.

Accordingly, a responding motion model is shown in Equation (3).

T1T2r̈ + (T1 + T2)ṙ + αr + βr3 = K(δ + δr) + KT3δ̇, (3)

where δ represents the rudder angle or steering angle. r represents the yaw rate, which
is the change rate of the ship heading. K, T1, T2, and T3 are control parameters related
to the control system. δr represents the rudder deflection angle. α and β are constant
coefficients or parameters. As the parameters of responsive models are typically derived
from ship-maneuvering experiments to describe the influence of steering on a ship heading,
it becomes challenging to directly superimpose external disturbances from the maritime
environment onto the ship-motion model. When considering the effects of wind and
waves on a ship heading, it is common to simulate them using stochastic noise. As for
the influence of ocean currents, it is addressed by vectorially superimposing the current’s
velocity direction directly onto the ship’s navigational state.

Alongside the accumulation of ship maneuvering control and navigation data, apart
from the model (1)–(3) mentioned earlier, black-box models based on neural networks, data,
and similar techniques are gradually finding applications in ship motion prediction and
navigation control [77–80]. Black-box models can take into account a wider range of inputs,
leading to higher predictive accuracy. However, these models are typically trained using
complex mathematical algorithms, and their internal structure is typically composed of
a large number of parameters, making them difficult to understand and explain, so these
models are less amenable to mathematical representation and heavily rely on the accuracy
of input data.

Three types of ship handling models are commonly used for ship motion control.
Model (1) is relatively complex and provides high accuracy. It is based on Taylor’s expan-
sions of the forces acting on the ship in different directions. Each hydrodynamic parameter
in this model has a clear mathematical interpretation. However, this model has many
hydrodynamic derivatives that lack direct physical meaning, making them challenging
to measure directly. Parameter-identification methods are often used to determine these
non-measurable hydrodynamic parameters, allowing for the accurate simulation of ship
handling. While it provides high accuracy, the modeling and parameter identification can
be demanding in simulation environment.

The model (2) differentiates the effects of the hull, rudder, and propeller on ship
handling performance. Model parameters can often be obtained directly through towing
tank experiments, free-running model tests, or CFD. However, high requirements are
placed on the hydrodynamic derivatives and the disturbance coefficients between the hull
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and the rudder/propeller. Models (1) and (2) are frequently used with model-scale ship
tests, and their parameters correlate strongly with model accuracy. However, it may not
fully capture environmental disturbances to the ship’s motion.

Model (3) only considers the relationship between control inputs and state outputs.
The parameters for this model can be obtained directly through full-scale ship maneuvering
experiments, and it does not suffer from scale effects. Model (3) is commonly employed in
automatic steering systems and heading controllers in the operations of real ships.

Due to the need for extensive data accumulation and model training, black-box models
are currently less commonly applied in practical ship state and navigation control. Most
algorithms are still in the research and testing phase. However, as ships become more
intelligent and accumulate a growing amount of navigation data, this trend will likely
promote the application of data-driven black-box models in ship motion prediction and
navigation control.

The choice of model depends on the specific application, the level of precision required,
and the available data and experiments. Different mathematical models are suitable for
different scenarios. It is essential to choose the appropriate model based on the specific
research requirements. Ship motion models are valuable for studying ship handling and
seaworthiness. They are used to investigate ship control maneuvers and navigation attitude
control, often in combination with the impact of marine environments on ship motion and
disturbances. These models find applications in simulation studies, where they can help to
analyze and understand various aspects of ship behavior under different conditions.

4.2. Ship Extreme Short-Term Motion Prediction

Ship motion models encompass the ship motion states and control inputs. Precise
motion models can accurately describe the ship’s state and predict its motion trends. high-
precision modeling and parameter identification of ship motion models are especially
important. The identification of ship maneuvering motion relies on mathematical models
of ships, parameter-identification methods, and maneuvering motion data. Mathematical
models of ships’ maneuvering motion include the models mentioned above. Common
parameter identification methods include least squares [81,82], Kalman filtering [83,84],
support vector machines [85,86], neural networks [87,88], least squares support vector
machine methods [89–91], particle swarm optimization algorithms [92,93], and Bayesian
methods [94,95], among others. Several scholars have conducted in-depth research on
this [96–98]. Maneuvering motion data are primarily obtained through zigzag tests and
turning trials.

In extremely short-term prediction periods, due to the brief prediction duration,
variations in the ship navigation environment can be ignored. These methods only focus
on the immediate impact of the current environment on the ship’s motion to predict its
state. Methods using mathematical models for the prediction of ship motion mainly consist
of linear and nonlinear predictive methods. Prediction methods based on mathematical
models of ship motion can predict certain aspects of a ship’s motion state. However,
due to the nonlinear and time-varying nature of ship-motion models, complex motion
states require more sophisticated and accurate motion models. For example, the ship-
heading prediction, which represents a single-degree-of-freedom motion prediction, often
employs the responsiveness model proposed by Nomoto [99]. Large ships on long-distance
ocean voyages use different heading directions planned along the route for long-distance
course-keeping. Early automatic steering is used to control the heading.

For the speed control in unmanned ships, a data-driven model-free elastic speed
control method is presented in [100]. This method learns the rules of elastic speed control
from a neural network predictor, determining the optimal input for motor control. The
effectiveness of the algorithm is validated through simulation testing. Xu et al. applied a
physics-informed neural network for parameter identification of a three-degree-of-freedom
motion model in unmanned ships [101]. By combining data-driven and physical model
advantages, they constructed a loss function for predicting the motion attitude of unmanned
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ships based on velocity and steering models. Compared to traditional neural network
models, this approach shows better predictive performance.

In [102], a black-box motion model for unmanned ships is established. They employed
a weighted Least-squares support vector machine based on the Sparrow search algorithm
for parameter identification of unmanned ship motion models. To enhance the algorithm’s
stability and robustness, they introduced weighted least squares and the Sparrow Search
Algorithm (SSA) for parameter optimization. The results show that the proposed black-box
motion model has good generalization ability and could effectively predict the motion state
of unmanned ships. Wang et al. collected data on the changes in ship steering angle input
and ship heading change during ship operations [103]. They compared seven different
regression algorithms and selected the best one to establish a ship-heading prediction
model. They introduced an Antlion Optimizer (ALO) algorithm to search for the optimal
weights for the prediction model, which was used in ship-course-keeping control.

The navigation attitude of unmanned ships is a complex, time-varying, and nonlinear
system. Traditional algorithms for predicting unmanned ship attitudes could suffer from
low accuracy, poor robustness, and limited practical application. Zhang et al. combined
CNN with LSTM to build a data-driven neural network model for predicting the roll
attitude changes in unmanned ships [104]. They used CNN to extract time series features
and LSTM to predict the attitude at the next time step, which showed good prediction
accuracy when validated on a real dataset of unmanned ship motion.

The extreme short-term motion-prediction performance with different methods is
compared in [105], which can be seen in Figure 8. Some algorithms used for the extremely
short-term ship-motion prediction were summarized in Table 3.

Figure 8. Extremely short-term trajectory prediction [105].
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Table 3. Summarizing the algorithms used for extremely short-term ship-motion prediction.

Algorithms Description Advantages Disadvantages

CNN [53]
Extracts spatial features
from data like
wave patterns.

Effective for capturing
wave-induced motions
and good for
short-term prediction.

May require additional data
preprocessing, black-box
nature can
hinder interpretability.

SSA [102]
Uses a black-box model
and a nature-
inspired metaheuristic.

Simple and easy
to implement.

May not be as efficient as other
metaheuristics for
complex problems.

Kalman
filtering
[83,84]

Estimates system states
with noise
and uncertainties.

Robust to noise, can
handle
non-linear systems.

Requires accurate system
model, and computational cost
increases with
model complexity.

LSTM
[104]

Captures temporal
dependencies and
learns
complex dynamics.

High accuracy,
handles nonlinearities.

Requires large datasets,
computationally expensive.

4.3. Short-Term Ship-Motion Prediction

During a ship’s voyage, it needs to perceive dynamic and static obstacles using var-
ious sensors and, based on its navigation status, avoid these obstacles. For intelligent
autonomous ships, the generation of collision-avoidance paths often depends on collision-
avoidance planning algorithms, especially for short-time and short-distance navigation
re-planning. For the planning of collision-avoidance trajectories, time sensitivity is cru-
cial. When dealing with the problem of collision avoidance among multiple autonomous
ships, a distributed multi-unmanned collaborative ship-planning algorithm based on deep
reinforcement learning has been proposed in [106]. This approach uses an improved recip-
rocal velocity obstacle as the reinforcement learning reward function and plans collision-
avoidance routes for different obstacles based on gated recurrent unit neural networks.
Xie et al. combined the Model Predictive Control (MPC) algorithm with a three-degree-of-
freedom ship-motion model [107]. The improved Turn-Neyman algorithm is integrated
with maritime collision-avoidance rules to solve the ship predictive collision-avoidance
problem. The algorithm’s reliability was validated through simulations using the KRISO
Very Large Crude Carrier no. 2 (KVLCC2) standard ship model.

Existing ship-collision-avoidance planning methods are primarily based on the Time
to Closest Point of Approach (TCPA) and Distance to Closest Point of Approach (DCPA)
between one’s ship and the target ship. They often do not consider the uncertainty of ship
positions and velocities. In [108], a ship-prediction probability collision0avoidance method
is proposed based on the Kalman filter, which combines an Unscented Kalman Filter to
predict the ship state and obtain the probability of ship positions. This information is then
used to plan the optimal collision-avoidance route. Zhang et al. represent a ship’s time
and path during collision avoidance using space reconstruction and describe the ship’s
nonlinear motion with the MMG model [109]. It combines Nonlinear Model Predictive
Control (NMPC) with an Extended Kalman Filter to address the ship motion prediction
problem during the collision avoidance process, demonstrating the timeliness and reliability
of the algorithm through simulations. The popular algorithms employed for short-term
motion prediction are summarized in the Table 4.

Table 4. Summarizing the algorithms used for the ship’s short-term motion prediction.

Algorithms Description Advantages Disadvantages

MPC
[106,107]

Optimizes future trajectory based on
predicted motions and constraints.

Accounts for control
limitations and
environmental disturbances.

High computational cost, requires
accurate model and prediction.

NMPC
[108,109]

Extends MPC with non-linear models for
improved accuracy.

Handles complex dynamics
and uncertainties.

Increases computational cost
and complexity.
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He et al. transformed the ship collision avoidance motion planning problem into a
multi-constrained nonlinear optimization problem with controllability, navigation envi-
ronment, and navigation rules [110]. A novel Model Predictive Artificial Potential Field
(MPAPF) motion-planning method is proposed to generate the ship-collision-avoidance
path. The different collision avoidance methods include the Dynamic Anti-collision A-
star(DAA*), COLREGS-RRT, and Asexual Reproduction Optimization-Artificial Potential
Field (ARO-APF) based on short-term prediction are compared in Figure 9.
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Figure 9. Different collision-avoidance methods based on motion prediction.

4.4. Ship Traffic-Flow Modeling and Long-Term Trajectory Prediction

Predicting long-distance ship trajectories based on estimated ship traffic flow, histor-
ical trajectories, and time series data can contribute to enhancing the safety of maritime
environments, organizing ship traffic, and optimizing resource allocation in special water
areas. It is beneficial for ship-route planning and optimization, ultimately improving a
ship’s navigational capabilities. Ships’ navigation trajectories contain various characteris-
tics of traffic flow. The accurate prediction of ship navigation trajectories can facilitate the
statistical analysis and modeling of traffic flow.

To fully exploit the traffic flow information contained in ship AIS data and accurately
predict ship trajectories, ref. [111] employs a prediction model called the MHA-BiGRU
model, which is based on multi-head attention mechanisms and bidirectional recurrent
units (BiGRUs). This model filters and modifies historical ship data, retaining more infor-
mation and making predictions on time series data. The model correlates information from
both historical and future ship trajectories, providing high precision, reliability, and ease
of implementation.

Ref. [70] uses various machine learning and deep learning algorithms to predict and
analyze the historical movement trajectories of ships in different navigational environ-
ments. This analysis supports decision making for intelligent ship route planning, collision
avoidance, and traffic management operations. Ref. [112] utilizes historical AIS data from
the Świnoujście port in Poland to establish ship traffic spatial distribution and probability
models. These models analyze factors influencing the safe distance between ships, aiming
to enhance maritime safety and reduce collision risks.
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Ref. [113] proposes three trajectory-similarity search models for historical trajectory
points, trajectory databases, and historical trajectories, which are used for short-term and
long-term ship-trajectory prediction and are tested for algorithm reliability using ships’
AIS data. Ref. [66] constructs a Long short-term Memory Encoder (LSTM-ED) for training
ship AIS data to develop and validate ship traffic-flow models. This approach shows better
performance than traditional traffic-flow statistical baseline methods. Considering the
presence of abnormal jump values in long-distance trajectory data, ref. [114] integrates
the LSTM structure into the deep learning Transformer framework, which leverages the
strengths of Transformer and LSTM in dealing with long-distance dependencies in temporal
and spatial features. The method employs time-window shifting and smoothing filtering
to maintain trajectory smoothness, enabling the model to predict long-distance trajectories.
Ref. [115] utilizes a hierarchical clustering method to extract behavioral features from
AIS data. This approach is more efficient than traditional Douglas-Peucker (DP) and
Least-squares methods. The LSTM algorithm is then used to predict ship trajectories,
resulting in lower prediction errors compared to traditional RNN algorithms. The Temporal
Convolutional Network (TCN) has strong time memory capabilities and performs well in
time series prediction. Ref. [116] combines the attention mechanism with ship-trajectory
time series (TTCN). They utilize one-dimensional convolutional units to extract high-
dimensional features from the data and introduce mechanisms to enhance the learning of
important features. This enables the training and learning of ultra-long time series data for
ship trajectories. They use AIS data to construct a ship traffic flow dataset and compare it
with traditional prediction methods, achieving better accuracy.

In order to investigate the efficiency of the trajectory prediction with different men-
tioned algorithms, we take some AIS data to implement the prediction algorithms. In
Figure 10, we show different algorithms contains the LSTM, attention-based LSTM(ATT-
LSTM), transformer with deep embedded clustering(TRFM DEC), CNN-LSTM, and Bi
LSTM that we tested for long-term and short-term trajectory prediction; for the long and
curved trajectories, the LSTM method has good performance in prediction, while for the
short-term prediction, the CNN-based LSTM has good results for prediction, and the
average error is 0.5 m for short-term prediction.

Figure 10. Long- term and short-term trajectory prediction based on different algorithms.

To summarize, the ship-motion-prediction methods can be broadly categorized into three
types based on different prediction lead times, prediction intervals, and prediction accuracy.

(1) Extremely short-term motion prediction: This type of prediction is used for ship
motion control, where high demands are placed on the prediction lead time, accuracy,
and update frequency. It is employed throughout the entire voyage, repeatedly, until the
journey is complete.

(2) short-term motion prediction: This type of prediction is applied to avoidance of
ship collision, planning, and decision making. When ships encounter each other, it is
necessary for them to react accordingly until the specific encounter scenario ends. After
ensuring there is no risk of collision, a short-term motion prediction cycle is completed.
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(3) long-term trajectory prediction: This type of prediction is used in ship traffic
organization and voyage-route optimization. It primarily serves voyage planning, taking
into account the origin of the voyage task and the dynamic characteristics of the route. An
optimal route is established for safe navigation. If the navigation conditions change during
the voyage, the long-term motion predictions may need to be adjusted accordingly.

Different prediction types use different data sources, methods, and time frames. The
choice of the most suitable prediction method for ship motion depends on factors like the
actual ship situation, the sailing environment, and specific characteristics.

5. Applications of Ship Motion Prediction
5.1. Motion Control

Automated ship control takes into account the maneuverability of ships in complex
environments and the influences of wind, waves, and currents on ship handling. Besides
these disturbances, there might be other unknown disturbances to be considered, and
observers need to be used to estimate these unknown disturbances. In trajectory-tracking
control, it is essential to compensate for the effects of environmental disturbances. In order
to improve the accuracy of navigation control, many methods are gradually applied in
navigation tests and simulations.

MPC is a method that balances modeling, prediction, and control. It can use historical
data to create a simple model of a ship’s maneuverability for trajectory prediction. By
incorporating an extended observer, it can perceive the actual sailing conditions of the ship.
For example, ref. [117] proposes a guidance strategy based on NMPC for path following in
unmanned ships. This strategy overcomes the limitations of Line-Of-Sight (LOS) navigation
and uses an established state observer for tracking control of heading and speed.

To address the shortcomings of a ship motion control framework, which typically
plans before tracking, ref. [118] proposes an improved artificial potential field method
combined with the MPC algorithm. This approach generates control trajectories for ship-
collision avoidance. In complex navigational environments, it allows ships to navigate
around obstacles safely, serving as the algorithmic foundation for controlling unmanned
ships in complex sea areas.

The sailing environment can impact the ship’s motion model and control. For uncertain
wave disturbances on ships, ref. [119] introduces a parameter identification method using
Least-squares support-vector Machines (LS-SVMs) to identify parameters for a four-degree-
of-freedom MMG model. They also designed an online sliding-window modeling method
to predict ship motion under wave interference.

To achieve real-time high-precision and anti-interference motion control for unmanned
ships in complex scenarios, a study [120] designed a NMPC trajectory tracking controller
based on a three-degree-of-freedom hydrodynamic model for unmanned ships. This
controller considers disturbances like wind, waves, and currents and uses a nonlinear
disturbance observer to provide online compensation for the control model. The study’s
findings confirm the effectiveness of the control algorithm.

5.2. Collision Avoidance Planning

Predicting collision-avoidance trajectories for ships requires considering the sailing
status of both the ship and other ships. The ship’s sailing status can be directly obtained
through positioning or inertial navigation. In contrast, information about other ships’
sailing statuses must be perceived using sources like AIS (Automatic Identification System),
radar, video, and electronic charts to determine the motion of target obstacles [121]. The
acquired information regarding other ships’ motions often contains errors and uncertainties.
Hence, it needs the use of short-range prediction algorithms to predict their movement
trends and calculate minimum encounter distance and closest encounter time. These
algorithms must meet high standards for short-term ship-state prediction and encounter-
situation assessment.
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To address the challenge of accurately estimating the DCPA and TCPA of encountering
ships, ref. [122] decomposes ship AIS trajectory data into linear and nonlinear components.
They then employed ARIMA and LSTM methods to model these two components. This
modeling is utilized for trajectory prediction and collision-avoidance route planning.

Refs. [123,124] combined the principles of MPC with maritime collision avoidance
rules (COLREG) to design a trajectory-based collision-avoidance planning method. They
constructed window functions to reduce tracking errors and cost acceleration, which
improved the algorithm’s reliability. This method predicts the sailing trajectories of en-
countering ships, uses convex free sets and maritime collision avoidance rules to develop
collision-avoidance strategies, and generates planned routes.

To mitigate dangerous situations caused by abrupt changes in ship speed during tra-
jectory prediction, ref. [125] proposed an improved ant colony algorithm using an artificial
potential field. This modification enhances the convergence speed and global optimiza-
tion of the algorithm, resulting in smoother collision-avoidance planning trajectories and
reducing the probability of accidents.

Zhu and Ding [126] introduced a method for determining the optimal collision-
avoidance point, which helps in defining the most effective collision-avoidance route
based on the relative velocity and kinematic parameters between unmanned ships and
obstacles. It calculates the ship’s best collision point, using the speed and heading-angle
increments that can be reached by the ship to constrain dynamic window sampling. Simu-
lation testing demonstrates that the proposed optimal collision-avoidance point method is
more efficient and robust.

In a real-world navigation scenario, ships have to contend with the motion of other
ships and various uncertainties caused by interference. To address these challenges, we
implemented the virtual potential field and dynamic ship field methods for planning
collision-avoidance paths. In October 2022, we specifically selected ships encountered in
sheltered waters for testing, as shown in Figure 11, and we built a software platform and
implemented the algorithms with Qt (verison 5.2), C++ (version 11), Python (version 3.10),
and ENC (s57 standard) map for the automatic control for a 40 m length USV. We tested
the collision avoidance and control algorithms by using an intelligent ship equipped with
radar, AIS, and an optoelectronic system. In the open sea environment, we designed a pre-
determined route for the ship, which subsequently navigated along this planned trajectory.
Meanwhile, the target ship, located ahead and on a directly opposing heading, maintained
its course throughout the encounter. To avoid collisions, the ship dynamically replanned
its route based on the relative velocity between the vessels. Aiming to prevent entering the
target ship’s domain, the ship adjusted its speed to approximately 7 knots, maintaining a
horizontal separation of approximately 120 m-roughly four times the ship’s length.

5.3. Ship Voyage Optimization

In ship route optimization, various factors need to be considered, including sail-
ing speed, water depth in the sailing area, disturbances like wind and currents, ship
loading, fuel prices, and more. The goal is to achieve the lowest fuel consumption, min-
imize operations, reduce sailing time, maximize fuel efficiency, and minimize leasing
costs [127–130]. Ships at sea can optimize their routes based on the influence of wind and
currents, aiming to save fuel and ensure safe navigation. When sailing near the coast,
factors such as islands and tides also need to be considered. The sailing environment
significantly affects a ship’s movement. By combining a ship’s current status with historical
traffic flow data and meteorological information specific to the sailing area, long-distance
trajectories can be predicted and optimized, thus enhancing navigation safety and reducing
the impact of the environment on navigation.
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Figure 11. Dynamic domain-based collision avoidance sea trial in Zhoushan.

Ship-route optimization mainly consists of environmental modeling and optimization
searching. To reduce the complexity of environmental modeling, the planning space is
typically structured and transformed into a state-space search problem, which is further
converted into a state-space path-search problem. These problems are addressed using
search algorithms to obtain optimal solutions. Common ship-route-optimization algo-
rithms include A*, Dijkstra, artificial potential fields, Rapidly Exploring Random Tree (RRT,
RRT*), Isochrone, Dynamic Programming, 3D Dynamic Programming, genetic algorithms,
simulated annealing, particle swarm optimization, neural networks, and more [131–141].

Taking into account the influence of ocean currents and marine environments, ref. [142]
uses reinforcement learning in combination with ship motion models and map information
to optimize ship routes. For unmanned ships operating in complex and dynamic environ-
ments, ref. [143] combines the accelerated A* algorithm with the visibility graph algorithm,
using a quadtree to perform fast searches on the visibility graph and improving trajectory
update efficiency. Many optimization and planning algorithms apply to optimizing ship
routes in nearshore waters, considering aspects like maritime safety, avoiding grounding
or collisions, and fuel savings [144].

In traditional RRT algorithms, the planned trajectories may suffer from issues like
lack of smoothness and excessive travel distances. Guo et al. [145] employed quadratic
Bézier curves and the Dijkstra algorithm for trajectory pruning within the RRT algorithm,
making the generated trajectories smoother. They also used Morphin for global trajectory
pruning, and simulations confirmed its suitability for route planning for unmanned ships
in complex navigation environments.

Route-optimization algorithms each have their pros and cons. In the application
of route optimization for unmanned ships, it is also necessary to incorporate maritime
collision-avoidance rules, consider the maneuverability of the ship, and take into account
the navigation environment. To address the shortcomings of optimization algorithms, it is
possible to improve them by combining and using different algorithms, all in alignment
with the ship’s objective functions.

Route-optimization algorithms can be used in voyage planning for long-distance
routes based on objective optimization functions. In actual ship navigation, when encoun-
tering other ships, it is essential to follow maritime collision-avoidance rules according to
the current collision situation. Different collision scenarios require considering maritime
collision avoidance rules, the ship’s collision responsibility, and the necessary actions to be
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taken. When a collision-avoidance maneuver is needed, it involves adjusting the ship route
based on the ship’s current state, considering factors such as ship maneuverability, target
ship length, width, DCPA, TCPA, the ship domain, and navigation conditions. This new
route is followed for a certain period while implementing maneuvers such as altering the
course, reducing the speed, or a combination of both [146].

In dynamic encounter scenarios, it is necessary to consider the motion state of other
ships. To ensure safe navigation, path-planning algorithms are applied to dynamically re-
plan routes in local areas, generating new collision-avoidance trajectories that are both safe
and efficient. Common collision-avoidance planning algorithms include A*, the artificial
potential field method, velocity obstacle method, and RRT, among others [147–150].

The ship’s navigation environment significantly affects the accurate prediction of
ship motion. The traditional modeling of motion models and parameter identification can
adequately describe a ship’s motion status through mathematical modeling. However,
achieving the real-time prediction of a ship’s motion status in complex navigation envi-
ronments requires the rational selection of motion modeling and state prediction based
on the specific focus of ship-motion control. By incorporating motion models into the
modeling process, short-term and long-term trajectories of the ship can be predicted, pro-
viding insights into the ship’s motion response in the navigation environment. The accurate
prediction of ship-motion status and practical application necessitates selecting appropriate
prediction methods based on the application scenarios and ensuring the proper application
of the prediction results.

6. Analysis of the Key Issues

Ship navigation research has tackled factors affecting sailing, traffic flow, motion mod-
els, and route optimization as separate modules. The focus now shifts toward integrating
these for the better modeling and prediction of ship-navigation environments. In current
research, simulation models are widely used to investigate existing problems and explore
methods in depth. However, in practical engineering applications, the time-varying and
nonlinear nature of the navigation environment and motion models present limitations in
simulation-based methods. Unmanned ships highlight the need for the integrated model-
ing of navigation environments, dynamic traffic flow, and context-aware motion models,
paving the way for automatic route planning and control decisions. The challenge lies in
seamlessly integrating the navigation environment, traffic flow, and ship motion models for
autonomous ships, enabling intelligent route planning and control in complex situations.
These areas have seen relatively limited research. The specific limitations are as follows.

6.1. Online Modeling of Ship Motion

Due to the influence of the navigation environment, the motion models and model
parameters of ships exhibit time-varying and uncertain characteristics. The accuracy of
mathematical models of ship motion, based on the CFD simulations, empirical formulas,
and experimental ship handling, is no longer suitable for precise ship control. Leveraging
data from diverse sources like environment, traffic flow, and sensor readings can enhance
the observation and modeling of disturbances impacting ship motion. By incorporating
these disturbances into the model-building and parameter-identification process, intelli-
gent ship-control systems can achieve higher accuracy and minimize errors. Combining
environmental models within the navigational area with ship-motion-control models for
online model establishment and parameter identification is essential for path optimization
and control decision-making in intelligent ships. This approach effectively addresses navi-
gation, decision-making, and control issues in intelligent ships and is a key indicator of the
autonomous driving level and degree of automation in intelligent ships.

Figure 12 shows the prediction of ship speed during navigation using the xG-Boost
(Extreme Gradient Boosting) machine learning algorithm. In the upper part of the figure,
the blue curve represents the prediction of ship speed based solely on the ship propeller
RPM (revolutions per minute). The red curve, on the other hand, takes into account
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additional factors such as the wind encountered during navigation and ocean current data
specific to the navigational area. By comparing these two curves, it becomes evident that
increasing the number of input parameters in the model significantly enhances the accuracy
of ship speed prediction.
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Figure 12. Ship navigation speed prediction with different input characters and parameters based on
the xG-Boost method in complex sea conditions.

6.2. Limitations of Simulation Validation

Based on the existing literature, most scholars primarily use simulation to study the
modeling of ship motion in response to the effects of navigation environments, parameter
identification, model development, and control. Environmental influences are often gener-
ated using random methods, while real navigation environments are complex, dynamic,
and nonlinear, making it challenging to directly describe key factors affecting ship-motion
modeling and control with mathematical equations. It can be challenging for simulated
environments to replicate the actual navigation state of ships accurately. Additionally,
conducting real ship testing for large ships is costly. Current research often relies on scale
models for experiments, which can reflect essential issues to some extent. However, due to
scale effects, the results may vary for medium and large ships. There is a considerable gap
between ship-simulation research and engineering applications. Precise data collection,
historical playback, and specific ship-modeling and testing methods tailored to particular
ships are required to meet the needs of motion prediction and control. For the implementa-
tion of these planning, collision avoidance, and control algorithms, many steps need to be
tested before the final application in real conditions, these algorithms will not perform as
well as the simulation tests.
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As shown in Figure 13, prior to the final sea trials of our collision-avoidance algorithms
for unmanned surface vessels (USVs), we conducted extensive simulations to validate their
performance under safe and controlled conditions. These simulations comprised four
key stages:

(1) Virtual collision avoidance with geographic information system (GIS) data in
Figure 13a: We established a virtual environment using GIS data, where a virtual ship
navigated directly toward a virtual USV in the open sea. This initial step assessed the
robustness of the algorithm under predictable conditions.

(2) Virtual collision avoidance with static obstacles in Figure 13b: This stage introduced
virtual static obstacles alongside sea trials, further challenging the algorithm’s ability to
navigate complex environments.

(3) Virtual dynamic collision avoidance in Figure 13c: Building on the previous stages,
we implemented virtual dynamic obstacles within sea trial simulations, simulating encoun-
ters with moving objects. This provided a more realistic test of the algorithm’s adaptability.

(4) Real ship encounter in Figure 13d: The final stage involved a real ship navigating
toward the USV, allowing us to observe the algorithm’s performance in a live setting and
verify its ability to generate optimal collision-avoidance paths.

It is important to acknowledge that significant effort is required to bridge the gap be-
tween simulation and real-world testing. Sea trials often present unforeseen circumstances
that cannot be fully replicated in simulated environments. Consequently, the transition
from simulation to sea trials necessitates iterative refinement and validation. In essence,
while simulations offer valuable insights, their limitations necessitate real-world testing for
comprehensive performance evaluation.

1

2

Figure 13. Ship-trajectory tracking and collision-avoidance control simulation, virtual test, and sea
trial in a real condition.
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6.3. Consistency in Modeling, Optimization, and Control

In the existing body of literature, the prevailing trend in current research leans towards
the independent development of ship motion models, optimization algorithms, and various
other aspects. A notable drawback of this approach is the absence of a unified standard
interface for both input and output data across these models. This deficiency gives rise to a
lack of general and consistent models, particularly in the realms of ship-route optimization,
collision-avoidance planning, and navigation-motion control.

From the vantage point of intelligent ship navigation and control, there emerges a
critical need to amalgamate diverse systems. This integration should aim to simplify
the complex processes involved in motion modeling, motion prediction, and navigation
control. The ultimate goal is to achieve a higher degree of automation and intelligence in
the domain of ship navigation control. The absence of a standardized interface impedes the
seamless exchange of information among different modules, hindering the establishment
of a cohesive and interoperable framework for ship navigation.

In the shipping industry, there are many aspects that need to be considered between
the planning and the final navigation or ship control. As shown in Figure 14, before
the ship leaves the ports, the planners will draw up a route according to the departure,
destination, and navigation task. Sometimes, the route will not be the best option for every
ship, and the researchers will optimize the route based on the forecasted weather and the
ship-performance model, while the performance model is summarized by the empirical
formula or the historical data. For the ship’s operation, once the route is designed or
optimized, the ship operators will drive it based on their experience or the maneuverability
of the ship, wile the maneuverability is changed based on the different navigate status. For
intelligent navigation, all the aspects need to be considered using the performance model,
maneuverability, and control algorithms.

Weather
forecasts

Planning Routing

Modeling

Control
Performance

model
Maneuvering

model

Ship
performance model

Ship
maneuvering model

Optimization
route

Optimizate

Figure 14. Ship route planning, optimization, and control system.

To address this challenge, future research efforts should concentrate on the develop-
ment of a standardized interface that can serve as a common language for communication
among various ship-navigation systems. This unified interface would facilitate the inte-
gration of motion models, optimization algorithms, and other components, fostering a
more cohesive and interoperable approach to ship route optimization, collision-avoidance
planning, and navigation motion control. Such an integrated and standardized framework
holds the potential to streamline the development and implementation of intelligent navi-
gation and control systems for ships, paving the way for enhanced safety, efficiency, and
automation in maritime operations.

7. Trends in Technological Development

With the development of computer technology, artificial intelligence technology, ma-
rine environmental observation technology, and ship motion prediction technology, great
progress has been made. In the future, ship-motion-prediction technology will develop in
the following directions.
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7.1. Trajectory Prediction Based on the Fusion of Multi-Source Sensor Data

In complex navigation scenarios requiring collision avoidance, a single sensor has limi-
tations on target recognition. Ship operators need to combine the information from different
sensors manually or according to their experience, making it difficult to perceive obstacles
effectively. This necessitates data fusion from multiple sensors for trajectory prediction
to provide more accurate assessments of ship-navigation encounters. Existing perceptual
environment modeling primarily focuses on the recognition and tracking of static and
dynamic obstacles in collision-avoidance decision-making scenarios. This research com-
bines the ship’s navigation status with the recognition and tracking of obstacles. With the
advancement of ship intelligence and unmanned navigation, unmanned ships adhere to
maritime collision avoidance rules designed for manned ships. Nevertheless, unmanned
ships typically exhibit superior maneuverability and increased levels of automation. In
the context of autonomous navigation, it becomes crucial to autonomously and accurately
perceive the surrounding navigation environment. Combining navigation-environment
modeling with route planning for unmanned ships can enhance the reliability of route
selection and navigation control, harnessing the advantages of intelligent navigation deci-
sions. The fusion of multi-source shipboard data with route planning plays a crucial role in
optimizing navigation routes and navigation control. The fusion of AIS, radar, and GPS
data is applied for different navigation trajectories, which is used in Figure 15.

Figure 15. Trajectory fusion from AIS, radar and GPS based on the straight and curved conditions.

In adverse weather conditions, it is essential to consider factors like wind, waves, and
currents that can significantly impact the navigation of unmanned ships, particularly in
high-sea conditions. In such scenarios, it is about not only planning collision-avoidance
routes but also optimizing navigation-control strategies based on the current sea conditions.
This is crucial for reducing the impact of waves on the ship, thereby enhancing both the
efficiency and safety of ship navigation.

7.2. Integration of Environmental Modeling, Route Optimization, and Motion Control

Traditional navigation and control systems have three relatively independent modules:
guidance, navigation, and control. With the development of intelligent navigation and
unmanned technologies in ships, these modules become more closely intertwined. From
a planning perspective, static and dynamic environmental models of navigation will
significantly influence route planning for ships. In actual navigation, weather conditions
and environmental modeling can impact route optimization and control for local ship
encounters. Starting with the establishment of environmental models and extending to
route optimization and control decision making, integrated system models should be
created. The integration spans from perception systems to decision systems, utilizing
optimization algorithms to select and establish the best models that are suitable for decision
making and control in intelligent and unmanned ships.
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In the context of intelligent and unmanned ships, route optimization is focused on long-
distance, extended-time motion planning, where factors like distance, energy consumption,
and voyage duration are considered. On the other hand, ship motion control emphasizes
short-distance, short-term motion tracking control, accounting for navigation risks and
collision avoidance decisions during the voyage. Both aspects need to be effectively
combined. It is necessary to choose appropriate routes while also considering the current
encounter scenarios and selecting the right collision avoidance routes and control decision-
making methods to ensure the economic efficiency and safety of navigation.

The issue of transitioning between global, long-distance route optimization and local,
short-distance collision-avoidance decision making will be a focal point of research for
intelligent ships and unmanned ships in autonomous navigation control. This transition
impacts not only the economic effectiveness of ships but also their navigational safety. As
illustrated in Figure 16, we have employed both 2D Dynamic Dijkstra and 3D Dynamic
Dijkstra by considering the variable speed of each sub-route, to optimize the path from
America to the English Channel across the North Atlantic Ocean. The optimized route not
only saves more distance but also yields a significantly lower wave height compared to the
original route.

Departure Destination

60°W 50°W 40°W 30°W 20°W 10°W 0°

35°N

40°N

45°N
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Routing with different algorithms

Navigation route
Optimized route by 2D Dijkstra
Optimized route 3D Dijkstra

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6
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Figure 16. Route planning with different weather models and optimization methods.

7.3. Mechanism and Data-Fusion-Driven Modeling

As ships evolve toward increased automation and intelligence, traditional ships are
adopting advanced sensors to support navigational decision making and control. In open
sea areas, these technologies serve as valuable assistants for ship operators, yet in complex
navigation scenarios, the precision of models and algorithms may fall short of expectations.
Shipping companies, armed with extensive operational and navigational data, possess
valuable experience for decision making and operations. Leveraging this wealth of data
and experience is pivotal for enhancing navigation safety and precision while reducing the
labor intensity for operators.

The volume of data related to navigational environments and decision-making control is
anticipated to surge as accumulation continues. high-precision, large-scale operational data
play a pivotal role in propelling the advancement of intelligent and unmanned ships, as well as
contributing to the digitization of the maritime industry. Extracting valuable insights from this
extensive data pool, especially regarding key factors influencing navigational decision making
and control for intelligent and unmanned ships, promises substantial advancements.



J. Mar. Sci. Eng. 2024, 12, 107 27 of 35

The increasing utilization of machine learning and deep learning algorithms is poised
to significantly augment perception and decision-making capabilities during ship naviga-
tion. This shift toward advanced algorithms is expected to result in enhanced autonomy for
intelligent ships, leading to reduced human intervention, heightened efficiency and safety,
and lowered operating costs. The continuous evolution through data-driven modeling,
accumulation, iteration, and updates will contribute to the increased accuracy of ships’
navigational environment and motion-control models. The principle of the mechanism and
the data fusion-driven modeling method is shown in Figure 17.

Maneuvering tests

CFD / Parameter
identificaiton Mechanism

model

Data-driven
model

Machine learning
Deep learning

Fusion
model

Sea trail

Maneuvering
data

Navigation
data

Figure 17. Mechanism and data-driven model fusion.

7.4. Time Series Modeling and Multi-Objective Prediction

Conventional predictions of a ship’s motion state heavily rely on precise mathematical
models dedicated to a ship’s motion. These models are intricately integrated with a
ship’s responses in diverse settings, utilizing model-prediction methods to anticipate a
ship’s motion. The intricate challenge lies in the time-varying nature of ship motion and
navigational environments, rendering the use of mathematical models complex. Hence, the
establishment of time series models derived from high-precision data emerges as a critical
necessity to seamlessly integrate data-driven ship motion prediction and control.

Moreover, deploying sensitivity-analysis methods allows for a comprehensive exami-
nation of key factors influencing ship motion control and their corresponding impacts. By
identifying these critical factors, one can effectively model and predict navigational envi-
ronment data. This process not only facilitates ship-route optimization but also contributes
to the enhanced control of navigational environments, further emphasizing the importance
of a data-driven approach in refining ship-motion prediction and control mechanisms. The
performance of time series modeling and multi-objective prediction is shown in Figure 18.
In Figure 18a the correlation of each state is presented with different shades of color, and
Figure 18b,c shows the speed and roll angle prediction based on the input time series
with the weather and control command information. The speed and roll can be predicted
very precisely.
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8. Conclusions

The vast reach of the oceans has, throughout history, ignited a flame of discovery and
advancement. This dedication to progress extends to the field of ship navigation, which is
currently experiencing a significant evolution in the wake of technological advancements.
This transformation is fueled by several key trends and active research areas that are
reshaping the future of intelligent ship navigation.

(1) Dawn of the autonomous age: Intelligence takes the helm. The most conspicuous
transformation lies in the burgeoning field of ship autonomy and intelligence. Cutting-edge
technologies like artificial intelligence are no longer futuristic fantasies; they are being
strategically implemented in unmanned ships. Sophisticated navigational environment
sensing and modeling prediction methods act as catalysts, paving the way for ever-more
intelligent vessels. This synergistic integration is not just about automation; it is about
reshaping the maritime industry, ushering in an era of unparalleled efficiency and safety.
Imagine unmanned ships seamlessly navigating complex waterways, optimizing routes
in real time, and evading dangers with preternatural precision. This is the future that
intelligent ship navigation promises.

(2) Precision takes center stage: Modeling the seas with mathematical elegance. At the
heart of intelligent navigation lies the power of precise mathematical modeling. Accurate
models of the navigational environment and ship motion are the bedrock upon which
robust algorithms are built. The future holds exciting advancements in simulation, virtual
testing, and digital twinning-revolutionary methodologies that will redefine the validation
and testing of design and control algorithms for unmanned ships. Think of it as pushing a
virtual ship through a simulated ocean, testing its responses to every wave and current,
all before it ever sets sail. This iterative refinement process will lead to more robust and
reliable autonomous ships that are ready to conquer the real-world seas.

(3) Conquering time: A holistic approach to navigational prediction. The future of
intelligent ship navigation isn’t confined to a single time horizon. A holistic approach
that encompasses long-term, mid-term, and short-term ship motion prediction methods
is rapidly emerging. This multi-temporal perspective addresses the multifaceted chal-
lenges faced by ships, from voyage planning and route optimization to real-time collision
avoidance and dynamic decision making. Imagine a ship that can predict not only its
immediate path but also anticipate potential hazards and weather patterns hours and even
days in advance. This level of foresight will revolutionize maritime safety and operational
efficiency, paving the way for a truly intelligent and autonomous future at sea.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AIS Automatic Identification System
ALO Antlion Optimizer
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
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ARO-APF Asexual Reproduction Optimization-Artificial Potential Field
ATT-LSTM Attention-based LSTM
BiGRU Bidirectional gate recurrent unit
BLSTM-RNNs Bi-directional Long short-term Memory Recurrent Neural Networks
BP Back Propagation
CDF Computational Fluid Dynamic
CNN Convolutional neural network
DAA* Dynamic Anti-collision A-star
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DCPA Distance to Closest Point of Approach
DOF Degrees of Freedom
DP Douglas-Peucker
ENC Electronic Navigation Chart
GIS Geographic Information System
GNC Guidance, Navigation and Control
GNSS Global Navigation Satellite System
GPS Global Position System
GRU Gated Recurrent Unit
HA History Average
IMO International Maritime Organization
KNN K-nearest neighbors
LOS Line of Sight
LSTM Long short-term Memory
LSTM-ED Long short-term Memory Encoder
LS-SVM Least-squares support-vector machine
MHA-BiGRU multi-head attention mechanism and bidirectional gate recurrent unit
MMG Maneuvering Modeling Group
MLP Multilayer Perceptron
MPC Model Predictive Control
MPAPF Model Predictive Artificial Potential Field
NMPC Nonlinear Model Predictive Control
PCHIP Piecewise Cubic Hermite Interpolating Polynomial
PSO Particle Swarm Optimization
PSO-BP Particle Swarm Optimization-Back Propagation
ROS2 Robot Operation System 2nd
RPM Revolutions Per Minute
RRT Rapidly exploring Random Tree
SCAM Spatial Channel Attention Module
SSA Sparrow Search Algorithm
STCANet Spatiotemporal Coupled Attention Network
SVR Support Vetor Regression
TCN Temporal Convolutional Network
TCPA Time to Closest Point of Approach
TRFM DEC Transformer with Deep Embedded Clustering
TTCN Tiered Temporal Convolutional Network
UAV Unmanned Aerial Vehicle
VHF Very High Frequency
KVLCC2 KRISO Very Large Crude Carrier no. 2
USV Unmmanned Surface Vessels
VTS Vessel Traffic Service
WOS Web of Science
xG-Boost eXtreme Gradient Boosting
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7. Hasanspahić, N.; Vujičić, S.; Frančić, V.; Čampara, L. The Role of the Human Factor in Marine Accidents. J. Mar. Sci. Eng. 2021,

9, 261. [CrossRef]
8. Eliopoulou, E.; Alissafaki, A.; Papanikolaou, A. Statistical Analysis of Accidents and Review of Safety Level of Passenger Ships.

J. Mar. Sci. Eng. 2023, 11, 410. [CrossRef]
9. Pedrozo, R. Advent of a New Era in Naval Warfare: Autonomous and Unmanned Systems. In Autonomous Vessels in Maritime

Affairs: Law and Governance Implications; Johansson, T.M., Fernández, J.E., Dalaklis, D., Pastra, A., Skinner, J.A., Eds.; Springer
International Publishing: Cham, Switzerland, 2023; pp. 63–80. [CrossRef]

10. Wang, J.; Xiao, Y.; Li, T.; Chen, C.L.P. A Survey of Technologies for Unmanned Merchant Ships. IEEE Access 2020, 8, 224461–224486.
[CrossRef]

11. Liu, J.; Yan, X.; Liu, C.; Fan, A.; Ma, F. Developments and Applications of Green and Intelligent Inland Vessels in China. J. Mar.
Sci. Eng. 2023, 11, 318. [CrossRef]

12. Fossen, T. Handbook of Marine Craft Hydrodynamics and Motion Control; Wiley: Hoboken, NJ, USA, 2021.
13. He, Z.; Liu, C.; Chu, X.; Negenborn, R.R.; Wu, Q. Dynamic anti-collision A-star algorithm for multi-ship encounter situations.

Appl. Ocean Res. 2022, 118, 102995. [CrossRef]
14. Geng, X.; Li, Y.; Sun, Q. A Novel Short-Term Ship Motion Prediction Algorithm Based on EMD and Adaptive PSO–LSTM with

the Sliding Window Approach. J. Mar. Sci. Eng. 2023, 11, 466. [CrossRef]
15. Zhang, M.; Taimuri, G.; Zhang, J.; Hirdaris, S. A deep learning method for the prediction of 6-DoF ship motions in real conditions.

Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2023, 237, 147509022311578. [CrossRef]
16. Lyu, H.; Hao, Z.; Li, J.; Li, G.; Sun, X.; Zhang, G.; Yin, Y.; Zhao, Y.; Zhang, L. Ship Autonomous Collision-Avoidance Strategies—A

Comprehensive Review. J. Mar. Sci. Eng. 2023, 11, 830. [CrossRef]
17. Zaccone, R.; Martelli, M. A collision avoidance algorithm for ship guidance applications. J. Mar. Eng. Technol. 2020, 19, 62–75.

[CrossRef]
18. Zhou, S.; Wu, Z.; Ren, L. Ship Path Planning Based on Buoy Offset Historical Trajectory Data. J. Mar. Sci. Eng. 2022, 10, 674.

[CrossRef]
19. Sørensen, M.E.N.; Breivik, M.; Skjetne, R. Comparing Combinations of Linear and Nonlinear Feedback Terms for Ship Motion

Control. IEEE Access 2020, 8, 193813–193826. [CrossRef]
20. Skulstad, R.; Li, G.; Fossen, T.I.; Vik, B.; Zhang, H. A Hybrid Approach to Motion Prediction for Ship Docking—Integration of a

Neural Network Model Into the Ship Dynamic Model. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [CrossRef]
21. Cheng, W.; Yan, Y.; Xia, J.; Liu, Q.; Qu, C.; Wang, Z. The Compatibility between the Pangu Weather Forecasting Model and

Meteorological Operational Data. arXiv 2023, arXiv:2308.04460.
22. Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks.

Nature 2023, 619, 533–538. [CrossRef]
23. Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global

Weather Forecast. arXiv 2022, arXiv:2211.02556.
24. Rodger, M.; Guida, R. Classification-Aided SAR and AIS Data Fusion for Space-Based Maritime Surveillance. Remote Sens. 2021,

13, 104. [CrossRef]
25. Rong, H.; Teixeira, A.; Guedes Soares, C. Maritime traffic probabilistic prediction based on ship motion pattern extraction. Reliab.

Eng. Syst. Saf. 2022, 217, 108061. [CrossRef]
26. Silva, K.M.; Maki, K.J. Data-Driven system identification of 6-DoF ship motion in waves with neural networks. Appl. Ocean Res.

2022, 125, 103222. [CrossRef]
27. Schirmann, M.L.; Collette, M.D.; Gose, J.W. Data-driven models for vessel motion prediction and the benefits of physics-based

information. Appl. Ocean Res. 2022, 120, 102916. [CrossRef]
28. Wang, S.; Zhang, Y.; Zhang, X.; Gao, Z. A novel maritime autonomous navigation decision-making system: Modeling, integration,

and real ship trial. Expert Syst. Appl. 2023, 222, 119825. [CrossRef]
29. Model predictive ship trajectory tracking system based on line of sight method. Bull. Pol. Acad. Sci. Tech. Sci. 2023, 71, e145763.

[CrossRef]
30. Øveraas, H.; Halvorsen, H.S.; Landstad, O.; Smines, V.; Johansen, T.A. Dynamic Positioning Using Model Predictive Control

With Short-Term Wave Prediction. IEEE J. Ocean. Eng. 2023, 48, 1065–1077. [CrossRef]
31. Thombre, S.; Zhao, Z.; Ramm-Schmidt, H.; Vallet Garcia, J.M.; Malkamaki, T.; Nikolskiy, S.; Hammarberg, T.; Nuortie, H.;

H. Bhuiyan, M.Z.; Sarkka, S.; et al. Sensors and AI Techniques for Situational Awareness in Autonomous Ships: A Review. IEEE
Trans. Intell. Transport. Syst. 2022, 23, 64–83. [CrossRef]
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