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Abstract: In this study, a short-term prediction method for ship roll motion in waves based on
convolutional neural network (CNN) is presented. Firstly, based on the ship roll motion equation,
the data for free roll attenuation motion in still water, roll motion in regular waves, and roll motion
excited by irregular waves are simulated, respectively. Secondly, the simulation data is normalized
and preprocessed, and then the time-sliding window technique is applied to construct the training
and testing sample sets. Thirdly, the CNN model is trained by learning from the constructed training
sample sets, and the well-trained CNN model is applied to predict the roll motion. To validate the
CNN model’s prediction accuracy and effectiveness, a comparison between the forecasted results
and the simulation data is conducted. Meanwhile, the predicted results are also compared with that
of the long-short-term memory (LSTM) neural network. The research results demonstrate that CNN
can effectively achieve accurate prediction of ship roll motion in waves, and its prediction accuracy is
the same as that of the LSTM neural network.
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1. Introduction

As a ship navigates in open waters, it becomes subject to a range of environmental
elements, including winds, waves, and currents. Under certain conditions, a large roll
motion will occur, which seriously threatens the navigation safety of the ship. In order
to guarantee ship navigation safety at sea, precise anticipation of ships’ nonlinear roll
movements is imperative. For this purpose, three kinds of method have been successively
put forward [1]. The first kind of prediction method is based on ship hydrodynamics theory.
The mathematical model of roll motion is established according to ship hydrodynamics, and
the damping coefficients in the mathematical model are obtained by means of model tests
or CFD simulations. Hashimoto et al. [2] and Kianejad et al. [3] forecasted the roll motion
by the motion model with the obtained damping coefficients. In order to predict the ship
roll motion, Kianejad et al. [4] used the CFD method to calculate the damping coefficients;
Liu et al. [5] used CFD to predict the parametric roll characteristics; and Chen et al. [6] used
the CFD method to establish a numerical model of ship motion coupled with fluid motion.

The second kind of prediction method is based on the time series model. By regression
analysis of historical time series data of ship roll motion, time series models of ship roll
motion in waves was used to predict ship roll motion. Jiang et al. [7] and Selvaraj et al. [8]
used the auto-regressive model (AR model) and auto-regressive integrated moving average
model (ARIMA model) to predict ship roll motion, respectively. The third kind of prediction
method is the data-driven prediction method based on machine learning techniques. By
means of machine learning algorithms, the inherent mechanism of ship roll motion is
learned from the collected mass of ship roll motion data, and the nonparametric black-box
model of ship roll motion is constructed. For example, Yin et al. [9] and Huang et al. [10]
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applied the variable structure RBF neural network and wavelet neural network to predict
ship roll motion, respectively. Chen et al. [11] applied the support vector machine to
identify the mathematical model of ship roll motion in shallow water. Suhermi et al. [12]
combined the deep forward neural network and ARIMA model to predict ship roll motion.

In recent years, deep neural networks have been applied to solve pattern recognition,
function fitting, etc. Xue et al. [13] applied the convolutional neural network to pattern
recognition. Belomestny et al. [14] applied deep neural networks to approximate the nonlin-
ear function and its derivatives simultaneously. Rithani et al. [15] discussed the benefits and
drawbacks of various deep neural networks for big data analysis. The most common deep
neural networks include deep recurrent neural network (RNN) and convolutional neural
network (CNN). In contrast to the traditional RNN, the long-short-term memory (LSTM)
neural network, a derivative of RNN, reduces the risk of gradient explosion/disappearance
during neural network training. Hochreiter et al. [16] achieved this by incorporating an
architecture comprising input gate, forgetting gate, output gate, and state storage unit,
which effectively regulates neuron states. In the field of ship motion attitude prediction,
machine learning has a stronger ability to extract complex nonlinear features and map
them to output, compared with mathematical models and statistical models. Therefore, it
was applied to predict ship motion by some researchers. Huang et al. [10] established a
ship roll motion prediction model, which fully utilizes the fitting ability of conventional
neural networks. Zhang et al. [17], Zhang et al. [18] and Wei et al. [19] conducted prediction
studies on ship roll motion by the LSTM neural network, respectively. Jiang et al. [20]
applied the LSTM neural network to a non-parametric identification model and predic-
tion of ship maneuvering motion. Wang et al. [21] proposed a ship roll angle prediction
method based on bidirectional long short-term memory network and temporal pattern
attention mechanism combined deep learning model to improve the accuracy of ship roll
angle prediction. Sun et al. [22] combined LSTM and Gauss process regression technology
to predict ship roll motion and pitch motion, respectively. However, there is relatively
little research using convolutional neural network to predict ship roll motion in waves.
Further validation is required to assess the effectiveness and robustness of ship roll motion
prediction technology by using deep neural networks.

In this paper, CNN is used to predict ship roll motion in the short term. Firstly, CNN is
used to predict the free roll decay motion in still water. Secondly, the roll motion in regular
waves is predicted by CNN. Thirdly, the roll motion excited by six different irregular wave
spectra are respectively simulated, and then the simulation data are learned by CNN. To
demonstrate the prediction effect, the prediction results of CNN are compared with that
of the LSTM neural network. Through this study, it can be found that the CNN model
can predict complex nonlinear phenomena through reasonable training. In addition, the
method is not limited by the physical model and has strong prediction performance.

2. Convolutional Neural Network

Convolutional neural network (CNN) is a kind of deep feed-forward neural network,
including convolutional computation, and is used especially to process data, similarly
to grid structures. By using the gradient descent method, CNN realizes layer-by-layer
reverse adjustment of the weight parameters in the network. The prediction accuracy
of CNN is improved by iterative training. At present, several deep learning models
based on convolutional neural networks, such as AlexNet [23], VGG [24], GoogLeNet [25]
and ResNet [26] have been proposed successively and have been widely used in image
processing and pattern recognition.

Typically, three types of neuron layers, convolutional layer, pooling layer and fully
connected layer, together make up the CNN structure. It extracts data features through
multi-level nonlinear modules, connects adjacent nodes of the same level through convolu-
tion calculation, and carries out feature extraction step by step from low level to high level,
so as to construct complex features with multiple levels of abstraction.
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Figure 1a depicts the computational principle of CNN. The convolution kernel of CNN
slides on the time series data. Since the data it processes each time is in a time window,
instead of the data at a certain moment, CNN can extract the changing relationship of the
sequence data reflected in the time dimension. Figure 1b simply shows the convolution
operation principle of convolution kernel: the 5 × 5 matrix on the left is the input original
data, the 3 × 3 matrix in the middle is the convolution kernel, and on the right is the output
data. The convolution kernel is a sliding window that moves with a fixed step from left to
right and from top to bottom on the original data. Each element in the convolution kernel
has a fixed weight and bias. The operation rule adopted by the convolution calculation
in CNN is that the original data is multiplied by the convolution kernel and then added,
which is expressed as:

yn(i, j) =
kn−1

∑
k=1

w
∑

m=1

h
∑

z=1

[
yk

n−1(si + m, sj + z)Wk
n(m, z)

]
+ bn

Ln(w) =
Ln−1(w)+2p−w

s + 1

Ln(h) =
Ln−1(h)+2p−h

s + 1

(1)

where yn(i, j) is the element whose coordinate is (i, j) in the output data of the n convolution
layer; yn−1(i, j) is the element whose coordinate is (i, j) in the input data of the n − 1
convolution layer; k is the number of channels; w is the width of the convolution kernel; h
is the height of the convolution kernel; s is the convolution step; bn is the bias parameter of
the n convolution layer; p is the number of fills; Ln(w) is the width of yn(i, j); and Ln(h) is
the height of yn(i, j).
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fitting. After several operations of the convolution layer and pooling layer, the output of 
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Figure 1. Convolutional neural network.

As mentioned above, the convolution kernel slides on the same layer of data and
shares a set of convolution kernel parameters during data feature extraction at each po-
sition, meaning that the CNN model features sparse connections and parameter sharing.
Compared with the fully connected neural network, the number of parameters of CNN is
greatly reduced and the learning rate is accelerated. Moreover, the pooling layer of CNN
divides the data into several regions and outputs the maximum or average value of the
data in each sub-region. This approach trims the amount of data processing and retains the
valuable information, and thus improves the processing efficiency and reduces overfitting.
After several operations of the convolution layer and pooling layer, the output of CNN is
obtained by the calculation of the fully connected layer.

When applied CNN to predict ship roll motion, the basic steps are as follows (see
Figure 2).

Firstly, based on the obtained data sample set, the training sample set and the test
sample set were constructed. In this article, the data sample set was obtained by numerical
simulation according to ship roll motion equation. Then, the sample set was split into the
training sample set and the test sample set according to a ratio of 0.7. The first 70% of the
data was the training sample set, and the last 30% of the data was the testing sample set.

Secondly, a convolutional neural network predicted model was established. Therein,
the input and output dimensions of the CNN, the hyper-parameters, number of convolu-
tional layers, pooling method, learning rate and activation function, etc., were determined
in advance.
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Thirdly, use the training sample set to train the established CNN model and evaluate
the training result by the learning loss, and determine whether adjustment of the CNN
parameters was needed.

Finally, based on the trained model, the test sample set was predicted, and the pre-
dicted error was also calculated to evaluate the predicted accuracy.
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3. Roll Motion Equation of Ships

According to ship hydrodynamics, the roll motion equation of a ship in waves can be
described by a second-order nonlinear differential equation:

(Ixx + Jxx)
..
ϕ + D(

.
ϕ) + R(ϕ) = F (2)

where ϕ is the angle of roll (rad); Ixx is the roll moment of inertia
(
kg·m2); Jxx is the

additional moment of inertia
(
kg·m2); D

( .
ϕ
)

is roll damping (N·m); R(ϕ) is roll restoring
moment (N·m); and F is the wave excitation moment (N·m).

For the purpose of achieving precise prediction of ship roll motion, the key is to
accurately determine the damping of roll motion in waves. According to Ikeda’s theory [27],
roll damping is mainly composed of friction damping, vortex damping, lift damping, wave
damping and bilge keel damping. However, each part is coupled together, and it is difficult
to determine each part separately in practice. To predict roll damping, it is usually expanded
as a function of roll angular rate:

D(
.
ϕ) = D1

.
ϕ + D2

∣∣∣ .
ϕ
∣∣∣ .
ϕ + D3

.
ϕ

3
+ · · · (3)

where Di, i = 1, 2, 3, · · · are linear or nonlinear damping coefficients. In practical
applications, the nonlinear roll damping of ships is commonly represented by combining
linear components with quadratic or cubic terms:

D(
.
ϕ) = D1

.
ϕ + D2

∣∣∣ .
ϕ
∣∣∣ .
ϕ, or, D(

.
ϕ) = D1

.
ϕ + D3

.
ϕ

3
(4)

The restoring moment of ship roll is expressed as an odd function of roll angle:

R(ϕ) = R1ϕ + R3ϕ3 + R5ϕ5 + · · · = ∑ R2i−1ϕ2i−1, i = 1, 2, 3, . . . (5)

where R2i−1, i = 1, 2, 3, · · · are linear or nonlinear restoring moment coefficients:
By introducing Equations (3) and (5) into Equation (2), the rolling motion equation of

a ship in waves can be written:

(Ixx + Jxx)
..
ϕ + D1

.
ϕ + D2

∣∣∣ .
ϕ
∣∣∣ .
ϕ + D3

.
ϕ

3
+ · · ·+ R1ϕ + R3ϕ3 + R5ϕ5 + · · · = F (6)
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Perform division on both sides of Equation (6) by (Ixx + Jxx), and the ship roll motion
equation can be normalized as:

..
ϕ + d1

.
ϕ + d2

∣∣∣ .
ϕ
∣∣∣ .
ϕ + d3

.
ϕ

3
+ · · ·+ r1ϕ + r3ϕ3 + r5ϕ5 + · · · = f (7)

where f = F/(Ixx + Jxx); di = Di/(Ixx + Jxx); and ri = Ri/(Ixx + Jxx).
When a ship performs free roll attenuation motion in still water, the wave excitation is

zero. The equation describing the free roll decay motion can be formulated as:

..
ϕ + d1

.
ϕ + d2

∣∣∣ .
ϕ
∣∣∣ .
ϕ + d3

.
ϕ

3
+ · · ·+ r1ϕ + r3ϕ3 + r5ϕ5 + · · · = 0 (8)

When a ship rolls in regular waves, the moment generated by wave excitation can be
expressed as:

f = fA cos(ωet + β) = f1 cos ωet + f2 sin ωet (9)

where fA is the amplitude of wave excitation moment; ωe is the wave encounter frequency
of ship roll motion; and β is the phase difference; f1 = fA cos β; f2 = − fA sin β.

By substituting Equation (9) into rolling motion Equation (7), the equation depicting
the rolling motion of a ship in regular waves can be expressed as:

..
ϕ + d1

.
ϕ + d2

∣∣∣ .
ϕ
∣∣∣ .
ϕ + d3

.
ϕ

3
+ · · ·+ r1ϕ + r3ϕ3 + r5ϕ5 + · · · = f1 cos ωet + f2 sin ωet (10)

As a ship navigates through irregular waves, the wave excitation moment and the
roll motion are also irregular. According to the superposition principle, the irregular wave
excitation can be interpreted as the cumulative effect of multiple regular wave excitations,
characterized by different amplitudes, frequencies and random phases:

f =
∞

∑
i=1

fi,A cos(ωit + θi) (11)

where ωi is the frequency of each component; and θi is the phase of each component,
uniformly distributed in the interval [0, 2π].

By substituting Equation (11) into Equation (7), the equation governing the roll motion
of a ship under irregular waves can be formulated as:

..
ϕ + d1

.
ϕ + d2

∣∣∣ .
ϕ
∣∣∣ .
ϕ + d3

.
ϕ

3
+ · · ·+ r1ϕ + r3ϕ3 + r5ϕ5 + · · · =

∞

∑
i=1

fi,A cos(ωit + θi) (12)

4. Training Model Setting

In this paper, a new designed ship for marine aquaculture was selected to be analyzed.
The full-scaled ship parameters are listed in Table 1. The scale ratio of the ship model used
in this study is 1/42.

Table 1. Ship information.

Parameter Value Unit

Length between perpendiculars 250.00 m
Breadth 43.95 m
Depth 27.25 m
Block coefficient 0.85 -
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4.1. Data Preprocessing

For the purpose of validating the applicability and accuracy of the deep neural network
model, it is necessary to prepare the data set for training deep neural networks in advance.

In order to obtain the data for ship free roll decay motion in still water, linear and
quadratic damping was used. Meanwhile, the linear and cubic restoring moment and the
used free roll decay motion equation were rewritten as

..
ϕ + d1

.
ϕ + d2

∣∣∣ .
ϕ
∣∣∣ .
ϕ + r1ϕ + r3ϕ3 = 0 (13)

The nonlinear damping coefficient and restoring moment coefficient were determined
by using ship hydrodynamics in advance. The damping and restoring moment coefficients
were d1 = 0.002576, d2 = −0.004437, r1 = 0.3950, r3 = 0.6348. The initial angle was set to
0.262 rad and the time step size was h = 0.05 s, and the fourth-order Runge–Kutta method
was used to solve the free roll decay motion equation. The obtained roll motion is shown
in Figure 3.
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To obtain the roll motion in regular waves, linear and quadratic damping was used,
and the linear and cubic restoring moment was used. The wave amplitude was 0.118 m
and wave frequency was 0.45 rad/s. The simulated rolling motion is shown in Figure 4.
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In order to validate the prediction effect of CNN, the roll motion under six different
irregular wave spectrum excitations was simulated, and the simulated roll responses were
used to construct the sample set.

The white noise spectrum excitation consists of 70 cosine functions with an amplitude
of 0.07 rad/s2 at equal frequency intervals. The frequency range is selected from 2.0 to
5.0 rad/s, which is expressed by the formula:

f = ∑70
i=1 0.07 cos(ωit + θi) (14)

where ωi is the frequency of each component; and θi is the phase of each component, evenly
distributed in the interval (0, 2π).
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The roll motion under white noise excitation could be obtained by numerical simula-
tion. The obtained roll motion is given in Figure 5.
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Based on ship hydrodynamics, the nonlinear roll motion excited by the irregular waves
could be simulated. The significant wave height and spectral peak frequency of the irregular
wave were selected as 0.07 m and 3.14 rad/s, respectively. In addition, the irregular wave
was represented by the P-M spectrum, JONSWAP spectrum, Neuman spectrum, ITTC
spectrum and two parameters spectrum, respectively. Therein, the P-M spectrum excitation
consisted of 90 cosine functions, with the frequency range 0.5 to 1.5 rad/s. The JONSWAP
spectral excitation was composed of 70 cosine functions with equal frequency interval, and
the frequency range was selected from 2.0 to 8.0 rad/s. The Neuman spectrum excitation
was composed of 80 cosine functions at equal frequency intervals and the frequency range
was selected from 1.5 to 8.0 rad/s. The ITTC spectrum excitation consisted of 70 cosine
functions at equal frequency intervals, and the frequency range was selected from 2.3 to
12.2 rad/s. The two parameters spectrum excitation was composed of 90 cosine functions
and the frequency range was 0.3 to 2.0 rad/s. The simulated nonlinear roll motion is shown
in Figures 6–10.
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After the data set is prepared, it usually needs to preprocess the data and construct
the input and output of CNN. With the aim of expediting neural network convergence
and mitigating the impact of diverse data dimensions, the data is normalized by using the
maximum and minimum normalization approach:

X′
i =

Xi − min(Xi)

max(Xi)− min(Xi)
, i = 1, 2, · · · , n (15)

where min(Xi), max(Xi) represent the maximum and minimum values of the data set; X′
i

is the normalized data; and n indicates the amount of data in the data set.
When training CNN, the output values of CNN should be reverse-normalized accord-

ing to the following formula:

ŷi = [max(Xi)− min(Xi)] · ŷi
′ + min(Xi) (16)
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where ŷ′i is the output value after normalization; and ŷ is the actual output value.
Once the data is normalized, the sample sets for training and testing of CNN are

made through the time sliding window. The operation process is shown in Tables 2 and 3.
Therein, X represents the training sample set; T represents the test sample set; t is the
length of the time sliding window; and T̂ is the output of the deep neural network.

Table 2. Training samples set.

Sample Feature Label

Sample 1 (X1, X2, X3, · · · , Xt) Xt+1

Sample 2 (X2, X3, X4, · · · , Xt+1) Xt+2

Sample 3 (X3, X4, X5, · · · , Xt+2) Xt+3

· · · · · · · · ·

Sample n (Xn, Xn+1, Xn+2, · · · , Xt+n−1) Xt+n

Table 3. Testing samples set.

Step Number Input Output

Step number 1 (Ti, Ti+1, Ti+2, · · · , Ti+t−1) T̂i+t

Step number 2 (Ti+1, Ti+2, · · · , Ti+t−1, T̂i+t) T̂i+t+1

Step number 3 (Ti+2, · · · , Ti+t−1, T̂i+t, T̂i+t+1) T̂i+t+2

Step number 4 (Ti+3, · · · , T̂i+t, T̂i+t+1, T̂i+t+2) T̂i+t+3

Step number 5 (Ti+4, · · · , T̂i+t+1, T̂i+t+2, T̂i+t+3) T̂i+t+4

4.2. Hyper-Parameters Setting

Before CNN is trained by learning from the constructed training sample set, the
learning algorithm and hyper-parameters of CNN must be predefined. In this paper, the
convolutional neural network model is implemented by using the Keras framework, and
the hyper-parameters of the convolutional neural network are selected after several times
of debugging (see Table 4). The step length of time window during training is set to 16, i.e.,
the data of the first 16 steps of the current moment predicts the movement of the current
moment and the next 5 steps. To enhance the learning efficiency of the convolutional neural
network, the Adam algorithm is adopted in this paper. The initial learning rate was set as
0.001 and, during the training process, the learning rate decay and an early stop mechanism
are incorporated to improve the learning efficacy of CNN. In addition, the training set data
was learned in batches, i.e., the training data was divided into a batch of data sets, and the
learning order of the small batch data sets was disrupted at each time of learning, so that
the neural network could fully learn the data characteristics. The size of batch affects the
learning speed of the neural network. If the batch size is too large, it loses the significance
of grouping the data to learn; and if the batch size is too small, it affects the computational
efficiency. After debugging several times, the size of the small batch data set was finally
determined as 32.

Table 4. Hyper-parameters of CNN.

Hyper-Parameters Feature Regular Wave Roll Irregular Wave Roll

Activation function ReLU ReRU Tanh
Convolution layer

number 1 2 2

Pooling mode Maximum pooling Average pooling Average pooling
Convolution kernel

size 1 × 7 1 × 7 1 × 7
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4.3. Evaluation Criteria

In order to assess the learning and prediction performance of the CNN model, the
mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE)
and determination coefficient (R2) are adopted as evaluation indexes in this study. The
mean absolute error is the average of the absolute discrepancies between the predicted
values and the corresponding labels. The mean square error is the average of the squares’
differences between the predicted values and the corresponding label values. The root
mean square error is the square root of the mean square error. The closer the first three
evaluation indexes are to zero, the better the prediction effect of the CNN model. The
determination coefficient is the value obtained by dividing the regression sum of squares
by the total sum of squares, and the closer the determination coefficient is to 1, the better
the prediction effect of CNN model. According to the definition, the MAE, MSE, RMSE
and R2 are calculated respectively by:

MAE =

N
∑

i=1

∣∣∣yi
p − yi

l

∣∣∣
N

, RMSE =

√√√√√ N
∑

i=1
(yi

p − yi
l)

2

N

MSE =

N
∑

i=1
(yi

p − yi
l)

2

N
, R2 = 1 −

N
∑

i=1
(yi

p − yi
l)

2

N
∑

i=1
(yi

p − yl)
2

(17)

where N is the number of samples; the variable with the subscript p denotes the predicted
value; the variable with the subscript l denotes the label of the data set; and yl denotes the
average value of the label.

5. Results and Discussion

In order to validate the applicability and effectiveness of CNN in ship roll motion
prediction, it is applied to analyze free roll attenuation motion in still water, roll motion in
a regular wave and roll motion in an irregular wave, respectively. Meanwhile, the learning
prediction effect of convolutional neural network is compared with that of long short-term
memory neural network, which is widely used at present.

5.1. Prediction of Roll Motion in Still Water

In this subsection, CNN is used to model and predict the free roll decay motion of
ships in still water. The prediction results of CNN are shown in Figure 11, and a comparison
is conducted between the prediction values of CNN and those generated by LSTM neural
network. The five-step prediction errors of the two neural networks are shown in Table 5.
Table 6 shows the increase of error generated by each additional step in the multi-step
forecast.

From Figure 11, it can be concluded that CNN and LSTM can be used for short-term
prediction of free roll decay motion in still water. In Table 5, since the data for free roll
attenuation at the late stage of movement is infinitely close to 0, the calculated value of
the determination coefficient R2 is too large to have practical reference significance, and
not given. According to MAE, RMSE and MSE in Table 5, it can be seen that the forecast
accuracy of CNN is the same as that of LSTM neural network. The forecast error increase
in Table 6 shows that LSTM neural network has a large error increase, i.e., the multi-step
forecast effect of CNN is better than that of LSTM neural network.
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Table 5. Predicted errors for free roll decay motion.

MAE (×10−6) RMSE (×10−6) MSE (×10−12) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 2.572 4.653 2.572 4.653 6.618 21.64 - -
2 2.598 4.720 2.598 4.720 6.750 22.41 - -
3 2.654 4.871 2.654 4.871 7.043 23.72 - -
4 2.735 5.082 2.735 5.082 7.483 25.83 - -
5 2.823 5.332 2.823 5.332 7.971 28.43 - -

Table 6. Increase in predicted errors for free roll decay motion.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 1.01 1.44 1.01 1.44 6.618 3.56
2 2.16 3.19 2.16 3.19 6.750 5.85
3 3.05 4.33 3.05 4.33 7.043 8.90
4 3.22 4.92 3.22 4.92 7.483 10.07

5.2. Prediction of Roll Motion in Regular Waves

On the basis of the obtained simulation data for the nonlinear roll motion in regular
waves, the training set and test set of CNN are constructed according to the format in
Tables 1 and 2. The training set is employed to train CNN, and the training and learning
effect is verified by the test set. At the same time, the LSTM neural network is also used
to predict the roll motion. The prediction results of the test set by CNN are displayed
in Figure 10. Therein, the prediction results of CNN are shown in Figure 12a, and the
predicted results of LSTM neural network are shown in Figure 12b. Tables 7 and 8 present
the predicted discrepancies between CNN and LSTM neural networks, along with the
incremental changes in forecast errors at each step.

Table 7. Predicted error of roll motion in regular waves.

MAE (×10−8) RMSE (×10−7) MSE (×10−14) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 7.020 1.430 1.027 1.800 1.055 3.238 0.999999961 0.999999882
2 7.350 1.742 1.065 2.204 1.135 4.860 0.999999958 0.999999822
3 7.794 2.134 1.095 2.715 1.200 7.373 0.999999956 0.999999730
4 8.180 2.615 1.118 3.345 1.250 1.119 0.999999954 0.999999590
5 8.611 3.182 1.162 4.088 1.350 1.671 0.999999950 0.999999388
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Table 8. Prediction error increase of roll motion in regular waves.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 4.70 21.80 3.70 22.44 7.58 50.09
2 6.04 22.50 2.82 23.19 5.73 51.71
3 4.95 22.53 2.10 23.20 4.17 51.77
4 5.27 21.68 3.94 22.21 8.00 49.33
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According to the above results, it can be seen that both CNN and LSTM can carry out
short-term forecasts of ship roll motion in regular waves, and the forecast error increase for
CNN is lower than that for LSTM, i.e., the short-term forecast effect for CNN is better than
that for LSTM.

5.3. Prediction of Roll Motion in Irregular Waves

In this subsection, regarding the accuracy and applicability of CNN for prediction
of the nonlinear roll motion in irregular waves, this paper applies CNN to analyze the
random roll motion data excited by six irregular wave spectra, namely white noise spec-
trum, P-M spectrum, JONSWAP spectrum, Neumann spectrum, ITTC spectrum and dual
parameter spectrum. At the same time, the LSTM neural network is also used to predict the
nonlinear roll motion excited by the six irregular wave spectra, and the prediction results
are compared with that of CNN.

5.3.1. Predicted Results for Roll Motion under White Noise Excitation

Using CNN and LSTM neural network to predict the nonlinear roll motion excited by
the white noise spectrum, the comparison results between CNN and LSTM neural network
are shown in Figure 13. Moreover, Tables 9 and 10 give the predicted errors of CNN and
LSTM under white noise spectrum excitation and the error growth of each step in the
five-step prediction.

Table 9. Predicted errors of roll motion under white noise excitation.

MAE (×10−2) RMSE (×10−2) MSE (×10−4) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 0.299 0.388 0.357 0.436 0.128 0.190 0.999251069 0.999495923
2 0.856 1.164 0.989 1.328 0.978 1.763 0.994262024 0.995322706
3 1.488 2.014 1.784 2.414 3.182 5.825 0.981330293 0.984546377
4 2.173 2.963 2.665 3.607 7.100 13.01 0.958345566 0.965479822
5 2.895 3.966 3.569 4.836 12.74 23.38 0.925254810 0.937962555
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Table 10. Prediction error increase of roll motion under white noise excitation.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 186.13 200.07 176.77 204.66 665.86 827.89
2 73.87 73.02 80.40 81.78 225.36 230.40
3 46.03 47.12 49.38 49.42 123.13 123.35
4 33.23 33.85 33.92 34.07 79.44 79.71
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Combining the prediction comparison in Figure 13 and the predicted evaluation indi-
cators given in Tables 9 and 10, it can be founded that both models performed well under
the four evaluations. The indicators of the CNN model under the four evaluations were
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smaller than those of the LSTM model, which illustrates that the prediction performance
of CNN model is better than that of LSTM model. The error increase at each step in the
five-step prediction of the CNN model is lower than that of LSTM, indicating that the CNN
model has higher accuracy.

5.3.2. Predicted Results of Roll Motion under P-M Spectrum Excitation

The CNN and LSTM neural network was used to predict the nonlinear roll motion
excited by the P-M spectrum, and the comparison results between CNN and LSTM neural
networks are shown in Figure 14. Moreover, Tables 11 and 12 demonstrate the predicted
errors of CNN and LSTM under P-M spectrum excitation and the error growth of each step
in the five-step prediction.
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Table 11. Predicted errors of roll motion under P-M spectrum excitation.

MAE (×10−2) RMSE (×10−2) MSE (×10−4) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 0.315 0.323 0.381 0.394 0.145 0.155 0.999351319 0.999304812
2 0.872 0.870 1.013 1.008 1.026 1.015 0.995404745 0.995453743
3 1.503 1.491 1.812 1.791 3.284 3.206 0.985296580 0.985644504
4 2.199 2.175 2.691 2.657 7.240 7.061 0.967585505 0.968387693
5 2.913 2.887 3.586 3.550 12.86 12.60 0.942431539 0.943579568

Table 12. Prediction error increase of roll motion under P-M spectrum excitation.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 176.74 169.05 166.16 155.84 608.07 553.57
2 72.36 71.36 78.87 77.68 220.08 215.86
3 46.31 45.86 48.51 48.35 120.46 120.24
4 32.47 32.73 33.26 33.61 77.62 78.44

From the prediction results in Figure 14, Tables 11 and 12, it can be seen that both
models performed well under the four evaluations. The MAE, MSE and RMSE evaluation
indicators of the CNN model are smaller than those of the LSTM model, and the R2

evaluation index is close to 1, which shows that the CNN model has better prediction
performance. The error increase for each step of the CNN is higher than that of the LSTM
model. Therefore, the CNN model is more accurate in the short-term prediction of the
roll motion excited by the P-M spectrum, and the LSTM model has higher accuracy in the
long-term prediction.

5.3.3. Predicted Results of Roll Motion under JONSWAP Spectrum Excitation

Using CNN and LSTM neural network to predict the nonlinear roll motion excited by
the JONSWAP spectrum, the comparison results between CNN and LSTM neural networks
are shown in Figure 15.

Tables 13 and 14 give the predicted errors of CNN and LSTM under JONSWAP
spectrum excitation and the error growth of each step in the five-step prediction.

Table 13. Predicted errors for roll motion under JONSWAP spectrum excitation.

MAE (×10−2) RMSE (×10−2) MSE (×10−4) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 0.389 0.391 0.433 0.438 0.187 0.192 0.999567844 0.999558655
2 1.175 1.172 1.335 1.332 1.782 1.775 0.995884420 0.995908648
3 2.040 2.034 2.425 2.425 5.879 5.879 0.986422801 0.986448216
4 2.983 2.991 3.624 3.635 13.14 13.22 0.969665359 0.969538313
5 3.994 4.006 4.885 4.908 23.87 24.09 0.944883308 0.944474978

Table 14. Prediction error increase for roll motion under JONSWAP spectrum excitation.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 201.98 196.16 208.60 194.46 852.43 826.89
2 73.62 76.08 81.65 83.72 229.91 231.21
3 46.23 49.14 49.44 51.38 123.51 124.87
4 33.89 35.34 34.80 36.04 81.66 82.22
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From Figure 13, Tables 13 and 14, it can be seen that both models performed well under
the four evaluations. The MAE, MSE and RMSE evaluation indicators of the CNN model
are smaller than those of the LSTM model, and there is no hysteresis in the prediction curve
of the CNN model, which shows that the CNN model has better prediction performance.
However, the CNN model has poor prediction results at wave peaks and troughs, indicating
that the performance in complex conditions needs to be further improved.
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5.3.4. Predicted Results for Roll Motion under Neuman Spectrum Excitation

Using CNN and LSTM neural networks to predict the nonlinear roll motion excited by
the Neuman spectrum, the comparison results between CNN and LSTM neural network
are shown in Figure 16. Moreover, the predicted errors for CNN and LSTM under Neuman
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spectrum excitation and the error growth of each step in the five-step prediction are given
in Tables 15 and 16, respectively.
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Table 15. Predicted errors for roll motion under Neuman spectrum excitation.

MAE (×10−2) RMSE (×10−2) MSE (×10−5) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 0.155 0.156 0.175 0.181 0.308 0.326 0.999608836 0.999585055
2 0.461 0.462 0.532 0.532 2.834 2.828 0.996396982 0.996403677
3 0.810 0.814 0.971 0.977 9.430 9.545 0.988009648 0.987863093
4 1.212 1.214 1.469 1.479 21.58 21.88 0.972564665 0.972178763
5 1.632 1.643 1.992 2.012 39.67 40.48 0.949557517 0.948521252
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Table 16. Prediction error increase for roll motion under Neuman spectrum excitation.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 198.06 196.16 203.48 194.46 821.33 766.69
2 75.62 76.08 82.45 83.72 232.75 237.52
3 49.67 49.14 51.26 51.38 128.84 129.23
4 34.65 35.34 35.60 36.04 83.83 85.01

Combining the prediction results in Figure 16 and evaluation indicators shown in
Tables 15 and 16, it can be discerned that both models performed well under the four
evaluations. The MSE, MAE and RMSE evaluation indicators for the CNN model are
smaller than those for the LSTM model, which shows that the CNN model has better
prediction performance. The error increase in each step of the CNN is lower than that of
the LSTM model. Therefore, the CNN model is more accurate in the short-term prediction
of the roll motion excited by the Neuman spectrum.

5.3.5. Predicted Results of Roll Motion under ITTC Spectrum Excitation

The nonlinear roll motion excited by the ITTC spectrum was predicted by using
CNN and LSTM neural networks, and the comparison results between CNN and LSTM
neural network are shown in Figure 17. Tables 17 and 18 give the forecast errors for CNN
and LSTM under ITTC spectrum excitation and the error growth for each step in the
five-step prediction.

Table 17. Predicted errors of roll motion under ITTC spectrum excitation.

MAE (×10−2) RMSE (×10−2) MSE (×10−4) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 0.393 0.398 0.443 0.448 0.196 0.201 0.999397138 0.999381032
2 1.158 1.156 1.325 1.324 1.756 1.753 0.994592842 0.994601848
3 1.977 1.969 2.375 2.376 5.639 5.648 0.982636877 0.982609198
4 2.885 2.879 3.528 3.532 12.45 12.47 0.961670673 0.961587315
5 3.838 3.826 4.713 4.725 22.22 22.33 0.931586128 0.931242631

Table 18. Prediction error increase for roll motion under ITTC spectrum excitation.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 194.96 190.60 199.44 195.34 796.83 772.14
2 70.73 70.33 79.25 79.46 221.13 222.19
3 45.93 46.22 48.55 48.65 120.78 120.79
4 33.03 32.89 33.59 33.78 78.47 79.07

From Figure 17, Tables 17 and 18, it can be discerned that the prediction curves of the
CNN and LSTM models are close to the real curves and basically consistent with the trend
of the real curves. Both models performed well under the four evaluations. The MSE and
RMSE evaluation indicators for the CNN model are smaller than those for the LSTM model,
which shows that the CNN model has better prediction performance.
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5.3.6. Predicted Results of Roll Motion under Double-Parameter Spectrum Excitation

The nonlinear roll motion excited by the double-parameter spectrum was predicted
by, respectively, using the CNN and LSTM neural networks, and the comparison results
between CNN and LSTM neural networks are shown in Figure 18. Moreover, the predicted
errors for CNN and LSTM under double-parameter spectrum excitation and the error
growth for each step in the five-step prediction are given in Tables 19 and 20, respectively.
From Figure 18, Tables 19 and 20, it can be clearly seen that both models performed well
under the four evaluations. It can be seen from the evaluation index that the performance
of the LSTM model is better than that of the CNN model. The CNN model’s short-term
accuracy in predicting the roll motion under double-parameter spectrum excitation is lower
than that of the LSTM model, but it can still meet expectations.
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MAE (×10−2) RMSE (×10−2) MSE (×10−5) R2

CNN LSTM CNN LSTM CNN LSTM CNN LSTM

1 0.145 0.144 0.166 0.162 0.274 0.262 0.999648903 0.999664904
2 0.434 0.430 0.501 0.492 2.514 2.418 0.996784415 0.996905922
3 0.762 0.752 0.916 0.901 8.387 8.102 0.989270467 0.989631827
4 1.124 1.110 1.377 1.359 18.95 18.48 0.975760027 0.976351532
5 1.508 1.492 1.861 1.844 34.64 34.00 0.955680647 0.956495798
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Table 20. Prediction error increase for roll motion under double-parameter spectrum excitation.

MAE (%) RMSE (%) MSE (%)

CNN LSTM CNN LSTM CNN LSTM

1 199.72 198.40 202.60 203.89 816.18 823.25
2 75.65 74.77 82.65 83.06 233.61 235.07
3 47.45 47.70 50.36 50.98 125.95 128.09
4 34.16 34.41 35.15 35.69 82.80 83.98

Through the above analysis, it can be seen that CNN can achieve accurate prediction
of roll motion through learning from the simulation data under external excitation of six
irregular spectra, respectively. Moreover, the comparison results demonstrate that CNN
has the same prediction precision as that of LSTM neural network. Considering that, in
the field of ship motion prediction, irregular waves are mainly approximated by the above
six irregular wave spectra, the research results may demonstrate that CNN can be used to
predict the nonlinear roll motion in the short term at sea.

6. Conclusions

In this study, CNN is applied to predict the roll motion of ships in the short term. In
order to validate the applicability and effectiveness of CNN in the prediction of ship roll
motion, free roll decay motion in still water, roll motion in regular waves, and irregular
roll motion under excitations of six different wave spectra are predicted, respectively.
Meanwhile, the prediction results of CNN are compared with those of LSTM neural
network. The comparison results demonstrate that CNN can be applied to predict the roll
motion accurately, and it has the same prediction accuracy as that of LSTM neural network.
With reasonable training, the model can predict complex nonlinear phenomena. Moreover,
this method is not limited by the physical model and has strong prediction performance.

In the present study, only the simulated historical data of ship roll motion is consid-
ered as the learning samples set. However, the ship usually suffers from six degree of
freedom oscillating motion during navigation, and the measured historical motion data is
contaminated by different levels of noise. The efficiency and robustness of the proposed
prediction model can be improved by incorporating more useful information. In this paper,
the authors focused on the application of CNN to the analysis of ship real multi-freedom
measurement data.
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Glossary

Symbol Description
w width of the convolution kernel
h height of the convolution kernel
s convolution step
bn bias parameter of the n convolution layer
p number of fills
Ln(w) width of coordinate
Ln(h) height of coordinate
ϕ angle of roll
Ixx roll moment of inertia
Jxx additional moment of inertia

D
( .

ϕ
)

roll damping

R(ϕ) roll restoring moment
F wave excitation moment
R2i−1 (i = 1, 2, 3, 4) linear or nonlinear restoring moment coefficients
Di (i = 1, 2, 3, 4) linear or nonlinear damping coefficients
fA amplitude of wave excitation moment
ωe wave encounter frequency of ship roll motion
β phase difference
ωi frequency of each component
θi phase of each component
ω wave circular frequency
U average wind speed at a height of 19.5m
ω0 wave frequency
γ spectral peak raising coefficient
S(ω) spectral density function
g gravity acceleration
ζ2

W/3 significant wave height
T1 observation average period
X′

i normalized data
n number of data in the data set
ŷ′i output value after normalization
ŷ actual output value
X training sample set
T test sample set
t length of the time sliding window
T̂ output of the deep neural network
p predicted value
l label of the data set
yl average value of the label
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