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Abstract: This work represents a modification of the Context Conditional Generative Adversarial
Network as a novel implementation of a non-linear gap reconstruction approach of missing satellite-
derived chlorophyll a concentration data. By adjusting the loss functions of the network to focus on
the structural credibility of the reconstruction, high numerical and structural reconstruction accuracies
have been achieved in comparison to the original network architecture. The network also draws
information from proxy data, sea surface temperature, and bathymetry, in this case, to improve the
reconstruction quality. The implementation of this novel concept has been tested on the Adriatic Sea.
The most accurate model reports an average error of 0.06 mg m−3 and a relative error of 3.87%. A
non-deterministic method for the gap-free training dataset creation is also devised, further expanding
the possibility of combining other various oceanographic data to possibly improve the reconstruction
efforts. This method, the first of its kind, has satisfied the accuracy requirements set by scientific
communities and standards, thus proving its validity in the initial stages of conceptual utilisation.

Keywords: GAN; generative adversarial network; reconstruction; satellite chlorophyll a

1. Introduction

Satellite oceanography is a key tool in oceanographic measurements, but its usefulness
is hindered by frequent gaps in data [1]. Solving the issue of missing data has been the aim
of many solutions throughout the past two decades. During this time, a number of different
reconstruction methods and approaches have been designed and implemented. The earliest
attempts at gap-filling included data merging from multiple sensors [2], kriging [3], and
basic regression techniques [4]. One of the most popular methods is the so-called Data In-
terpolating Empirical Orthogonal Functions (DINEOF) [5]—a linear reconstruction method
based on empirical orthogonal functions. Lately, reconstruction techniques in oceanograph-
ical remote sensing have been turning toward the utilisation of various machine learning
techniques. These techniques range from support vector machines [6], random forests [7] to
various neural networks [8–10]. These techniques have seen an ever-increasing popularity,
with an emphasis on neural-network-based approaches, which have seen an extreme surge
in implementation, practicality and popularity in the past several years [11].

One special architecture of the neural networks, called the Generative Adversarial Net-
work (GAN) represents the next leap in the neural-network reconstruction approach [12].
Unlike other neural networks, GANs represent a unity of two separate networks, a gener-
ator and a discriminator, “pitted against” each other. While the generator is tasked with
generating new data, the discriminator is tasked with discerning whether or not the data
presented to it originate from a real source or from the generator. This way, based on
the feedback information, both networks become more proficient in their respective tasks,
resulting in the generation of realistic data [12]. GANs have been successfully utilised
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within the domain of satellite oceanography for reconstruction purposes [13–16], but
their application has been limited to sea surface temperature (SST) only [11]. Outside of
strictly reconstruction-oriented purposes, GANs have seen a vast range of utilisation in
oceanography [17–20].

This paper aims to showcase the concept and validity of reconstructing oceanographic
data using a variation of Generative Adversarial Network, so-called Context Conditional
Generative Adversarial Network (CCGAN) [21]. While the generator of typical GAN usu-
ally transforms a random input to generate new data, CCGAN inputs corrupt data and only
generates the missing part based on the available data, or the context, hence the name [21].
The original development of Context Conditional Generative Adversarial Network focused
on natural image reconstruction only and proved quite successful [21]. However, this
particular architecture has not yet been used in the reconstruction of oceanographic data.
This work utilises an adjusted version of CCGAN for missing chlorophyll a data (chla)
reconstruction. The paper also examines the effects of utilising proxy data—correlated data
originating from an external source (e.g., different sensor)—on the reconstruction accu-
racy. In this case, chlorophyll a data are augmented by sea surface temperature data and
bathymetry data, both of which are correlated to chlorophyll a [22,23]. Rather than deriving
the complex numerical correlation between the three to obtain the absolute chlorophyll a
concentration, sea surface temperature has been included to better derive water masses
that ultimately dictate the fronts and shape of surface chlorophyll a concentration, while
bathymetry serves as an indicator of distance from the shore in the Adriatic [24], helping to
discern high chlorophyll a coastal areas from oligotrophic open waters.

To gauge the validity of this reconstruction method, the International Organization
for Standardization (ISO) standard for in situ measurements [25] and Essential Climate
Variable (ECV) product requirements [26] will be taken into account.

2. Data and Methods

Rather than selecting open ocean regions, which are generally homogeneous regarding
surface chla, the Adriatic was chosen as the area of interest due to a considerable amount
of literature documenting oceanographic processes, different water masses, complex bathy-
metric and coastal structure, effects of fluvial and atmospheric influence, and so on [24].
Wet points, meaning points representing the sea in the area encapsulated by 40–46◦ N and
12–20◦ E, were considered but the Tyrrhenian Sea was discarded. The area of study is
depicted in Figure 1.

2.1. Data Sources

Ocean Colour-Climate Change Initiative (OC-CCI) Version 5.0 Data suite [27] was
created by band-shifting and bias-correcting the data from Sea-viewing Wide Field-of-
view Sensor, Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging
Radiometer Suite, and Ocean and Land Colour Instrument data to match the Medium
Resolution Imaging Spectrometer data [27]. The chlorophyll a concentration was derived
using an array of algorithms [28] based on the target water class membership [29]. With a
spatial resolution of 1 km, this resulted in matrix dimensions of 576 × 768. Time frame
spanned from 1 January 2003 to 31 December 2020, a total of 6575 days. All data are publicly
available and accessible at www.oceancolour.org accessed on 1 August 2023.

To determine whether a machine learning model for reconstructing missing chla could
be improved, additional variables have been included. These variables are commonly re-
ferred to as proxy variables since they are used as an instrument for chlorophyll reconstruc-
tion. In this study, two additional proxy variables were considered: SST and bathymetry.
Daily satellite SST was retrieved from Group for High Resolution Sea Surface Temperature
Level 4 dataset (available at: www.podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
accessed on 1 August 2023) [30]. As the SST data resolution was higher than the chla reso-
lution, it was scaled down to match the 576 × 768 grid. SST data were time-matched with
chla. Bathymetrical data are time-independent, therefore only one instance was obtained
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from the General Bathymetric Chart of the Oceans (available at www.gebco.net accessed on
1 August 2023) [31]. Bathymetry resolution was scaled identically as SST, and the data were
subjected to cutoffs at −1000 and 400 m. The cutoff at 400 m was imposed to differentiate
between low-lying coastal areas and mountainous coastal areas as coastal regions above the
cutoff should not have a significantly different effect on the chla regardless of the altitude,
if such effects should even take place. Similarly, the seafloor at the maximum depth of
the Adriatic at 1233 m would probably not affect the chla significantly differently than a
seafloor at 1000 m depth.

Figure 1. The Adriatic Sea. The position on the globe is enclosed by the red rectangle on the minimap.

2.2. Dataset Integration

The bane of any machine learning algorithm is the sheer amount of representative data
required for training [32]. This becomes an even bigger issue when the original data have
gaps, which is certainly the case for satellite-derived chla. Since there is no go-to method
for creating a gap-free and representative dataset, a heuristic approach was developed. As
the input of the neural network is three 64× 64 data matrices, the dataset creation process
implies sampling 64× 64 subsets from the original 576× 768 locations area from day to day
while being subject to certain rules. The details and outcomes of the dataset creation method
have been explored in the Appendices A and B. The three matrices that go into the neural
network contain chla, SST and bathymetrical data, respectively. The matrices are stacked
vertically so that the final shape of the input is 3× 64× 64. Because SST and bathymetrical
data are gap-free, the sampling is therefore solely determined by the chla data.

www.gebco.net
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2.3. Context Conditional Generative Adversarial Network

CCGAN is a variation of the established GAN architecture. The GAN architecture
is based on pitting two separate networks against each other: the generator network and
the discriminator network [12]. Simplified, the purpose of the generator is to generate
a distribution pg over the data x so that it matches the original data distribution px as
closely as possible. The output of the generator for some input data z from distribution pz
is defined as G(z). On the other hand, the discriminator discriminates whether or not its
input originated from px or pg, by outputting a probability value D(G(z)). The aim of the
discriminator is to be as accurate as possible when discriminating between the real and fake
input. GAN functions by simultaneously training both the generator and discriminator in
a min-max game with a value function V(G, D), also known as loss function, given as [12]:

min
G

max
D

V(D, G) = Ex∼px [log D(x)] +Ez∼pz [log(1− D(G(z)))]. (1)

While some implementations and variations of GAN take random noise z as in-
put [12,33], CCGAN takes masked/corrupted/missing data as input and fills in the missing
parts based on the available context data around the missing parts [21]. This way, rather
than transforming some random noise input z, CCGAN exploits available data to optimise
the generation of missing data. Formally, let m be a binary mask that will obscure some
parts of the data. Then, the generator receives m � x, where � denotes element-wise
multiplication. The loss function from Equation (1) then becomes [21]:

min
G

max
D

V(D, G) = Ex∼px [log D(x)] +Ex∼px ,m[log(1− D(G(m� x)))], (2)

With this formulation, the output of the generator becomes xG = G(m� x). However, this
is not the final reconstruction result, as the generator is not focused on reconstructing data
not obscured by the binary mask [21]. Fully reconstructed, or better yet, the inpainted
matrix xI is obtained via [21]:

xI = (1−m)� xG + m� x. (3)

Additionally, CCGAN has an optional input of the complete/uncorrupted/unmasked
matrix of a lower resolution xR which improves the reconstruction accuracy [21]. Low-
resolution input has been obtained through bilinear interpolation to 16× 16 points. Given
the original size of the matrix was 64× 64 points, the low-resolution matrix contained just
6.25% of the original information. Finally, with this additional input, the loss function 2 became:

min
G

max
D

V(D, G) = Ex∼px [log D(x)]

+Ex∼px ,xR∼px ,m[log(1− D(G(m� x, xR)))],
(4)

The architecture of the network remained mostly the same [21], except that the out-
putting layer of the generator was changed from a hyperbolic tangent function to a sig-
moid function, for reasons explained in the following paragraphs. Generator [33] consists
of six downscaling and six upscaling layers, based on 2D convolution and transposed-
convolution operators, respectively. Both operators consisted of kernel size 4× 4, a stride
of 2× 2, and a padding of 1. Discriminator was based on the VGG-A network [34] without
the fully connected layers [21]. Adam optimiser [35] was utilised. Learning rate was set at
0.0002, momentum term was set at 0.5. The remainder of the hyperparameters were left
unchanged [21,35].

Each model was trained for 50 epochs, and each training dataset was split into batches
of 20 data matrices. The number of epochs and batch size were purposefully set identically
for each set to minimise the algorithm effect and maximise the dataset variability effect
on the reconstruction accuracy. During the training process, at every 50 batch passes, the
generator and discriminator loss values were recorded for later analysis. For the sake of
convenience and to showcase the robustness of the CCGAN, a square mask will be applied
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to the middle of the training data matrix, so that a large and important portion of the data
is obstructed. With the dimensions of the data matrix being 64× 64 and the dimensions of
the mask being 32× 32, 25% of the data are covered, as depicted in Figure 2.

(a) (b)

Figure 2. Visualisation of the masking process of chla data (a) representing the full data; and
(b) representing the manually masked data.

For this research, the PyTorch implementation of CCGAN was used [36,37]. The imple-
mentation emulates semi-supervised learning based on arbitrary labels used for defining
real data and fake data. Labels are defined as appropriately shaped tensors T and F
filled with ones and zeros, representing real and fake data, respectively. For practicality,
the original loss function given by Equation (4) was split into generator loss:

LG = ‖D(G(m� x, xR)), T‖2
2 (5)

and discriminator loss, given as:

LD = 0.5 ·
[
‖D(x), T‖2

2 + ‖D(G(m� x, xR)), F‖2
2

]
, (6)

where ‖ ‖2 represents the mean squared error (squared L2 norm, MSE) between each
element. While this implementation [36], denoted as the MSE1-based model when used
on CelebA Dataset [38], provided satisfactory results, if the loss functions defined in
this way were to be used on chla data, the discriminator would significantly outperform
the generator during training, leading to poor reconstruction accuracy, as represented in
Figure 3. To mitigate this problem, updated loss functions were proposed:

LG = ‖G(m� x1, xR)� (1−mLC), x1 � (1−m)‖ (7)

and
LD = 0.5 · [‖D((1−m)� x1), T‖2

2

+ ‖D(G(m� x1, xR)� (1−mLC)), F‖2
2].

(8)

These loss functions are a part of the MSE2-based model. Two changes are to be noticed
here. Firstly, x1 denotes the chla data, the only data that are taken into account for training
evaluation, as only chla is targeted for reconstruction. Secondly, as the positions of land
points, as defined by the dynamic land–sea mask, are always known for each data matrix,
there is no need to gauge reconstruction accuracy on points that are known to be land
points. Therefore, the land points from the real data were superimposed onto the respective
generated data before being subjected to evaluation. This way, the training process will
be streamlined and further optimised as only actual sea points will be subjected to testing.
This change is implemented via the mLC mask. However, even this update to the loss
functions resulted in poor reconstruction accuracy, mainly because, in this instance, the
generator outperformed the discriminator, as depicted in Figure 3. A possible cause of



J. Mar. Sci. Eng. 2023, 11, 1814 6 of 19

such poor results might lie in the MSE itself. While the MSE might keep numerical values
in check, it cares little for the actual structural distribution of the data, as exemplified in
Figure 4. Therefore, another model was proposed, whose generator loss function has been
swapped for:

LG = 1− ψ[G(m� x1, xR)� (1−mLC), x1 � (1−m)] (9)

The ‖ ‖2 function has been replaced with Structural Similarity Index function (ψ) [39,40].
ψ is defined where a and b are square matrices, µa and µb are mean values of a and b,
σ2

a and σ2
b are variances of a and b, σab is the covariance of a and b, c1 = (0.01L)2 and

c2 = (0.03L)2 are variables based on the dynamic range L of data-values [39]. ψ outputs
a value in the range [−1, 1], with 1 indicating a perfect copy, while −1 denotes maximal
dissimilarity. Since ψ measures the similarity rather than difference, the loss value in
Equation (9) is defined as 1− ψ. As ψ is undefined for negative values which can occur as
an output of the final layer of the generator which contains a hyperbolic tangent function,
the function was replaced with sigmoid function, ensuring all outputs are positive. ψ was
implemented using piqa package [41]. The motivation behind including ψ is similar to the
inclusion of SST: while numerical accuracy in reconstruction is important, the shape of the
reconstructed features is no less important. These changes resulted in a stabler training
process, as depicted in Figure 3, resulting in better reconstruction accuracy. This model was
denoted as the Structural Similarity Index Measure (SSIM)-based model.

2.4. Error Metrics

To quantise the reconstruction accuracy, three error metrics were implemented. The
definitive accuracy of reconstruction was measured only on the masked part. The value of
MSE was calculated as:

MSE = ‖G(m� x1, xR)� (1−mLC), x1 � (1−m)‖2
2. (10)

Secondly, SSIM was given by:

SSIM = ψ(G(m� x1, xR)� (1−mLC), x1 � (1−m)). (11)

The final error metric was a relative error (RE) as defined by:

RE =
1
M

M

∑
i=1

|(G(m� x1, xR)� (1−mLC))i − (x1 � (1−m))i|
(x1 � (1−m))i

× 100% (12)

This metric was added in order to put a more quantifiable and tacit measure of error.
By dividing with the data values, RE can encounter division by zero if the land data
happen to be subjected to evaluation. To avoid this, RE was calculated using only sea
data denoted by i. The total number of sea points per data matrix is M. While generally
higher, SSIM also means a lower MSE and RE, measures which are not equivalent and may
produce significantly different reconstruction results. While MSE and RE are relatively
easily physically interpretable, SSIM does not share that feature. Therefore, it is natural to
question the motivation behind the use of SSIM. However, it is easy to imagine a case where
MSE and RE fail. As a showcase where only relying on numerical values could significantly
hinder the structural realism of reconstruction, Figure 4 is presented. As can be noticed,
structurally significantly different matrices are virtually equidistant from the original matrix
in terms of MSE and RE, while this is not the case with the SSIM. If solely relying on MSE
(or RE), it would be difficult to determine which matrix is a better representation of the
original. Thus, when aiming at matrix reconstruction optimisation, SSIM better captures
the structure of the data than either MSE or RE.
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Figure 3. Iteration-dependent of the behaviours of generator and discriminator loss values based
on two different loss metrics. The top graph displays the mean-squared-error-based (MSE) model.
The middle graph depicts the behaviour of the MSE model that takes into account the distribution of
land points. Bottom graph displays the Structural-Similarity-Index-Measure-based (SSIM) model.

2.5. Growing Neural Gas

To provide the most common examples of reconstruction, the Growing Neural Gas
(GNG) [42] was implemented to extract the characteristic patterns from the testing dataset.
Input into the algorithm consisted of the 3× 64× 64 data matrix formatted into a data
vector containing 12,288 features. Rather than implementing GNG once on the test dataset
(containing over 50,000 of the aforementioned data vectors, see Appendices B and C) and
obtaining a presentable number of patterns (e.g., around 10), GNG was implemented twice
to avoid the oversmoothing of the data. First, the implementation reduced the dataset to
100 patterns. These 100 patterns were further fed into GNG in order to obtain the eight
patterns used for the visualisation of reconstruction examples. Using these eight final
patterns, also known as best matching units (BMUs), the closest possible dataset examples
were determined using the least vector norm. The GNG algorithm itself was implemented
in Python’s library NeuPy using fixed parameters: step = 0.1, neighbour step = 0.001,
maximum edge age = 50, number of iterations before adding a neuron = 100, aftersplit
error decay rate = 0.5, error decay rate = 0.995, and minimum update distance = 0.2. Each
run lasted 300 epochs.
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MSE = 0.06125
RE=297.93%

SSIM =0.2838 

MSE = 0.06125
RE=296.28%

SSIM =0.7203 

Figure 4. Example of MSE ambiguity. The leftmost image was created by the cross multiplication of a
sinusoidal vector and its transpose. The middle image was filled with the mean value of the leftmost
image. The rightmost image was obtained by the linear transformation of the leftmost image.

3. Results and Discussion
3.1. Verification of SSIM-Based Model

In order to justify changes to the architecture described in Section 2.3, a brief compari-
son between MSE-based and SSIM-based CCGAN models was made. Before calculating
the metrics, data were rescaled to reflect the physical chla values in mg m−3. Results are
displayed in Table 1. Not surprisingly, due to the training behaviour depicted in Figure 3,
MSE-based models (depicted in the top and middle graphs) failed to optimise properly,
and, even though the latter performed slightly better, both resulted in poor reconstruction
accuracy. The SSIM-based model significantly outperformed both MSE-based models.
Interestingly enough, even though the SSIM-based model is trained solely on the Structural
Similarity Index function, MSE and RE metrics also show improvements. Figure 4 displays
how the MSE-based models failed to optimise properly, causing significant noise in the
training process.

Table 1. Comparison of the three reconstruction accuracy metrics for the three models with different
loss functions. MSE1 represents the base model whose loss function is determined solely by the mean
squared error value; MSE2 is the updated mean squared error model whose loss function takes into
account the distribution of land points; and SSIM is the model whose loss function has exchanged the
mean squared error metric for Structural Similarity Index Measure. µ represents the mean, and σ

represents the standard deviation.

µSSIM σSSIM µMSE σMSE µRE (%) σRE (%)
MSE1-based model 0.09 0.14 29.61 8.26 2570 1445

MSE2-based model 0.12 0.15 29.56 7.66 2553 1408

SSIM-based model 0.95 0.04 0.01 0.02 3 2

3.2. Testing the SSIM-Based Model

Reconstruction accuracy was examined in both time and geographical space. Figure 5
displays the mean spatial distribution of the error metrics: SSIM, MSE, and RE, respectively.
Since both SSIM and MSE output a single value for every 16× 16 point area, the single
value was used to quantise the entire respective area. The RE returns the appropriate
amount of values—hence the higher resolution. From Figure 5, it is apparent that the
highest reconstruction accuracy is achieved at the open sea areas. The accuracy diminishes
as the distance from the coast decreases—the gradient is higher towards the west coast than
the east coast. The lowest accuracy is contained in the north-west area of the Adriatic by the
mouth of the Po River. Figure 6 examines the metrics as a function of time. Intra-annually,
RE fluctuates slightly, achieving its minimum during late spring. SSIM and MSE seem
to share similar behaviour—higher accuracy is achieved during summer and the lowest
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accuracy occurs during late autumn. Interannually, SSIM, MSE, and RE are generally
stable—with the caveat of a sudden drop in accuracy during 2013 and 2014.

These errors prompted a secondary investigation in order to determine the underlying
cause of the diminished reconstruction accuracies in 2013 and 2014. This included an
examination of the mean values of chla contained in the sets used for training and testing the
model. The mean value and standard deviation of chla of both sets is 0.40± 0.72 mg m−3.
Instances where the MSE of reconstruction was greater than 0.40 mg2 m−6 numbered
151 samples in total. The mean value and standard deviation of chla of the aforementioned
samples was 4.88± 1.76 mg m−3. Furthermore—these samples were all localised at the
mouth of River Po. The examination of chla throughout the years indicated a sudden
increase in the aforementioned area in the years 2013 and 2014—coinciding with the drop
in accuracy in Figure 6.

S
S
IM

(a) Structural Similarity Index Measure

lo
g

1
0
[m

g
2
 m

-6
]

(b) Logarithm of mean squared error

R
E
[%

]

(c) Relative error

12°E 14°E 16°E 18°E 20°E
40°N

42°N

44°N

46°N

(d) Sampling spatial distribution

Figure 5. Geospatial distribution of the three error metrics—Structural Similarity Index Measure
(SSIM) in (a), mean squared error (MSE) in (b), relative error (RE) in (c). (d) displays the spatial
distribution of test data sampling.

The eight most representative vectors from the dataset were selected based on the least
vector norm given the eight patterns determined by the GNG from Section 2.5 (Figure 7). These
vectors were masked according to the procedure and fed into the SSIM-based CCGAN to
reconstruct the missing parts of the data. The visualisation of the results is displayed in Figure 7.
CCGAN successfully managed to reconstruct all the closest possible data to characteristic pat-
terns. Generally, the patterns describe certain distributions of chla, temperature and bathymetry.
Pattern E represents a homogeneous distribution of low chla, typical for the southern parts
of the Adriatic. High chla attributed to the Po river is displayed in pattern D. Eddy-like
distributions can be seen in patterns A and G, the former represents a positive and the latter a
negative eddy. All patterns are subject to some smoothing effects—but features (eddies, local
minimums and maximums, small-scale features) still prevail. The temperature in the Adriatic
Sea oscillates between the summer maximum—303 K—and the winter minimum—285 K. This
range has not been encapsulated by the characteristic patterns—all of the patterns oscillate
around the median value. The chla patterns that triggered the BMUs occurred during both
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summer and winter months, which resulted in the averaging of the temperature. Temperature
has no clear influence on the reconstruction accuracy. Bathymetry, on the other hand, has been
shown to be associated with chla, which is to be expected as bathymetry is connected with
physical processes that influence chla—river discharge, upwelling, coastal processes, etc.

Figure 6. Intra-annual and interannual distributions of Structural Similarity Index Measure (SSIM,
blue), mean squared error (MSE, red), and relative error (RE, green). Top part displays the monthly
dependency, while the bottom displays the yearly. Boxplots display the minimum, maximum, mean,
lower, and upper quartile of each metric.

Another examination evaluated the effects of including various combinations of proxy
variables. To date, each data matrix contained chla, SST and bathymetry data. Three addi-
tional models were trained. Considering how chla is crucial for reconstruction, chla was kept
in all models, while SST and/or bathymetry were excluded. Based on the possible combi-
nations, training and testing dataset matrices were modified, by removing the appropriate
data, and models were trained on the newly obtained sets. Reconstruction accuracies were
compared to the model that used all three types of data. Naturally, each model was tested
using only the appropriate matrices. Based on the results, the chla and SST and bathymetry
model performed the best. Removing either the SST or the bathymetry data decreases the
reconstruction accuracy. It would seem that removing SST affects the SSIM and RE accuracy
more than the removal of bathymetry, but the mean MSE benefits from retaining SST in favour
of bathymetry. Removing both the SST and bathymetry improves the SSIM and RE accuracy
compared to the chla and SST and the chla and bathymetry models, but degrades the mean
MSE score when compared to chla and SST model. Therefore, it could be concluded that SST
and bathymetry provide complementary data which improve the reconstruction accuracy,
but the inclusion of just one or the other has negative effects on the reconstruction, at least
when considering the sale of the entire Adriatic.
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Figure 7. Reconstruction of the masked parts of data matrices as selected by the least vector norm
based on the characteristic patterns (A1–A5,B1–B5,C1–C5,D1–D5,E1–E5,F1–F5,G1–G5, and H1–H5)
derived by double Growing Neural Gas. Columns 1 and 2 display the proxy variables—sea surface
temperature (SST) and bathymetrical data, in that respective order. Column 3 is the masked part of
the real data chlorophyll a concentration data presented to the CCGAN algorithm, column 4 displays
the CCGAN’s reconstructed output and column 5 contains the respective difference between the
target and reconstructed data.
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4. Conclusions

This paper described a method using deep neural network for chlorophyll a concen-
tration data reconstruction. The method uses Context Conditional Generative Adversarial
Network architecture which was trained on satellite-obtained data. As the most important
change in the canonical CCGAN implementation, the modification of the optimisation
function was pointed out, along with the introduction of the Structural Similarity Index
Measure as a measure of (dis-)similarity between data matrices. Such a modification
improved the convergence properties and provided better overall reconstruction results.
The final results of the average error of 0.06 mg m−3 and relative error of 3.87% demon-
strate outstanding performance. This is especially visible when compared to the required
measurement uncertainty of essential climate variables of 30% [26]. When compared to
the ISO standard [25] for laboratory measurements of chlorophyll, one can notice that the
results are quite competitive, since the standard declares the coefficient of variation to
be 4.3%.

CCGAN successfully managed to reconstruct small-scale features (a few kilometres
in size) in the distribution of the chlorophyll a concentration. Despite the smoothing
effects, the physical credibility of the reconstruction is preserved. Differences between the
target data and the reconstruction output are randomised—there is no clear bias towards
overestimation or underestimation. A slight seasonal error is present—the error is mostly
related to the seasonal distribution of chlorophyll a in the Adriatic. This issue could
potentially be rectified by introducing additional proxy variables, for example, nutrients.
CCGAN’s accuracy remained stable throughout the years—with the exception of the years
2013 and 2014, when it failed to model the unusual patterns at the mouth of river Po. The
highest relative errors are localised in the coastal areas—apart from the error by the Italian
coast caused by the discharge of River Po, the largest errors are localised by the Albanian
coast. Probable causes of this error is the exchange between the Adriatic and the Ionian
Sea as dictated by the BIOS oscillating system [43] and increased coastal environmental
pollution. Reconstructions in coastal areas are generally difficult due to increase, with
highly localised variation dictated by anthropogenic influence (sewage discharge, industrial
waste, shellfish farms), river discharge, local air–sea interaction, etc.

Apart from the description of the reconstruction method, the description of the method
for combining various data into layers and the representative dataset creation was provided.
It was shown that the parameters used for dataset creation generally somewhat influence
the results of the reconstruction at the cost of the computation time and memory storage. It
is known that the chlorophyll a concentration and sea surface temperature are not highly
correlated [43]. Likewise, it is known that the chlorophyll a concentration is correlated
to river discharges (i.e., Po river [44]). Furthermore, chlorophyll a concentration is not
directly related to bathymetry, but is related to processes that are related to bathymetry (i.e.,
upwelling). By selecting non-highly correlated proxy variables, it was shown that CCGAN
was able to utilise the non-linear correlation to improve the reconstruction accuracy. The
inclusion of temperature aimed to describe the quasi-annual variability of the chlorophyll a
concentration, while bathymetry was included to emphasise the physical processes that
affect the concentration.

As a closing remark, while this paper showcased the feasibility of using GAN-based
methods for missing chla reconstruction with relatively high reconstruction accuracies,
a lot of room for improvement and further testing has been left, such as minimising the
noise during training or varying the training parameters [45], inclusion of additional
proxy variables, splitting models based on temporal and/or geographical differences,
different methods for obtaining the low resolution, and so on. Regardless, based on the
practical accuracy requirements of 5–11% [25] to 30% [26] when compared to the relative
error obtained by this method as described in the previous chapter, the claim that solid
reconstruction accuracy can be achieved by using CCGAN holds.
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The following abbreviations are used in this manuscript:

ECV Essential Climate Variables
GAN Generative Adversarial Network
CCGAN Context Conditional Generative Adversarial Network
ISO International Organization for Standardization
OC-CCI Ocean Colour Climate Change Initiative
SST Sea Surface Temperature
chla Chlorophyll a Concentration
MSE Mean Squared Error
SSIM Structural Similarity Index Measure
RE Relative Error
WR Window Resampling
RA Resample Allowed
LA Land Allowed
BMU Best Matching Unit

Appendix A. Dataset Sampling

The ground requirement to train and evaluate the model was to keep the dataset com-
pletely gap-free. Therefore, 64× 64 areas that contain any missing data due to obnubilation
(from clouds, rain, sunglint) or due to quality control were not subject to sampling. Based
on the entire time span, generally, open seas data points are mostly available. However,
points in a thin zone (less than 5 km) along the coastline are available around 50% of the
time, and in some areas, even less than 20%. The east part of the Adriatic, because of the
Adriatic archipelago, is more affected by the optical complexity of the coastal waters than
the west part. This is due to the increased optical complexity of coastal waters [46,47],
which significantly hinders the retrieval of chla [48,49]. If a fixed, predefined geographical
land–sea mask is used, it would result in overwhelmingly numerous samples of the open
sea and few, if any, samples of coastal areas. To avoid this, a much looser definition of
land–sea mask was used. Opted for was a dynamic land–sea mask, depending on the avail-
ability of the data in the coastal area. Figure A1 depicts this, where Figure A1a shows the
geographical land–sea mask, Figure A1b shows the dilated land–sea mask, where dilation

www.oceancolour.org
www.podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
www.gebco.net
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was performed based on the availability of the data, and Figure A1c shows the difference
between the two. Rather than obtaining the dilated version of the land–sea mask by using
morphological transformations, it was obtained by defining areas which contain data less
than 40% of time as land, while the rest was defined as sea. Obviously, this degraded
the geographical accuracy on a global scale; however, the 64× 64 areas only contain local
information, therefore by doing this preservation of the most important information the
distribution of data and land and sea areas was achieved.

(a) (b) (c)
Figure A1. Dilated land–sea mask: (a) geographical land–sea mask; (b) the dilated land–sea mask; and
(c) the difference. Land points are purple, sea points are yellow. White represents the geographically
accurate sea points that were classified as land points using the dilated land–sea mask.

Unlike gaps in data in open seas, which are mostly caused by cloud coverage, gaps
in the coastal zone are usually caused by chla deriving the algorithm’s inability to deal
with optically complex waters [48,49]. This issue surfacing from the algorithm itself could
easily be circumvented by just applying the dilated land–sea mask. However, on some
occasions, chla was obtained in the white areas in Figure A1c. In order not to discard the
data when present during the sampling, the algorithm took into consideration points in the
white areas if they were available, otherwise, it considered it to be land rather than missing
data. This is the reasoning behind the “dynamic” adjective in the dynamic land–sea mask.

After applying the dynamic land–sea mask, which allowed for near-shore sampling,
the goal was to create a dataset that would be as continuous as possible, while being as
spatially and temporally representative as possible. In order to do so, several heuristic
rules were put in place. With the dynamic land–sea mask being used, sampling could
now result in numerous samples containing an unnecessarily large percentage of land
points as opposed to sea points. This would increase significantly the size of the dataset,
but would either have no positive or a negative effect on the spatial representativeness
of the set. Simplified, the algorithm for sampling needed to be barred from extracting
64 × 64 samples (containing 4096 points in total) that contain too few sea points (e.g.,
one sea point and 4095 land points). To do so, a Land Allowed (LA) parameter rule was
enforced, which verified that each candidate sample contains a percentage of land points
no greater than the one given by the parameter. Furthermore, chla exhibits a certain degree
of seasonality in the Adriatic. This seasonality is in tune with the climatology of the
Adriatic: spring and summer skies are generally cloud-free, while autumn and winter
months display significantly larger and more frequent cloud cover. This in turn results in
more missing points during the autumn–winter period than in the spring–summer period.
If this difference is not regulated, the created dataset could contain unproportionally more
spring–summer samples, skewing the temporal distribution, which may result in autumn–
winter examples being reconstructed with the incorrect seasonality. Therefore, the second
rule limits the number of times an area could be sampled in a day, based on the average
number of times points in the area have been sampled for that date. The parameter of this
rule is named resample allowed (RA). This parameter is tied to the counter parameter, which,
as the name suggests, counts the number of times a point has been sampled. This counter
is updated after each successful sampling by a value called resample-increment, denoted
by N. Surface chla distribution is a complex system. While the 64× 64 sample should
encapsulate most oceanographic features (such as fronts, eddies, etc.), the surrounding
area still has an influence on such features. Having a clear-cut separation between two
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neighbouring samples would most likely result in unnatural boundary artefacts [50,51]
when attempting to reconstruct the missing data. To reduce this error, a continuous dataset
is required. To achieve this, overlapping in sampling is allowed, but is governed by the
third rule which dictates how many points around the centre of the sampled area will be
tagged as already sampled after each 64× 64 sample. The width and height of this square
window are defined by the Window Resampling (WR) parameter. Points within this WR
window obtain their sampling counter updated by value N after each sampling. A toy
example of an algorithm on a downsampled matrix is displayed in Figure A2.
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Figure A2. Depiction of how the algorithm used for data sampling updates the counter variable to
assure the representativeness of the set. Green pixels represent land, whilst blue pixels represent sea.
The black number denotes sampling the counter variable for each pixel. For details, see text.

Figure A2 depicts a toy example for a downsampled matrix. In this example, the
output matrix is reduced from 64× 64 points to just 4× 4 points and is shown as a pink
rectangle. The yellow rectangle is defined by the parameter WR, in this case, WR = 1. Each
point has an auxiliary integer variable counter. Based on the dynamic land–sea mask, the
counter of land points is assigned the value−1, while sea points are assigned 0. The random
pair of latitude and longitude (lat, lon) is selected. After verifying that there are no missing
points, the LA condition is satisfied by determining the percentage of green points inside
the pink window and the RA condition is satisfied by comparing the value of RA to the
mean value of the counter within the yellow square, in that specific order—the part of the
matrix within the pink rectangle is sampled and added to the dataset. After sampling, only
the points within the yellow square, whose dimensions are defined by the WR parameter,
receive a counter update, by adding N = 1 to their value (updated counter values are shown
as red numbers). In the next step, a new (lat, lon) pair is selected (in this example, shifted
by one point to south) and the process is repeated. While the algorithm tries to find every
possible (lat, lon) pair, notice that it is generally a non-deterministic algorithm, as the
resulting dataset depends on the order in which the (lat, lon) pairs are selected.

Appendix B. Sanity Tests

Dataset creation itself is a tedious and computationally intensive process that might
introduce significant biases into the machine learning model. In order to avoid any of
these, the statistical properties of the dataset, as well as the effects that parameters used for
dataset creation may have on the model output were investigated. As explained earlier,
the properties of the dataset are governed by the parameters WR, RA, and LA. Effects each
parameter has on the dataset have been tested by varying its value of it, while keeping
the values of the other two parameters constant. Starting with the dataset created with
WR = 16, RA = 2.5, and LA = 0.50, six additional datasets were created, by varying WR
from 8 to 32, RA from 1.5 to 3.5, and finally by changing LA from 0.25 to 0.75. To select
the best possible combination of the parameters, seven separate neural networks were
trained on their respective datasets and their reconstruction accuracies were compared.
While this approach might reveal which dataset gives the most accurate training, it does
not quite verify the representativeness of the dataset compared to the initially available
data. Therefore, three sanity tests were performed on the WR = 16, RA = 2.5, LA = 0.50
dataset in order to approximate and validate the spatial and temporal distribution along
with the numerical representativeness. Numerical representation was also tested for the
six remaining datasets. The results of the numerical representativeness are displayed in
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Table A1 and the results of spatial and temporal tests of the WR = 16, RA = 2.5, LA = 0.50
dataset are displayed in Figure 5. All datasets performed similarly, with the general trend
that bigger datasets capture the numerical distribution more closely.

Table A1. Numerical representativeness of the datasets with regard to the mean chla. While it may
seem that the original .nc files contain a significantly higher mean chla value, it is important to realise
that natural obnubilation does not follow the rectangular shape of the matrices, so some deviation is
to be expected.

WR RA LA µchla(mg m−3) σchla(mg m−3) Number of Training Matrices

8 2.5 0.50 0.4254 0.7603 2,561,580

16 1.5 0.50 0.4147 0.7404 418,260

16 2.5 0.25 0.4085 0.7168 579,360

16 2.5 0.50 0.4189 0.7485 669,560

16 2.5 0.75 0.4306 0.7706 789,760

16 3.5 0.50 0.4215 0.7538 920,480

32 2.5 0.50 0.4048 0.7214 252,100

.nc files 0.4831 1.005

Once datasets were extracted, all data were normalised to the range [0, 1] to improve
the training stability. The normalisation was performed on all three channels. Bathymetry
was normalised in accordance with the cutoff values that were assigned previously. chla
and SST were examined for the highest available values. The lowest value of both variables
is zero, as defined by the value assigned to the land points. SST’s highest recorded value
was 303.57 K. chla normalisation required more work. Namely, due to landlocked bodies
of water, such as Valli di Comacchio, the maximum chla was around 99 mg m−3. This
value is too high for the purpose of reconstructing sea chla, so a cutoff needed to be made.
Examining the maximum values of chla per matrix, it was determined that less than 0.5%
of matrices had a maximum value of chla greater than 20 mg m−3, and around 3% had a
maximum value of chla greater than 10 mg m−3. The cause of such unusually high chla is
the discharge of Po river [52]. Since this paper is dealing with the reconstruction of chla
on the entire Adriatic, allowing such high values into the dataset could potentially skew
the data distribution in an unfavourable way, which could diminish the reconstruction
accuracy. Therefore, a normalisation cutoff was set at 12 mg m−3, so that the dataset would
not be affected by unreasonably high chla. Reconstruction efforts were tested on previously
unseen matrices from the test set. The train–test split was performed in an 80:20 ratio [53].

Appendix C. Training and Testing the Datasets

In order to decide the most appropriate dataset among the seven datasets described,
a comparison was made of reconstruction results in terms of SSIM, MRE, and RE. The re-
construction accuracy was evaluated on the test set, in accordance with the experiment
performed on the SSIM-based model. As for the effects of varying the WR, RA and LA
parameter values, there are several findings to point out. Firstly, increasing the WR de-
creases SSIM and MRE values, while RE seems to be lowest for WR = 16. The RA value
seems to be proportional to SSIM, inversely proportional to MSE, and RE seems to be
lowest for RA = 2.5. Finally, increasing LA decreases both MSE and RE, while no conclusive
correlation to SSIM is seen. As hinted by the results in Appendix B, the WR = 8, RA = 2.5,
LA = 0.50 dataset model scored the best accuracies across all three metrics. However,
the WR = 8, RA = 2.5, LA = 0.50 dataset model took significantly longer to train, around
130 h, while the next biggest dataset took around 50 h to train. Since the remaining models
did not perform significantly worse, the smallest dataset (the WR = 32, RA = 2.5, LA = 0.50)
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model, which took around 14 h to train, was selected as the most efficient one that was
used in the remainder of the paper. All training was GPU accelerated, using four NVIDIA
GeForce RTX 2080 Ti graphics cards, on a 128 GB RAM system. CPU used was AMD Ryzen
Threadripper 1920X 12-Core.
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