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Abstract: An efficient graphical acoustic computing (GRACO) method is introduced. Referring to
the rendering of semi-transparent objects, the depth peeling (DP) technique is compounded with
the GRACO method, forming a combined GRACO and DP method (GRACO–DP) to consider the
backscattering of multiple-layered structures in which the contributions of inner structures are
included. After that, some examples of GRACO and GRACO–DP are tested to evaluate the accuracy
and efficiency of such methods. Through the examples of impedance sphere and benchmark models,
GRACO can acquire results with higher efficiency and good consistency compared to the traditional
KA method. Also, the TS of a pair of circular plates is determined by GRACO, GRACO–DP, and
the finite element method (FEM). The results show that GRACO–DP can fit better with the FEM
results. Moreover, the TS of a ribbed double shell is predicted by both GRACO and GRACO–DP; the
features of a Bragg wave scattered by the periodically arranged inner ribs can be spotted from the
result of GRACO–DP.

Keywords: underwater scattering; graphical acoustic computing; depth peeling; target strength;
Kirchhoff approximation

1. Introduction

Underwater vehicles are extensively utilized devices in ocean resource exploration and
marine defense technology. Due to sonar detection and acoustic stealth demand, acoustic
backscattering issues of both underwater vehicles and detecting targets are always drawing
concerns from researchers in this field. In this work, the ribbed double cylindrical shell,
which is a commonly used structure in underwater vehicles, is chosen as the target to
discuss the acoustic backscattering of structures with multiple-layered shells, the outer
surfaces of which incident acoustic waves can penetrate through and the existence of inner
structures can make contributions to total backscattering.

The research on acoustic backscattering dates back to the works of Rayleigh [1]. He
initiatively gave a mathematical expression of the scattering of sound. Due to the limitation
of the complexity of the expressions, he only considered some simple cases in which the
size of the scatterer was relatively small compared to the incident wavelength. Based on
Rayleigh’s work, considering the limitation on scatterer size, Morse [2,3] applied partial
wave series (PWS) to separate the complicatedly dependent variables in the Helmholtz
equation and the acoustic scattering solution of some simple scatterers like a rigid sphere
and an infinite cylinder in a liquid medium was acquired. Following Morse’s works,
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Faran [4] and Junger [5] extended the PWS into the backscattering prediction of elastic
scatterers like isotropic cylinders/sphere solids and shells. They found that for scatterers
whose density is greater than the liquid external medium, if the incident wave frequency
is higher than the first-order free-vibration mode of the scatterer, the scattering pattern of
the elastic scatterer no longer fit with the rigid counterpart and the scattering pattern of
the elastic scatterer changed drastically when a small change in frequency occurred in the
vicinity of the scatterer’s free-vibrating modes.

Due to the limitation of analytical methods imposed on the scatterer’s geometry,
some numerical and semi-numerical methods were developed. Stanton [6–8] proposed the
deformed cylinder method (DCM). This method can cope with the scattering of deformed
cylinders of finite length and, thus, most ocean objects such as marine organisms, sand
ripples, and ice keels can be considered by this method as they can be approximated as
elongated objects. Another frequently applied semi-numerical method is the Transition
matrix (T-matrix) method proposed by Waterman [9,10] to cope with the backscattering
of rigid and elastic scatterers. Recently, Gong proposed applications of this method to the
backscattering issues of spheroid and capsule-shaped structures [11,12]. Although great
efforts have been made by these semi-numerical methods, the shape of the considered
scatterers is still limited in variety. With the rapid development of the finite element (FEM)
and boundary element methods (BEM), these two methods were introduced to the acoustic
field and vastly applied in studying backscattering problems of all kinds of objects [13–18].
Benefiting from the fruitful theoretical foundations of these methods, the backscattering
of complex scattering in complex conditions can be determined easily. Recently, some
extended methods like the smooth finite element method (SFEM) and meshfree method
have been applied [19–27]. Although the flexibility of these methods can never be worried
about, there is a common disadvantage of these rigorous numerical methods in that the
efficiency of these methods plunges sharply with an increase in frequency due to the fact
that refined meshed is necessary for high-frequency models.

Considering the efficiency of high-frequency and large-scale models, an asymptotic
method called the Kirchhoff approximation (KA), also known as physical acoustics (PA), is
introduced. The KA regards the backscattering of the scatterer as the Helmholtz integration
of the illuminated regions. Urick [28] referenced Kerr’s [29] work on the radar cross section
and gave the backscattering target the strength of some rigid simple structures using the KA.
Later, Gordon [30] worked out the explicit expression of the Helmholtz integration of a flat
polygonal element, and his contribution made it possible to approximate the total backscat-
tering of an arbitrary surface as the sum of a series of planar elements. Fan [31,32] solved the
discretized KA models with Gordon’s integration, and the planar element method (PEM)
was formed to efficiently cope with the backscattering of large-scale and high-frequency
models. Since the expression of Gordon’s integrations is independent between elements,
the integration procedure of the discretized KA can be easily processed through a parallel
program. In the electromagnetic field, the computer 3D graphical rendering technique is
introduced to parallelly consider electromagnetic scattering [33,34]. Likewise, this thought
is introduced to the acoustic field to form the graphical acoustic computing (GRACO)
method [35,36]. Aided by the efficient and reliable graphical rendering technique, the time
cost of KA is shortened to a striking degree.

In the current work, GRACO is applied to study the backscattering issues of multiple-
layered structures. The ribbed double shell is taken as an example. In many previous
works of research on KA-based backscattering issues, the scatterer is regarded as a rigid
or impedance surface. The acoustics cannot penetrate through the outer surface of the
scatterer. Thus, the contribution of the inner structure is usually abruptly overlooked. In
this paper, the depth peeling (DP) technique [37], which is usually used to cope with the
rendering of semi-transparent objects, is combined with the traditional GRACO method to
deal with the backscattering of multiple-layered structures.

The remainder of this paper is organized as follows: In Section 2, a brief introduction of
the Kirchhoff approximation is given; additionally, the discretized scheme of the traditional
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KA as well as the GRACO method are introduced; moreover, the hidden surface elimination
operations of the traditional routine and Z-buffer are compared; at last, the implementation
of DP into GRACO is briefed. In Section 3, the target strength of some examples such as
a sphere, a benchmark, a pair of circular plates, and a ribbed double shell is considered
with different methods, and the results of different methods are compared to narrate the
advantages of GRACO–DP. In Section 4, the conclusions are given.

2. Theories and Methods
2.1. The Integral Equation and the Kirchhoff Approximation

As shown in Figure 1, an object with surface S is insonified by a far-field point source
P. The incident velocity potential over the target surface is

φi

(→
r
)
=

eik|→r 1−
→
r |∣∣∣→r 1 −
→
r
∣∣∣ , (1)

where k is the acoustic wave number in water. According to the Kirchhoff integral equation
of acoustic scattering [3], the scattering potential at observation point Q is
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Figure 1. Acoustic scattering from a target. The golden curve
_

AB represents the illuminated region,

blue curves
_

AB′ and
_

A′B represent the penumbra region, and the black curve
_

A′B′ presents the
shadowed region. In Kirchhoff approximation, only the illuminated are considered to calculate the
scattering contributions.

There is usually no analytical solution for an object with a complex shape according to
Equation (2). Thus, the Kirchhoff approximation (KA) is a frequently used method to cope
with complex-shaped models. In the KA, there are two hypotheses included to simplify
the acoustic scattering model: (1) only the scattering contribution of the illuminated region
is considered; (2) the tangent plane approximation. Only considering the illuminated

region means that the shadowed region
_

A′B′ and the penumbra regions
_

AB′ and
_

A′B are
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excluded from the integral area, and the total scattering integration can be approximated
by integration over the illuminated region:
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The tangent plane approximation suggests that the scattering character of the points on
the scatterer surface is approximated to a cluster of planar elements with the properties of
infinite tangent planes. Therefore, the scattering velocity potential on the target surface can
be approximated by the reflecting model of an infinite plane insonified by the plane wave

φs

(→
r
)
= V(θ1)φi

(→
r
)

, (4)

where V(θ1) is the reflection coefficient at the scattering point and θ1 is the angle between
the vector of the incident wave and the normal of the scattering point. Furthermore, the
ratio of total acoustic pressure to total normal vibration velocity at the surface is equal to
the acoustic impedance of an infinite plane:

iωρ
[
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r
)
+ φs
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r
)]

∂
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r
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r
)]

/∂n
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where ω and ρ are angular frequency and water density, respectively, and Zn is the acoustic
impedance of the target surface. The relation between the acoustic impedance and the
reflection coefficient can be expressed as

ρc/cos θ1

Zn
=

1−V(θ1)

1 + V(θ1)
, (6)

where c is the water acoustic velocity. Substituting Equations (4)–(6) and Green’s function
into Equation (3), the acoustical velocity potential of receiving point P can be expressed as
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For the backscattering problem, the source point P and the observation point Q are at
an identical position, and the variables related to P and Q can be combined together. That
means,

→
r 1 =

→
r 2 =

→
r s and θ1 = θ2 = θ. Therefore, the scattering velocity potential at the

observation point can be expressed as
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where

I = e2ikrs
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r s
rs V(θ) cos θdS. (9)

The backscattering velocity potential can be obtained with the integration of Equation (9).
For a target surface of complex shape, the integration of Equation (9) cannot be obtained
directly. Some discretization techniques can be applied to simplify the complex surface
into a series of simple planar elements and the scattering potential integral can be acquired
by summing up the integrations over each element. In an underwater sonar system, the
target strength (TS) is a much more commonly used parameter to describe the stealth of
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the underwater target. It is defined as the log value of the ratio between the equivalent
backscattering acoustic intensity at a position one unit of distance from the acoustic center
and the incident acoustic intensity at the acoustic center:

TS = 20 log lim
r→∞

∣∣∣∣ ik
2π

I
∣∣∣∣. (10)

where Is is the acoustic intensity of the scattering field, Ii is the incident acoustic intensity,
→
r O is zero vector,

→
r P is the vector from the origin O to the source (observation) point

P, r0 = 1 m is the unit length and is omitted here due to the SI used in the current study.
For simple shapes, the integration of I can be easily solved. However, when coping with
complex surfaces, it is impossible to acquire the integration over these surfaces, and some
discretization technique is needed to simplify this problem. What should be mentioned
is that the

∣∣∣e2ikrs
∣∣∣ is not deleted in the integration of I. This is because in the following

discretization procedures, the reference point of different elements varies, and the e2ikrs

term generates a phase difference between different elements.

2.2. The Discretization Schemes for Kirchhoff Approximation
2.2.1. The Planar Element Method

As shown in Figure 2a, an arbitrarily shaped surface can be discretized by a series of
elements, and in the following discussions, triangular elements are taken as an example
to introduce the planar element method. Thus, the integral part I can be equalized as the
summation of integrals on every individual element:

I = ∑ ∆I, (11)

where

∆I = e2ikr∆S V(θ) cos θ

¨
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e−2ik
→
r ·
→
r ∆S
∆S dS, (12)
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→
r ∆S is the vector from the reference center of each element, which is set at the

barycenter of each element, to the observation (source) point. For each element, the
integration can be considered in the local coordinate system individually, in which the

element lies on the u–C–v plane. In this local coordinate system,
→
r s/rs = u

→
i + v

→
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→
k ,

→
r = x

→
i + y

→
j , and the normal unit direction is

→
n =

→
k . Thus, the integration of each

element can be reduced into

∆I = e2ikr∆S V(θ)w
3

∑
n=1

e−2ik(xnu + ynv)(pn−1 − pn)

(2ku + 2kpn−1v)(2ku + 2kpnv)
, (13)

where p1, p2 and p3 are slopes of Line: 1→2, Line: 2→3, and Line: 3→1, respectively, and
p0 = p3; (xn, yn) is the node coordinate of the element.

2.2.2. The Graphical Acoustic Computing Method

In the graphical rendering pipeline, the image of a 3D object can be projected onto
a map with rectangle pixels containing the color information. Using the 3D graphical
rendering technique, the target object can be discretized automatically as quadrilateral
elements defined by each pixel as shown in Figure 3, and the integrating processes of each
element can be implemented in the GPU thread of each pixel parallelly. Thus, the time cost
of solving the backscattering of a target surface is drastically reduced.
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the element lies on the u–C–v plane.
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The graphical rendering pipeline of OpenGL roughly obeys the workflow in Figure 4.
In the GRACO application, as the vertex shader and fragment shader are user-defined
programs, the general-purpose (not just used for the graphical rendering purpose) opera-
tions can be defined in these procedures. And in the rasterization step, the 3D geometry is
scanned parallelly by rays shot from each pixel, and the surface meshes are automatically
generated in this step.
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According to Equation (12), it can be seen that the integral results between different
elements are independent of each other. Therefore, the integral procedure of each element
can be processed parallelly. As shown in Figure 3, an object is insonified by an acoustic
wave. And the incident acoustic wave can be approximated as a plane wave since it is
emitted by a far-field source. In GRACO, the target object can be regarded as the object
for rendering. The incident wave can be regarded as a group of rays perpendicular to
the screen. The acoustic rays can be split into tubes by the grids defined by the screen
pixels. The acoustic ray tubes cast onto the target surface generate a series of quadrilateral
elements. Thus, the discretization scheme of GRACO is formed through this routine.

As shown in Figure 5, a single element and corresponding ray tube are extracted from
the discretized model to discuss the acoustic integration of a single element. Equation (12)
is still applicable for quadrilateral elements. The integral area ∆S can be projected onto
the plane that is parallel to the screen plane and pass through the center point of ∆S. And
Equation (12) can be transformed as

∆I = e2ikr∆S

¨

∆S′

e−2ik
→
r ·
→
r ∆S
r∆S V(θ)dS′, (14)

where dS′ = dS cos θ. In the local coordinate system of ∆S′, the vector of normal direction

is
→
n = nx

→
i + ny

→
j + nz

→
k and, thus, the expression of ∆S plane can be expressed as

nxx + nyy + nzz = 0. (15)

Therefore, the integration point on ∆S can be expressed with x and y:

→
r =

(
x, y,−nx

nz
x−

ny

nz
y
)

. (16)
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Figure 5. The projection and integration of a single element. The numbers 1, 2, 3 and 4 represent the
node numbers of the element ∆S determined by the ray tube, and the numbers 1’, 2’, 3’ and 4’ are
node numbers of the projected element ∆S’.

As the unit vector of the scattering direction is perpendicular to the screen plane,
→
r s/rs =

→
k . The integration of a single element can be solved:

∆I = e2ikr∆S
˜

∆S′
e2ik( nx

nz x+
ny
nz y)V(θ)dxdy

= e2ikr∆S V(θ)
(´ X/2
−X/2 e2ik nx

nz xdx
)(´ Y/2

−Y/2 e2ik
ny
nz ydy

)
= e2ikr∆S V(θ)

sin(kXnx/nz)
knx/nz

sin(kYny/nz)
kny/nz

.

(17)

where X and Y represent the dimensions of the pixel.
Embedding Equation (17) in the per-fragment shader program, the integration pro-

cedure of each element can be completed in the kernel for each pixel’s rendering. Such a
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solution procedure, referred to as the graphical acoustic computing method in this paper,
can be carried out parallelly by a GPU and, thus, this method considerably reduces the
time cost of computation [26].

2.3. The Hidden Surface Elimination Operation

In engineering practice, the target objects are usually complex. As only the illuminated
regions are considered in physical optics, the shadowed surfaces should be removed
when treating complex objects in the KA, and this procedure is termed the hidden surface
elimination operation.

2.3.1. The Traditional Hidden Surface Elimination Technique

In the planar element method, there is a simple hidden surface elimination operation
method performed by searching shadowed elements one by one. As shown in Figure 6, the
searching procedure of this hidden surface elimination operation is organized as follows:
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Figure 6. A simple hidden surface elimination operation of the planar element method. Element 1
is the problem element that should be judged whether to be shadowed or not. Element 2 is the test
element to be evaluated whether or not it shields Element 1. Point C is the center of Element 1, and

Point M is the intersection point of acoustical ray
→
PC and the plane of Element 2.

(1) Calculate the coordinate of M;
(2) Evaluate whether Point M is within Element 2 through Equation (18):( →

V1M ×
→

V1V2

)
·
( →

V2M ×
→

V2V3

)
> 0. (18)

If Equation (18) is true, M is within Element 2 and Element 1 is regarded as shielded
by Element 2; otherwise, M is out of or on the edge of Element 2 and Element 1 is not
shadowed by Element 2;

(3) Repeat Step 2 until Element 2 is found to block the ray from P to C. If a shielding
element for Element 1 is found, discard the integration contribution of Element 1.

This method searches shadowed elements (one by one) and each element pair through
the other elements to evaluate the illumination situation of the concerned element. Thus,
there are N × N instances of shadowing test time consumptions where N is the number
of elements. The time cost for this method upsurges drastically with an increase in the
number of elements.

2.3.2. The Z-Buffer Rendering Technique

In graphical rendering, the hidden surface elimination algorithm is carried out in the
rasterization step via the Z-buffer technique [38]. As shown in Figure 7a, two primitives are
located in the viewing pyramid. When observing these two primitives from the position
of the camera, parts of the rear primitive (blue) are shadowed by the front one (red). In
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OpenGL, the Z-buffer technique is applied to calculate the shadowing relationship. In the
vertex shader step, the vertex coordinates of the primitives in the viewing pyramid are
projected onto the screen using the MVP matrix (model, view, and projection matrix) as
shown in Figure 7b. And the vertex coordinates as well as some accessory information,
such as the depth, normal direction, color and texture coordinates, etc., are wrapped in the
vertex data structure. In the rasterization step, each primitive is divided by the pixels as
fragments. The coordinates and accessory information of each fragment are interpolated
according to vertex information. For the pixels covered by more than one fragment, the
depth information (the distance from the fragment to the camera) of these fragments is
compared, and the nearest fragment is chosen to render the current pixel.
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During the OpenGL rendering procedures, the projection, scanning, interpolation, and
comparison of operations are implemented parallelly in the GPU kernels. Thus, the time
cost of hidden surface elimination operations is drastically cut by the parallel program,
compared to the traditional hidden surface elimination technique.

2.4. The Depth Peeling and Scattering of Multiple-Layered Structures for GRACO

In the previous sections, only the acoustic backscattering of the outermost surface
is considered. That is, the backscattering wave is composed of reflecting waves from the
outmost surface but no acoustic wave penetrates through the outer surface and strikes
the inner structure. When considering the acoustic backscattering contribution of the
inner structure, there are two extra aspects needed to be considered: (1) the transmission
coefficient penetrating the outer surfaces should be defined; (2) how to identify shadowing
element pairs.

Due to the properties of the target elements being regarded as those of an infinite
tangent plane in the Kirchhoff approximation, the reflection and transmission coefficients
can be approximated with those of an infinite plane. According to waves in layered
media [39], the reflection and transmission coefficients of an infinite plane as shown in
Figure 8 are

V =
(Z1 + Z2)(Z2 − Z3)e−ik2zd + (Z1 − Z2)(Z2 + Z3)eik2zd

(Z1 + Z2)(Z2 + Z3)e−ik2zd + (Z1 − Z2)(Z2 − Z3)eik2zd , (19)

and
W =

1 + V
cos(k2zd)− i(Z2/Z1) sin(k2zd)

(20)

where k2z is the z-directional component of the second-layer wave vector, d is the thickness
of the second layer, and Zi is the acoustic impedance of the ith layer medium.

Zi =
ρici

cos θi
, i = 1, 2, 3, (21)

where ρi and ci are the density and acoustic velocity of ith layer, respectively.
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Figure 8. The reflection and transmission properties of acoustic waves in infinite plane.

As shown in Figure 9, the acoustic rays insonify a complex target with an outer
surface (red) and an inner structure (blue). If the outer surface is acoustic-penetrable, the
existence of the inner structure makes contributions to the total backscattering. Due to
the incident angle being different, the transmission coefficients of Element 1 and 2 shot
by parallel rays are different. Thus, the weight coefficients for the contributions of each
inner element (Elements 3 and 4) are not always the same. The weight coefficients for inner
elements are determined by the outer-layer elements that shield each inner element from
incident acoustic rays. That is, the weight coefficient of Element 3 is determined by the
transmission coefficient of Element 1 and Element 4 is determined by Element 2. Therefore,
an algorithm for identifying the shadowing element pairs between the outer surface and
the inner structure is needed to designate proper weight coefficients for inner elements.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 8. The reflection and transmission properties of acoustic waves in infinite plane. 

As shown in Figure 9, the acoustic rays insonify a complex target with an outer sur-
face (red) and an inner structure (blue). If the outer surface is acoustic-penetrable, the ex-
istence of the inner structure makes contributions to the total backscattering. Due to the 
incident angle being different, the transmission coefficients of Element 1 and 2 shot by 
parallel rays are different. Thus, the weight coefficients for the contributions of each inner 
element (Elements 3 and 4) are not always the same. The weight coefficients for inner ele-
ments are determined by the outer-layer elements that shield each inner element from 
incident acoustic rays. That is, the weight coefficient of Element 3 is determined by the 
transmission coefficient of Element 1 and Element 4 is determined by Element 2. There-
fore, an algorithm for identifying the shadowing element pairs between the outer surface 
and the inner structure is needed to designate proper weight coefficients for inner ele-
ments. 

 
Figure 9. The paths of rays penetrating the outer surface. 

In the traditional discretized KA, the technique of finding shadowing pairs is the 
same as that in the traditional hidden surface elimination technique. Similarly, the shadow 
test operations are carried out element by element for each considered element, and this 
method is quite inefficient. 

In 3D graphical rendering, the depth peeling (DP) method which is commonly ap-
plied to render semi-transparent materials can be utilized to consider the penetration of 
the acoustic rays. In the previous section, the Z-buffer technique is introduced to select the 
fragments nearest to the camera at each pixel. In the depth peeling method, the target 
object is rendered multiple times, and the rendering results are stored in different layers 
of framebuffers. For the first layer, the fragments nearest to the camera at each pixel are 

Figure 9. The paths of rays penetrating the outer surface.

In the traditional discretized KA, the technique of finding shadowing pairs is the
same as that in the traditional hidden surface elimination technique. Similarly, the shadow
test operations are carried out element by element for each considered element, and this
method is quite inefficient.

In 3D graphical rendering, the depth peeling (DP) method which is commonly applied
to render semi-transparent materials can be utilized to consider the penetration of the
acoustic rays. In the previous section, the Z-buffer technique is introduced to select the
fragments nearest to the camera at each pixel. In the depth peeling method, the target
object is rendered multiple times, and the rendering results are stored in different layers
of framebuffers. For the first layer, the fragments nearest to the camera at each pixel are
rasterized and stored in the first-layer framebuffer. For the second layer, at each pixel, the
fragments whose Z-depth values are smaller than that in the first-layer framebuffer at the
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current pixel are discarded, and the fragments which are second nearest to the camera are
rendered and stored in the second-layer framebuffer. For higher-order layers, the depth
values of the previous layer are taken as the threshold to filter out the fragments that have
been rendered in the previous layers. After rendering the images of different layers, the
framebuffers in different layers are blended with weighted coefficients, and the image of
the semi-transparent object is acquired.

An example double shell with grids is presented in Figure 10. As shown in Figure 11,
the depth peeling method is used to render this semi-transparent double shell. In this depth
peeling rendering pipeline, the color of each pixel is defined as the normal direction of each
rendered element. The fragments that are first nearest, second nearest, third nearest, etc.,
are projected onto the pixels of first-layer, second-layer, third-layer, etc., framebuffers. After
the rendering of different layers, the target semi-transparent image is acquired by blending
the image of different layers together.
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In GRACO, the depth peeling technique can be applied to cope with the penetration of
acoustic rays. As shown by the procedures in Figure 12, both the backscattering integrations
and transmission coefficients of the nearest nth layer are rendered through the depth peeling
technique, and then, the total backscattering contributions of the outer surface as well as the
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internal structure can be acquired through summing up the integration results of different
layers weighted with the previous layer’s transmission coefficient:

∆Itotal = ∆I1 +
N

∑
i=2

[(
i−1

∏
j=1

W2
j

)
∆Ii

]
, (22)

where ∆I1 is the acoustic integration of the ith-layer element, and Wj is the transmission
coefficient of the jth-layer element.
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3. Examples and Discussions
3.1. GRACO Solutions for Typical Models
3.1.1. A Sphere Model

An impedance sphere with 1 m radius is insonified by an acoustic source point whose

velocity potential is φi

(→
r
)
= eik|→r P−

→
r |

rP
. As the source point is far from the sphere, the

acoustic field near the sphere can be regarded as a plane wave as shown in Figure 13.
Setting the sphere center O as the origin point and the direction from P to O as the x axis,
the velocity potential of the incident wave near the sphere can be approximated as

φi

(→
r
)
= Aeikx, A =

eikrP

rP
. (23)

According to the PWS solution, the backscattering of the impedance sphere in a plane
wave can be expressed as [2]

φs(r, θ) = −A
∞
∑

n=0
in(2n + 1)bn(ka)h(1)n (kr)Pn(cos θ),

bn(ka) = jn ′(ka) + iβjn(ka)

h(1)
′

n (ka) + iβh(1)n (ka)
,

β = ρc
Z .

(24)
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where jn(·) is the spherical Bessel function, h(1)n (·) is the spherical Hankel function of the
first kind, Pn(·) is the Legendre function, and β is the specific admittance of the surface.

Referenced by the PWS solution, the target strength of this model is also given by
other numerical and asymptotic methods: FEM, BEM, PEM, and GRACO. The solution
schemes of PEM and GRACO are given in Equation (13) and Equation (17), respectively.
The hardware and software used in different methods are listed in Table 1. The TSs of
the sphere with different normal absorbing coefficients solved by different methods are
presented in Figure 14. And the time costs of different methods for different models are
listed in Table 2.

Table 1. The hardware and software used in different methods.

PWS/PEM FEM/BEM GRACO

Hardware
CPU: Intel (R) Xeon (R) CPU E5-2643 v4 @ 3.4 GHz

RAM: 128 GB
GPU: NVIDIA Quadro M4000

Software Matlab2020a COMOSOL 5.6 Visual Studio 2017
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Table 2. Time costs for different methods.

Frequency
f (Hz)

Element Size
∆ (m)

Time Costs t (s)
FEM BEM PEM GRACO

1000 0.25 12 7 0.019 0.031
2000 0.125 65 20 0.042 0.030
3000 0.083 289 48 0.117 0.030
4000 0.063 865 83 0.263 0.034
5000 0.05 5825 142 0.543 0.033

Note: The pixel number used in GRACO is fixed to Npixel = 1000 × 1000 for different models, and the size of the
screen is mapped to 2 m × 2 m, i.e., the pixel dimensions for the current models of GRACO are set to X = 0.002 m
and Y = 0.002 m.

As can be seen from Figure 14, the solutions of FEM and BEM almost coincide with
the analytical PWS solution, while the overlapping KA and GRACO solutions fluctuate
around the PWS solution. The cause of the different accuracies between FEM/BEM and
KA/GRACO is that both FEM and BEM are based on the rigorous model and the solutions
of these methods are sufficiently accurate when appropriately dense meshes are selected,
while the contribution of the shadowed areas of the target are omitted for both KA and
GRACO and the solutions of these methods cannot match well with the analytical solution,
especially in the low-frequency range (i.e., ka < 2π, where a is the half of the major size of
projection of the scatterer).

Although the accuracy of GRACO cannot compete with that of some rigorous numeri-
cal methods like FEM and BEM, GRACO is still prioritized in engineering practice when
considering large objects in high-frequency ranges. The reason for GRACO’s priority is
due to the time costs of FEM and BEM as shown in Table 1. For the current example at
f = 5000 Hz, the time cost is about 5825 s for the FEM model, 142 s for BEM, 0.543 s for
PEM, and 0.033 s for GRACO. For larger objects or higher frequencies, the time costs of
FEM and BEM are intolerable.

3.1.2. A BeTSSi Benchmark Submarine

In this section, the target strengths of a BeTTSi [40] submarine (Benchmark Target
Echo Strength Simulation) with different normal absorption coefficients are considered by
both GRACO and BEM. The major dimensions of the considered submarine model are
total length L = 62 m and radius of the body r = 3.5 m. The pixel dimensions for the current
model of GRACO are set to X = 0.02 m and Y = 0.02 m. The figure of this submarine is
illustrated in Figure 15. The target predictions of such a model are presented in Figure 16.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 20 
 

 

Table 2. Time costs for different methods. 

Frequency  
f (Hz) 

Element Size 
Δ (m) 

Time Costs t (s) 
FEM BEM PEM GRACO 

1000 0.25 12 7 0.019 0.031 
2000 0.125 65 20 0.042 0.030 
3000 0.083 289 48 0.117 0.030 
4000 0.063 865 83 0.263 0.034 
5000 0.05 5825 142 0.543 0.033 

Note: The pixel number used in GRACO is fixed to Npixel = 1000 × 1000 for different models, and the 
size of the screen is mapped to 2 m × 2 m, i.e., the pixel dimensions for the current models of GRACO 
are set to X = 0.002 m and Y = 0.002 m. 

As can be seen from Figure 14, the solutions of FEM and BEM almost coincide with 
the analytical PWS solution, while the overlapping KA and GRACO solutions fluctuate 
around the PWS solution. The cause of the different accuracies between FEM/BEM and 
KA/GRACO is that both FEM and BEM are based on the rigorous model and the solutions 
of these methods are sufficiently accurate when appropriately dense meshes are selected, 
while the contribution of the shadowed areas of the target are omitted for both KA and 
GRACO and the solutions of these methods cannot match well with the analytical solu-
tion, especially in the low-frequency range (i.e., ka < 2π, where a is the half of the major 
size of projection of the scatterer). 

Although the accuracy of GRACO cannot compete with that of some rigorous nu-
merical methods like FEM and BEM, GRACO is still prioritized in engineering practice 
when considering large objects in high-frequency ranges. The reason for GRACO’s prior-
ity is due to the time costs of FEM and BEM as shown in Tabel 1. For the current example 
at f = 5000 Hz, the time cost is about 5825 s for the FEM model, 142 s for BEM, 0.543 s for 
PEM, and 0.033 s for GRACO. For larger objects or higher frequencies, the time costs of 
FEM and BEM are intolerable. 

3.1.2. A BeTSSi Benchmark Submarine 
In this section, the target strengths of a BeTTSi [40] submarine (Benchmark Target 

Echo Strength Simulation) with different normal absorption coefficients are considered by 
both GRACO and BEM. The major dimensions of the considered submarine model are 
total length L = 62 m and radius of the body r = 3.5 m. The pixel dimensions for the current 
model of GRACO are set to X = 0.02 m and Y = 0.02 m. The figure of this submarine is 
illustrated in Figure 15. The target predictions of such a model are presented in Figure 16. 

 
Figure 15. The sketch of the BeTSSi submarine. Figure 15. The sketch of the BeTSSi submarine.



J. Mar. Sci. Eng. 2023, 11, 1801 15 of 20J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 16. The TS directivity patterns of the concerned submarine predicted by BEM and GRACO. 
(a) f = 500 Hz, αn = 0.0; (b) f = 500 Hz, αn = 0.5; (c) f = 1000 Hz, αn = 0.0; (d) f = 1000 Hz, αn = 0.5. 

Since there is no analytical solution for this benchmark model, the BEM solution is 
chosen as the reference solution instead. Considering the massive time and calculation 
resource consumption, the frequency of the incident wave is controlled within relatively 
low values, i.e., f = 500 Hz and 1000 Hz. According to Figure 16, it can be figured out that 
the TS curves predicted by GRACO are quite close to the reference solutions predicted by 
BEM at most incident directions. At the incident direction in the vicinity of θ = 0° and 180°, 
there are visible errors in the GRACO solution. This is because the ka values of such cases 
are smaller than those in cases with incident angle θ = 90°. The differences between 
GRACO and BEM at θ = 0° and 180° in Figure 12a,b are much bigger than those in Figure 
12c,d. It can be deduced that the error of GRACO is negatively correlated to this ka value. 

According to the examples of the sphere and benchmark models, it can be recognized 
that KA-based GRACO is a sufficiently accurate method for the TS prediction of high-
frequency acoustic backscattering. Especially, in most engineering application practices, 
time and economic issues usually draw more concern than accuracy. Therefore, GRACO 
harbors more advantages than rigorous numerical methods, such as FEM and BEM. 

3.2. Comparison of GRACO and GRACO–DP 
3.2.1. A Pair of Circular Plates 

Most underwater vehicles are multiple-layered structures. There are always inner 
shells, platforms, ribs, etc., inside the outmost surface. It is necessary to investigate the 

Figure 16. The TS directivity patterns of the concerned submarine predicted by BEM and GRACO.
(a) f = 500 Hz, αn = 0.0; (b) f = 500 Hz, αn = 0.5; (c) f = 1000 Hz, αn = 0.0; (d) f = 1000 Hz, αn = 0.5.

Since there is no analytical solution for this benchmark model, the BEM solution is
chosen as the reference solution instead. Considering the massive time and calculation
resource consumption, the frequency of the incident wave is controlled within relatively
low values, i.e., f = 500 Hz and 1000 Hz. According to Figure 16, it can be figured out that
the TS curves predicted by GRACO are quite close to the reference solutions predicted
by BEM at most incident directions. At the incident direction in the vicinity of θ = 0◦

and 180◦, there are visible errors in the GRACO solution. This is because the ka values
of such cases are smaller than those in cases with incident angle θ = 90◦. The differences
between GRACO and BEM at θ = 0◦ and 180◦ in Figure 16a,b are much bigger than those in
Figure 16c,d. It can be deduced that the error of GRACO is negatively correlated to this
ka value.

According to the examples of the sphere and benchmark models, it can be recognized
that KA-based GRACO is a sufficiently accurate method for the TS prediction of high-
frequency acoustic backscattering. Especially, in most engineering application practices,
time and economic issues usually draw more concern than accuracy. Therefore, GRACO
harbors more advantages than rigorous numerical methods, such as FEM and BEM.
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3.2. Comparison of GRACO and GRACO–DP
3.2.1. A Pair of Circular Plates

Most underwater vehicles are multiple-layered structures. There are always inner
shells, platforms, ribs, etc., inside the outmost surface. It is necessary to investigate the
acoustic backscattering contribution of inner structures. In this section, a pair of circular
plates is taken as the example as shown in Figure 17. This pair of plates is made of steel
with Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3. The target strength of this
model is calculated with three different methods: FEM, GRACO, and GRACO–DP. The
pixel dimensions for the current model of GRACO are set to X = 0.002 m and Y = 0.002 m.
The results are presented in Figure 18.
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Figure 18. Target Strength prediction of the pair of circular plates with different incident angles.
(a) α = 0◦, (b) α = 10◦.

In Figure 18, the target strength of the pair of circular plates is predicted through three
different methods. FEM is verified as sufficiently precise and, thus, it is regarded as the
reference method in the current example. Both GRACO and GRACO–DP are based on
high-frequency Kirchhoff approximations. The difference between these two methods is
that GRACO only considers the backscattering contribution of the elements nearest to the
observer, while GRACO–DP can collect the acoustic backscattering contribution of inner
structures through the depth peeling technique. It can be determined from Figure 18a,b
that the solution determined by GRACO–DP can fit better than that of GRACO to the FEM
solution. It can also be found that the solutions of both FEM and GRACO–DP reach a
bottom value at f = 3200 Hz while the solution of GRACO does not fall at this point. To
explain this phenomenon, the phase differences between the outermost surface and the
shadowed area are obtained and illustrated in Figure 19, where ϕnear is the phase of the
backscattering velocity potential of the directly illuminated elements and ϕfar is the phase
of the backscattering velocity potential of the shadowed elements. Figure 19 demonstrates
that the phase difference ϕfar-ϕnear reaches 180◦ at f = 3200 Hz. Thus, the backscattering
of the shadowed area counteracts parts of the backscattering contribution of the directly
illuminated area. And these counteracting effects lead to the falling point at f = 3200 Hz
of FEM and GRACO–DP, while the traditional GRACO method cannot take this part into
account.
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3.2.2. A Ribbed Double Shell

In this section, a ribbed double shell is constructed and its measurements are given as
shown in Figure 20. The outer and inner diameters of the shell are 4 m and 3 m, respectively.
The length of the shell is 6 m. Four longitudinal trusses are circumferentially distributed
and six transverse ribs are arranged evenly along the length direction. The walls and ribs
of the structure are made of 5 mm steel with Young’s modulus E = 210 GPa and Poisson’s
ratio ν = 0.3. Water is present between the outer and inner shells. The target strengths
of this model are solved by both GRACO and GRACO–DP. The pixel dimensions for the
current model of GRACO are set to X = 0.002 m and Y = 0.002 m. TS maps altering with
the incident angle θ and the frequency f are presented in Figure 21. Additionally, the TS–θ
curves at f = 2000, 5000, 8000, and 10,000 Hz are extracted and depicted in Figure 22.
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Figure 22. The target strength curves of the ribbed double shell at different frequencies. (a) f = 2000 Hz;
(b) f = 5000 Hz; (c) f = 8000 Hz; (d) f = 10,000 Hz.

As shown in Figures 21 and 22, the target strength predicted by GRACO–DP is much
larger than that predicted by GRACO. According to Figure 21b, acquired from GRACO–DP,
there are some pairs of “/\-shaped” bright trending lines, whereas these trending lines
cannot be spotted in Figure 21a which was acquired from GRACO. These bright trending
lines are Bragg waves [41] generated by the periodically arranged ribs covered by the outer
surface. These phenomena mean the backscattering contributions of the inner structures
are considerable compared to the total backscattering.

4. Conclusions

In this work, a KA-based GRACO method is introduced to deal with high-frequency
acoustic backscattering problems of large-scale objects. Also, the depth peeling technique
which is commonly used to deal with the 3D graphical rendering of transparent objects is
integrated into the GRACO method to consider the backscattering contributions of inner
structures. Some numerical examples are carried out with the following conclusions:

Firstly, the target strength of an impedance sphere and a large-scale benchmark model
has been evaluated with different methods. Through the solutions of the sphere example, it
can be determined that the GRACO method can acquire sufficient accurate TS solutions for
high-frequency backscattering problems with much less computational consumption and
time costs. The numerical example of the benchmark model tells one that GRACO performs
well in terms of accuracy when predicting the target strength of complex object and that
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GRACO still keeps high efficiency when coping with the high-frequency backscattering of
large-scale models while traditional numerical methods like FEM and BEM have difficulties
concerning efficiency and computational costs.

Secondly, a pair of circular plates is taken as an example to discuss the backscattering
of multiple-layer structures. Compared to the traditional GRACO method, the GRACO–DP
method can properly obtain the backscattering contributions that are shadowed by outer
surfaces. Therefore, the solution of GRACO–DP is better fitted to the FEM solution which
is regarded as the reference solution of this example.

Finally, a ribbed double shell model is considered by both the GRACO and GRACO–
DP. The results show that there exist considerable differences between the solutions from
different methods for most incident angles. Moreover, features of Bragg waves which are
generated by the periodically arranged ribs can be spotted from the GRACO–DP solution,
while such features cannot be observed from the solution of GRACO. Thus, in engineering
practice, the combination of DP and GRACO is necessary for determining the backscattering
of multiple-layered structures.

The current work shines light on the backscattering correction of a KA-based method
considering the acoustic penetration of multiple-layered structures, but some limitations
and problems remain unresolved and need to be studied in future works. For example, the
multiple back-and-forth reflections between the outer surfaces and the inner shells should
be considered more carefully. Furthermore, the influence of the curvature of the surfaces
on the transmission coefficients is not discussed in detail.
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