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Abstract: The accurate attitude estimation of target ships plays a vital role in ensuring the safety
of marine transportation, especially for tugs. A Light Detection and Ranging (LiDAR) system
can generate 3D point clouds to describe the target ship’s geometric features that possess attitude
information. In this work, the authors put forward a new attitude-estimation framework that first
extracts the geometric features (i.e., the board-side plane of a ship) using point clouds from shipborne
LiDAR and then computes the attitude that is of interest (i.e., yaw and roll in this paper). To
extract the board-side plane accurately on a moving ship with sparse point clouds, an improved
Random Sample Consensus (RANSAC) algorithm with a pre-processing normal vector-based filter
was designed to exclude noise points. A real water-pool experiment and two numerical tests were
carried out to demonstrate the accuracy and general applicability of the attitude estimation of target
ships brought by the improved RANSAC and estimation framework. The experimental results show
that the average mean absolute errors of the angle and angular-rate estimation are 0.4879 deg and
4.2197 deg/s, respectively, which are 92.93% and 75.36% more accurate than the estimation based on
standard RANSAC.

Keywords: attitude estimation; light detection and ranging; point cloud feature extraction; improved
random sample consensus

1. Introduction

The attitude estimation of surrounding ships is of great importance, as it lays the
foundation for collision avoidance [1,2] by helping in the prediction of the target ship’s
stability in complex and close-range scenes, such as towing operations for tugs [3], cargo
transfer between ships [4], and marine replenishment [5]. In towing operations for tugs,
attitude observation is especially necessary because the tugs need to maintain the sailing
state of the target ship within the operating range, which is sometimes even less than
5 m [6]. Currently, most ships rely on radar images, an Automatic Identification System
(AIS), or a human lookout to obtain the attitude information of other ships [7–10], whose
accuracy is easily affected by environmental disturbances. In addition, limited by the
dimensions of states that can be perceived by these methods, only a few components of
the ship attitude can be deduced, which is not sufficient for towing tasks. For example,
attitude estimation based on radar images can only provide a yaw angle and suffers from
inaccuracies brought by electromagnetic interference.

To solve the above problem, the 3D Light Detection and Ranging (LiDAR) system
is a promising and powerful piece of equipment to accurately and thoroughly estimate
the attitude of the target ship [11]. In recent years, 3D LiDAR has been used in various
perception systems thanks to its advantages of high measurement accuracy and timely re-
sponse [12] for tasks such as object segmentation and mapping [13], obstacle detection [14],
target recognition [15], and self-state estimation [16]. H. Wang et al. [16] applied LiDAR
and a registration method to estimate the self-state. Nocerino et al. [17] applied LiDAR
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to attitude estimation for uncooperative space targets. Both their methods involve the
multi-frame registration of the point clouds and require several steady frames. Their meth-
ods can suffer from a large self-rolling motion, which is the typical situation in shipborne
attitude-estimation systems. The traditional LiDAR-based attitude-estimation algorithm
for target ships is the bounding-box method [18], which can only provide a rapid estimation
of a ship’s yaw angle. This method neglects the rolling motion and lacks the estimation of
other attitude states, limiting its application. Therefore, a new attitude-perception method
based on LiDAR is valuable for ships carrying out missions such as towing or berthing.

Attitude estimation can be realized by recognizing the geometric features attached to
ships and calculating the attitude according to the obtained features. One promising feature
extraction paradigm used for this purpose is Random Sample Consensus (RANSAC),
which is widely used in feature extraction from point clouds [19]. The key idea of the
standard RANSAC is the extraction of a predefined geometric model from the point clouds
by randomly selecting minimal data points and using these data points for the construction
of a candidate model [20]. Due to the uncertainty introduced by the random sampling
process, standard RANSAC can derive the false geometric model if irrelevant points are
picked for model fitting. LiDAR can consistently generate noise points that will affect
RANSAC. To address this problem, researchers put forward a series of algorithms to
improve the standard RANSAC. For example, B. Wang et al. [21] proposed an improved
RANSAC that can extract the ground plane from the point cloud of a vehicle-borne LiDAR.
The research adopted a post-processing method that analyzed the normal vector of the
extracted plane to decrease the false extraction rate of the static ground plane. Nevertheless,
for a geometric model fixed on a moving ship, such a post-processing treatment may
mistakenly exclude the data points on the target geometric features since the locomotion
can change the attitude. Yang et al. [22] proposed an improved RANSAC with weighted
principal component analysis-based normal estimation and angular clustering before the
fitting process to improve efficiency. However, their method requires a dense point cloud
that is hard to obtain with a shipborne LiDAR.

To deduce the attitude of ships under rolling motion, this study put forward an
attitude-estimation method for target ships using 3D point clouds from shipborne LiDAR.
The estimation algorithm first calibrates the point cloud using the Inertial Measurement
Unit (IMU) to deal with rolling motion. Then, we extract the feature plane fixed on a
ship from the point cloud and calculate the attitude that is of interest (we take yaw, roll,
yaw rate, and roll rate as an example in this paper). To realize the accurate geometric
feature extraction on a moving ship from a sparse point cloud with irrelevant points, this
study adds a pre-processing normal vector-based filter to the standard RANSAC. The main
contributions of this paper are summarized as follows:

1. The authors propose a target ship attitude-perception framework under self-rolling
motion based on an estimation of the attitude of a feature plane fixed on the target
ship. The self-rolling motion is dealt with by calibrating the point cloud using IMU.

2. The authors improve the standard RANSAC by adding a normal vector-based filter
in the extraction process, which can accurately determine the feature plane from the
point cloud under unknown noises.

3. The authors conduct real water-pool experiments and several numerical simulations
to verify the filtering ability, high accuracy, and general applicability of the pro-
posed attitude-perception framework and the improved RANSAC. Remarkably, we
demonstrate its filtering ability when facing unknown reflections and the practical
applicability of our method in real water-pool experiments.

The remainder of this paper is organized as follows. In Section 2, we first define
the mathematical problem of attitude estimation for ships, along with the necessary as-
sumptions. Then, we formulate the overall framework of the proposed attitude-estimation
method. After that, we explain the improved RANSAC in detail, with special emphasis on
the normal vector-based filter and plane fitting. In Section 3, we perform a real perception
experiment in a water pool based on an unmanned surface vehicle (USV) and several
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numerical simulations based on two typical ship models: the container ship and the yacht,
to verify the improved accuracy of our framework. In Section 4, we briefly conclude the
whole paper.

2. Attitude Estimation Method for Target Ship
2.1. Problem Statement

In fine weather without fog or rain, LiDAR can generate precise and sufficient point
clouds of the target ship whose moving frequency is lower than the working frequency
of LiDAR (typically 10 Hz). In most cases, the moving frequency of ships can satisfy the
LiDAR requirement [23]. As shown in Figure 1, a sufficient ship point cloud contains a
deck, board side, and other plane surfaces fixed to the ship and can reflect the attitude of
the ship. In this paper, we adopt the board-side plane as the feature plane and transfer the
attitude-estimation problem to the feature-plane-extraction problem. After the plane-fitting
process, the normal vector of the board-side plane can be calculated, and then we estimate
the ship attitude using the geometric relation between the board-side plane and the attitude
angles of the ship. We remark that different geometric features can be employed to estimate
the attitude of different types of vessels through the framework proposed here. To extract
the feature plane from the point cloud and distinguish it from other planes, we designed an
improved RANSAC algorithm by adding a normal vector-based filter, which can remove
interfering planes.
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Figure 1. Typical sufficient point cloud of a container ship: (a) represents the container ship;
(b) represents the point cloud of the container ship.

One target ship can reflect thousands of points in a single scanning cycle of LiDAR,
and this amount of data will lead to a long calculation time. In this paper, a voxel filter is
utilized to accelerate the calculation process without loss of generality, whose main idea is
to substitute the points within a rectangular area with their average points. We note that
the voxel filter can simultaneously realize the maintenance of the shape feature and the
reduction in the point number of the point cloud [24]. In Figure 2, we exhibit the original
point cloud of a container ship, which consists of 2561 points, in (a), and the point cloud
after voxel filtering, consisting of only 286 points, in (b). Compared with the original point
cloud, the filtered point cloud’s point number is significantly reduced while retaining the
shape feature.
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The coordinates are defined as follows. The North-East-Down frame (NED) is marked
as “On–XnYnZn” (as shown in Figure 3), which is also called the world coordinate system.
The body-fixed reference frame (BODY) of the own ship is marked as “Ob–XbYbZb”, and
the BODY of the target ship is marked as “Ot–XtYtZt”. Considering the self-rolling motion,
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we use IMU to calibrate the point cloud from the BODY frame to the NED frame. In the
transformation process, the position of LiDAR is chosen as the origin of the BODY frame of
the own ship, which reduces the time of coordinate transformations. (ψt, ϕt, φt) represents
the yaw angle, roll angle, and pitch angle of the target ship. (ψs, ϕs, φs) represents the yaw
angle, roll angle, and pitch angle of the own ship, which are collected by IMU. These angles
can be used to calculate the rotation transformation matrix between the BODY frame of the
own ship and world coordinate using

∼
x
∼
y
∼
z

 = RzRyRx

x
y
z

 (1)

with

Rz =

cos ψs − sin ψs 0
sin ψs cos ψs 0

0 0 1

, Ry =

 cos φs 0 sin φs
0 1 0

− sin φs 0 cos φs

, Rx =

1 0 0
0 cos ϕs − sin ϕs
0 sin ϕs cos ϕs

. (2)
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2.2. Overall Workflow of the Framework

As shown in Figure 4, the ship attitude-estimation method proposed in this paper can
be divided into three steps:
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• Step 1: The first step finishes the voxel-grid filter-based down-sampling process
according to the given sample size, as demonstrated in Section 2.1.

• Step 2: The second step is the feature extraction from the point clouds by the improved
RANSAC, which will be elaborated in Section 2.3. In brief, the point cloud is trans-
formed into the same coordinate system as the own ship. Then, the down-sampled
point cloud is preprocessed by a normal vector-based filter, which estimates the nor-
mal vector of each point (defined later in Section 2.3) and filters the irrelevant points
according to the tolerance. After that, the plane-fitting process can provide the optimal
plane function of the feature plane in accordance with the given tolerance.

• Step 3: After obtaining the feature plane, the last step calculates the target ship’s yaw
angle, roll angle, yaw rate, and roll rate using the normal vector of the feature plane.
Specifically, as shown in Figure 5, we assume that the feature plane of the ship is
approximately parallel to the XtOtZt plane in the BODY of the target ship; hence, the
included angle ψp between the normal vector of the feature plane and the YtOtZt
plane of the NED frame equals the ψt (shown in Figure 5a). The roll angle equals the
subtraction of the board-side inclination angle θs from the included angle ϕp between
the normal vector of the feature plane and the XtOtYt plane of the target ship BODY
(shown in Figure 5b). Based on the above observation, the target ship’s ψt, ϕt,

.
ψt ,

and
.
ϕt can be calculated using Equations (3) and (4), where the vector (Ap, Bp, Cp)

represents the normal vector of the feature plane, which is calculated in Section 2.3.2.

ψt = ψp = acos
Bp√

Ap
2 + Bp

2
, ϕt = ϕp − θs = atan

Cp√
Ap

2 + Bp
2
− θs, (3)

.
ψt =

∆ψt

∆t
,

.
ϕt =

∆ϕt

∆t
, (4)
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2.3. The Improved RANSAC Algorithm

As mentioned in the introduction, the standard RANSAC will randomly choose three
points in the raw data to construct the candidate plane and judge if the plane can meet
this requirement, which might extract other planes in the ship point cloud and lead to the
failure of the estimation. To address such a problem, we construct a normal vector-based
filter as a preprocessing algorithm.

2.3.1. Normal Estimation and Normal Vector-Based Filter

To ensure the extraction of the board-side plane, this study introduces a normal filter
that can reinforce the board-side plane feature by removing irrelevant points based on the
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normal vectors. The normal vector of a discrete point is defined as the normal vector of
the plane fitted by the specific point and its neighbor points [22] (an illustrative example is
given in Figure 6). We note that, using this definition, the normal vector of a discrete point
can describe the plane feature near the point.
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Mathematically, the computation of the normal vector (
∼
Ai,
∼
Bi,
∼
Ci) is realized by a

standard least square method of plane fitting, and the plane function is

Aix + Biy + Di = z. (5)

For each point (xi, yi, zi) in the point cloud, the normal vector is calculated through
neighbor points (xj, yj, zj), defined by their Euler distance as{(

xj, yj, zj
)
∈ {xk, yk, zk}n

k=1

∣∣∣∣√(xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2≤ ε

}
, (6)

where the distance tolerance value ε is gained by trial and error. Then, the feature plane
can be fitted by the least square method as xi

2 + ∑n
j=1 xj

2 xiyi + ∑n
j=1 xjyj xi + ∑n

j=1 xj

xiyi + ∑n
j=1 xjyj yi

2 + ∑n
j=1 yj

2 yi + ∑n
j=1 yj

xi + ∑n
j=1 xj yi + ∑n

j=1 yj n + 1


Ai

Bi
Di

 =

xizi + ∑n
j=1 xjzj

yizi + ∑n
j=1 yjzj

zi + ∑n
j=1 zj

, (7)

where the parameters Ai, Bi and Di can be used to compute the normal vector (
∼
Ai,

∼
Bi,

∼
Ci)

using
∼
Ai = Ai/Di,

∼
Bi = Bi/Di,

∼
Ci = −1/Di . (8)

After the normal vectors of the points are calculated, the normal filter is adopted to
rule out most of the points that are irrelevant to the feature plane. Algorithm 1 provides
the corresponding workflow, which first randomly picks a point in the point cloud and
places it in a point set. To be concrete, if a specific point in the point cloud has a normal
vector similar to other points in the existing point set, the point will be put into that point
set. Otherwise, if no point set shares a similar normal vector for that specific point, a new
point set will be created to include it. The difference between the normal vectors of two
points is defined as

∆d(qi, qj) =

∣∣∣∣∣∣∣∣∣acos

∣∣∣∣∼Ai
∼
Aj +

∼
Bi
∼
Bj +

∼
Ci
∼
Cj

∣∣∣∣√
∼
Ai

2
+
∼
Bi

2
+
∼
Ci

2
√
∼
Aj

2
+
∼
Bj

2
+
∼
Cj

2

∣∣∣∣∣∣∣∣∣, (9)
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where qi, qj are the normal vectors (
∼
Ai,

∼
Bi,

∼
Ci) and (

∼
Aj,

∼
Bj,

∼
Cj). The above process is

looped until all points in the point cloud are divided into different point sets. Then, we
apply the point number of each point set as the filtering index, and the largest point set is
considered the major component and preserved. After angular filtering, the same algorithm
is applied using Euler distance. We note that this filtering method can preserve the major
plane and remove other irrelevant minor planes in the point cloud. Finally, the filtered
point cloud is constructed from the preserved point set. As shown in Figure 7, we show the
input point cloud in (a) and the filtered point cloud in (b), which illustrates that our normal
vector-based filter can rule out irrelevant points.
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Figure 7. Point cloud normal vector-based filtering: (a) represents the input point cloud; (b) represents
after filtering.

Algorithm 1: Normal vector-based filter algorithm

Input : point cloud with normal vector set Q, threshold ξ Output : subset C
1 : for each qi in Q :
2 : Ci ← {qi} , Q ← Q − {qi}
3 : num ← 0
4 : while num 6=|Ci| :
5 : num ← |Ci|
6 : for each cj in Ci :
7 : for each qi in Q :
8 : if ∆d(cj, qj) ≤ ξ :
9 : Ci ← Ci + {qj} , Q ← Q − {qj}
10 : end if
11 : end for
12 : end for
13 : end while
14 : end for
15 : index ← argmaxi|Ci|
16 : C ← Cindex

2.3.2. The Improved RANSAC with Preprocessing

After ruling out irrelevant points with the normal vector-based filtering algorithm, the
improved RANSAC then randomly picks three points (x̂1, ŷ1, ẑ1), ( x̂2, ŷ2, ẑ2), ( x̂3, ŷ3, ẑ3)
in the filtered point cloud and calculates the candidate feature plane function using∣∣∣∣∣∣

x− x̂1 y− ŷ1 z− ẑ1
x̂2 − x̂1 ŷ2 − ŷ1 ẑ2 − ẑ1
x̂3 − x̂1 ŷ3 − ŷ1 ẑ3 − ẑ1

∣∣∣∣∣∣ = 0 . (10)

The plane function of the candidate plane can then be obtained according to

Ax + By + D = z, (11)
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which is deduced from Formula (11). Then, we calculate the score of the plane m as the
number of points whose distance to the plane is within the tolerance ε (we name the points
within the tolerance as feature points). Mathematically, it is defined as

m:=card

({(
x̌j, y̌j, žj

)
∈
{(

xj, yj, zj
)}k

j=1

∣∣∣∣∣
∣∣Ax̌j+By̌j + žj − D

∣∣
√

A2 + B2 + 12
≤ ε

})
. (12)

Repeat the above process for predefined cycle times and select the plane function with
the highest score as the feature plane function. Then, the normal vector of the feature plane
(Ap, Bp, Cp) is calculated using

Ap = Am/Dm, Bp = Bm/Dm, Cp = −1/Dm, (13)

where Am, Bm and Dm are the parameters of the selected feature plane function. Figure 8
provides an illustrative example of the fitting process.
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Figure 8. The plane-fitting of RANSAC. The red points are the chosen points, the blue points are near
the constructed plane, and the black points are the noise points.

3. Experiments and Results

In this study, we applied both real water-pool experiments and numerical tests to
validate our method. The methods applied in the experiments are “Improved RANSAC
with Voxel Filter” (hereafter referred to as “Improved RANSAC with VF”), which is the
proposed framework; “Standard RANSAC with Voxel Filter” (hereafter referred to as
“Standard RANSAC with VF”); “Improved RANSAC without Voxel Filter” (hereafter
referred to as the “Improved RANSAC without VF”). The authors apply the Root Mean
Square Errors (RMSE) and the Mean Absolute Errors (MAE) as the indicators of errors,
following [25]. The calculation formulas are as follows:

RMSE =

√
1
n ∑n

i=1(xi − x̂i)
2, (14)

MAE =
1
n ∑n

i=1|xi − x̂i|, (15)

where xi is the estimated value, x̂i is the reference value, and n is the number of the
estimation result. The above indexes are referred to as the evaluation indexes of the
estimation results.
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3.1. Water-Pool Experiments

To verify the filtering ability of our normal vector-based filter under real environmental
noise and verify our attitude-estimation framework on a real ship target, we carried out
the experiment in an outdoor water pool.

3.1.1. Experimental Environment and Configuration

In water-pool experiments, we adopted “LS-M1” solid-state LiDAR, with detailed
technical information given in Table 1. We equipped the experimental USV named “Hong
Dong No. 1” with an IMU system to measure the attitude state, and the dimensional
information is shown in Table 2. The experimental scene is shown in Figure 9. In the
experiment, we gave the USV an initial moving speed and created some waves in the pool
to keep the USV moving freely for ten seconds. The moving motion was recorded using the
IMU equipped on the USV and estimated by LiDAR. As shown in Table 3, the parameters
of each method were set consistently. The leaf size of the voxel filter is 3 cm.

Table 1. Technical information of the “LS-M1” LiDAR.

Information Value

maximum range 350 m
laser fire frequency 18,000 Hz

vertical field of view 35 deg
vertical angular resolution 0.03 deg

horizontal field of view 120 deg
horizontal angular resolution 0.06 deg

Table 2. Dimensional information of the “Hong Dong No. 1” USV.

Information Value

main size 1.5 m
molded breadth 0.74 m
molded depth 0.6 m

designed draught 0.2 m
board-side inclination angle 0.1 deg
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Table 3. The parameter settings of each method in the water pool experiment.

Method Parameter Meaning Value

Improved RANSAC with VF
εa Max distance of neighbor points 0.035 m
ξa Threshold of normal vector angle 0.02 rad
εa Distance tolerance of point to plane 0.05 m

Standard RANSAC with VF εb Distance tolerance of point to plane 0.05 m

Improved RANSAC without VF
εc Max distance of neighbor points 0.035 m
ξc Threshold of normal vector angle 0.02 rad
εc Distance tolerance of point to plane 0.05 m

3.1.2. Experimental Results

The snapshots of the experiment are shown in Figure 10 to provide visual aids. The
actual point clouds in the experiments are shown in Figure 11a. The red rectangle highlights
the noise points caused by unknown reflections and the green points belong to the feature
plane that we want to extract. The number of the reflected points of the USV is around
15,000, while the board-side plane only reflects around 1000 points, which shows that
the collected point clouds in the experiment are severely affected by unknown reflections
around the target USV. It can be seen from Figure 11b that, after applying the proposed
normal vector-based filter, the number of irrelevant points is significantly reduced.
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Figure 11. The comparison of the actual raw point cloud and after filtering in the water-pool
experiments: (a) represents the originally collected point cloud; (b) highlights the point cloud after
our normal vector-based filter in blue.

After applying the proposed filtering algorithm, we then computed the feature plane.
The feature-plane-extraction results are shown in Figure 12. Figure 12a shows the extraction
result of the standard RANSAC whose input point cloud is obtained directly from LiDAR
without normal vector-based filtering, while Figure 12b shows the extraction result of
the improved RANSAC with pre-processing. It can be seen from Figures 11a and 12a
that the feature points that standard RANSAC extracts are mainly noise points, while
Figures 11a and 12b show that our improved RANSAC can extract feature points belonging
to the board-side plane.
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Figure 12. The comparison of the feature-plane-extraction results of standard RANSAC and improved
RANSAC in the water-pool experiments: (a) shows the feature-plane-extraction result of standard
RANSAC; (b) shows the feature-plane-extraction result of our improved RANSAC.

After computing the feature planes, we applied the estimation methods to esti-
mate the attitude. The estimation results and the corresponding IMU data are shown
in Figures 13 and 14 The roll angle estimated by standard RANSAC is far from the IMU
data and suffers sudden change. The yaw angle follows the trend of the IMU data but
there is a gap between these angles. Due to the errors in the angle estimation stage, the
rate estimation also contains great losses. The roll angle estimated by improved RANSAC
is close to the IMU data. The yaw angle estimation can follow the trend of the IMU data
despite small fluctuations. In addition, the yaw angle variance between the improved
RANSAC with/without VF is evident in Figure 13. The reason might be that the leaf size
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of the voxel filter is not ignorable compared with the small main size of the USV. The point
clouds might lose some minor details due to the large ratio of the leaf size to the main size
of the USV. We remark that this variance is not a concerning problem and will become
unobtrusive as the ratio becomes smaller. Furthermore, it can be observed in Figure 13
that the standard RANSAC exhibits a drift in both roll angle and yaw angle after the 7-s
mark. This is caused by the changes in the environmental noise points after 7 s. The
changes have a negative effect on the standard RANSAC. Since our method puts much
effort into reducing noise points, this drift is filtered out. As shown in Table 4, we calculate
the evaluation indexes of each method.
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Table 4. The evaluation indexes of each method in the water-pool experiments.

Method Attitude State RMSE MAE

Improved RANSAC with VF

Roll Angle 2.0371◦ 1.6907◦

Yaw Angle 1.3204◦ 1.1092◦

Roll Rate 19.1547◦/s 15.8893◦/s
Yaw Rate 12.6331◦/s 8.9665◦/s

Improved RANSAC without VF

Roll Angle 1.9879◦ 1.6301◦

Yaw Angle 1.2956◦ 1.1068◦

Roll Rate 18.2154◦/s 14.3370◦/s
Yaw Rate 12.0684◦/s 8.8624◦/s

Standard RANSAC with VF

Roll Angle 14.5339◦ 13.8871◦

Yaw Angle 8.4089◦ 8.2139◦

Roll Rate 140.2946◦/s 75.8283◦/s
Yaw Rate 10.8218◦/s 7.6778◦/s

3.2. Numerical Tests

To verify the general applicability of our method for different ship types, we intend to
apply two typical ship models in the numerical tests.

3.2.1. Numerical Simulation Preparations and Configurations

The numerical motion simulations are based on the LiDAR computation model, the
target ship models, and the input attitude data. As shown in Table 5, the LiDAR computa-
tion model is based on VLP-32 LiDAR, which is widely used in various studies [26,27] and
whose detection range can satisfy the need of towing operations. The LiDAR computation
model can manifest the vertical laser beams, spinning speed, and the laser fire frequency of
real VLP-32 LiDAR. As the sea surface only serves as an interface to divide the under-water
part and the above-water part of the ship model, the accurate sea-surface model only
provides a small improvement compared to the single-plane sea-surface model for the
proposed algorithm [28]. To simplify the problem, a single plane parallel to the sea level is
adopted and the position is set to the designed draught water line of the ship model. In this
case, the simulation system can only produce reflection points above the designed draught
water line, which is in line with the actual situation.

Table 5. Technical information of the VLP-32 LiDAR.

Information Value

laser beam 32
spinning speed 300 RPM

maximum range 200 m
laser fire frequency 21,700 Hz

vertical field of view 40 deg
horizontal field of view 360 deg

horizontal angular resolution 0.08 deg

The first model is a typical container ship with large board-side planes, and the
dimensional information is given in Table 6. As shown in Figure 15, the test scene consists
of the target container ship and an observing boat. We equip the observing boat with
LiDAR to collect point clouds and use IMU to calibrate the LiDAR. The observing boat is
placed 70 m from the starboard of the target container ship and can move freely. The input
attitude of the container ship model is set in accordance with the output of a 4-DOF motion
model of a container ship [29,30]. The movement of the container ship in the experiment
is set as follows: the ship will first make a turn to trace the target course of 22◦. After the
course angle reaches 22◦, the ship will turn to −17◦and maintain its course. As shown in
Table 7, the parameters of each method in this test are set consistently. The leaf size of the
voxel filter is 1 m.
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Table 6. Dimensional information of the container model.

Information Value

main size 125 m
molded breadth 25 m
molded depth 13 m

designed draught 8 m
board-side inclination angle 0.05 deg
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Figure 15. The test scene of the container ship motion simulation. The coordinate arrows show the
installation position of LiDAR on the observing boat.

Table 7. The parameter settings of each method in the container ship motion simulation.

Method Parameter Meaning Value

Improved RANSAC with VF
εa Max distance of neighbor points 10 m
ξa Threshold of normal vector angle 0.003 rad
εa Distance tolerance of point to plane 0.05 m

Standard RANSAC with VF εb Distance tolerance of point to plane 0.05 m

Improved RANSAC without VF
εc Max distance of neighbor points 10 m
ξc Threshold of normal vector angle 0.003 rad
εc Distance tolerance of point to plane 0.05 m

The second model is a typical yacht with a smaller board-side plane than the container
ship, and the dimensional information is given in Table 8. As shown in Figure 16, the test
scene consists of a target yacht and an observing boat. The observing boat was placed
30 m from the starboard of the target yacht. The input attitude data of the yacht was set by
a set of collected data by the GNSS/IMU system on a real yacht whose basic dimension
was roughly the same as the adopted model. As shown in Table 9, the parameters in each
method were the same. The leaf size of the voxel filter is 10 cm.

Table 8. Dimensional information of the yacht model.

Information Value

main size 20 m
molded breadth 6 m
molded depth 3 m

designed draught 1 m
board-side inclination angle 0.1 deg
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position of LiDAR on the observing boat.

Table 9. The parameter settings of each method in the yacht motion simulation.

Method Parameter Meaning Value

Improved RANSAC with VF
εa Max distance of neighbor points 3 m
ξa Threshold of normal vector angle 0.04 rad
εa Distance tolerance of point to plane 0.0075 m

Standard RANSAC with VF εb Distance tolerance of point to plane 0.0075 m

Improved RANSAC without VF
εc Max distance of neighbor points 3 m
ξc Threshold of normal vector angle 0.04 rad
εc Distance tolerance of point to plane 0.0075 m

3.2.2. Test Results of the Container Ship Model Motion Simulation

First, we calibrate the point cloud using the IMU data of the observing boat and extract
the feature plane. As shown in Figure 17a, standard RANSAC faces interference from
irrelevant points on the upper structure part of the container ship, while Figure 17b shows
that an improved RANSAC can extract the board-side plane of the container.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 16 of 23 
 

 

from irrelevant points on the upper structure part of the container ship, while Figure 17b 
shows that an improved RANSAC can extract the board-side plane of the container. 

  
(a) (b) 

Figure 17. The comparison of the feature-plane-extraction results of standard RANSAC and 
improved RANSAC in the container ship motion simulations: (a) shows the feature-plane-extraction 
result of standard RANSAC; (b) shows the feature-plane-extraction result of our improved 
RANSAC. 

After extracting the feature planes, we then calculate the attitude states. The 
estimation results and the corresponding 4DOF model output (the true value in this test) 
are shown in Figures 18 and 19. As shown in Figure 18, the roll angle estimated by 
improved RANSAC can follow the trend of the true value, while the estimated roll angle 
of the standard RANSAC method is unsteady and far from the true value. All three 
methods can estimate the yaw angle in a way that is close to the true value. From the 
enlarged figure, we can notice that the lines of the improved RANSAC are closer to the 
true value line. As shown in Figure 19, the rate value lines of standard RANSAC can 
follow the trend of the true value, but fluctuate and contain lots of turning points, while 
the improved RANSAC estimation lines are steady and close to the true value line. We 
calculate the evaluation indexes of each method in Table 10. 

 
Figure 18. The roll angle and yaw angle results in the container ship simulations. 

Figure 17. The comparison of the feature-plane-extraction results of standard RANSAC and improved
RANSAC in the container ship motion simulations: (a) shows the feature-plane-extraction result of
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After extracting the feature planes, we then calculate the attitude states. The estimation
results and the corresponding 4DOF model output (the true value in this test) are shown in
Figures 18 and 19. As shown in Figure 18, the roll angle estimated by improved RANSAC
can follow the trend of the true value, while the estimated roll angle of the standard
RANSAC method is unsteady and far from the true value. All three methods can estimate
the yaw angle in a way that is close to the true value. From the enlarged figure, we can
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notice that the lines of the improved RANSAC are closer to the true value line. As shown in
Figure 19, the rate value lines of standard RANSAC can follow the trend of the true value,
but fluctuate and contain lots of turning points, while the improved RANSAC estimation
lines are steady and close to the true value line. We calculate the evaluation indexes of each
method in Table 10.
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Table 10. The evaluation indexes of each method in the container ship motion simulations.

Method Attitude State RMSE MAE

Improved RANSAC with VF

Roll Angle 0.0373◦ 0.0316◦

Yaw Angle 0.0350◦ 0.0294◦

Roll Rate 0.1201◦/s 0.0859◦/s
Yaw Rate 0.1433◦/s 0.1163◦/s

Improved RANSAC without VF

Roll Angle 0.0377◦ 0.0307◦

Yaw Angle 0.0349◦ 0.0293◦

Roll Rate 0.1088◦/s 0.0766◦/s
Yaw Rate 0.1430◦/s 0.1162◦/s

Standard RANSAC with VF

Roll Angle 13.9727◦ 13.5472◦

Yaw Angle 0.2845◦ 0.2383◦

Roll Rate 13.0475◦/s 10.0682◦/s
Yaw Rate 0.8129/s 0.6323◦/s

3.2.3. Test Results of the Yacht Model Motion Simulation

First, we calibrate the point cloud using the IMU data of the observing boat and extract
the feature plane. As shown in Figure 20a, standard RANSAC faces interference from
irrelevant points on other parts of the yacht, while Figure 20b shows that an improved
RANSAC can extract the board-side plane of the yacht.
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Figure 20. The comparison of the feature-plane-extraction results of standard RANSAC and improved
RANSAC in the yacht motion simulations: (a) shows the feature-plane-extraction result of standard
RANSAC; (b) shows the feature-plane-extraction result of our improved RANSAC.

Then, we calculate the attitude state based on the extraction results. The estimation
results of each method and the GNSS/IMU system data (the true value in this test) are
shown in Figures 21 and 22. In Figure 21, the roll angle line of standard RANSAC is twisty
and far from the true value. The yaw angle line of standard RANSAC can follow the trend
of true value despite some fluctuations. Both the yaw angle lines and roll angle lines of
the improved RANSAC are steady and close to the true value. In Figure 22, the roll rate
and yaw rate lines of the standard RANSAC can follow the trend of the true value but
suffer from large fluctuations, while the rate lines of the improved RANSAC are smooth
and close to the true value. As shown in Table 11, we calculate the evaluation indexes of
each method.
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Table 11. The evaluation indexes of each method in the yacht motion simulations.

Method Attitude State RMSE MAE

Improved RANSAC with VF

Roll Angle 0.0466◦ 0.0368◦

Yaw Angle 0.0365◦ 0.0295◦

Roll Rate 0.1942◦/s 0.1513◦/s
Yaw Rate 0.1362◦/s 0.1090◦/s

Improved RANSAC without VF

Roll Angle 0.0440◦ 0.0346◦

Yaw Angle 0.0363◦ 0.0292◦

Roll Rate 0.1843◦/s 0.1449◦/s
Yaw Rate 0.1354◦/s 0.1083◦/s

Standard RANSAC with VF

Roll Angle 12.7396◦ 12.2805◦

Yaw Angle 0.8079◦ 0.6695◦

Roll Rate 11.5327◦/s 6.9814◦/s
Yaw Rate 2.1816◦/s 1.5662◦/s
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4. Discussion
4.1. Discuss the Feature-Plane-Extraction Ability of the Methods

From the comparisons of Figures 12, 17 and 20, we can observe that the feature-plane-
extraction results of improved RANSAC are more accurate than those of the standard
RANSAC. We note that the noise points in the three tests mainly consist of the unknown
reflection points and irrelevant points from other parts of the target ship. In Figure 11,
we can see that the normal vector-based filter of the improved RANSAC can rule out
both kinds of noise points sufficiently. The filtering process can reduce the possibility of
false extraction of the feature plane and thus improve the extraction ability of RANSAC.
Accurate feature-plane extraction can be achieved by improving RANSAC with our normal
vector-based filtering algorithm.

4.2. Discuss the Attitude Estimation Accuracy of the Methods

Our estimation framework can provide an accurate target attitude state when the
feature plane is properly extracted. We can infer from Tables 4, 10 and 11 that both improved
RANSAC with VF and improved RANSAC without VF can achieve better estimation results
than standard RANSAC regarding both RMSE and MAE. In Table 12, we calculate the
average evaluation indexes of each method to further discuss the accuracy.

Table 12. The average evaluation indexes 1 of each method.

Attitude State Method Average RMSE Average MAE

Roll Angle (◦)
Improved RANSAC with VF 0.7070 0.5864

Improved RANSAC without VF 0.6899 0.5651
Standard RANSAC with VF 13.7487 13.2383

Yaw Angle (◦)
Improved RANSAC with VF 0.4640 0.3894

Improved RANSAC without VF 0.4556 0.3884
Standard RANSAC with VF 2.9247 3.0406

Roll Rate (◦/s)
Improved RANSAC with VF 6.4897 5.3755

Improved RANSAC without VF 6.1695 4.8528
Standard RANSAC with VF 54.9583 30.9593

Yaw Rate (◦/s)
Improved RANSAC with VF 4.3042 3.0639

Improved RANSAC without VF 4.1156 3.0290
Standard RANSAC with VF 4.6054 3.2921

1 Average indexes of each method are computed by averaging its indexes of three tests.

Both methods using improved RANSAC show great improvements compared with
standard RANSAC in terms of roll angle, yaw angle, and roll rate, while the yaw rate
estimation results are slightly improved. One possible reason for this is that the irrelevant
points from other parts of the target ship might be static and have little influence on yaw
rate estimation.

To show the improvement in accuracy in more detail, we calculate the angle and
angular rate average evaluation indexes of improved RANSAC with VF and standard
RANSAC with VF in Table 13. The angle reduction percentages of RMSE and MAE are
91.62% and 92.93%, respectively. The angular rate reduction percentages of RMSE and
MAE are 71.81% and 75.36%, respectively. The above results show that our method can
estimate the attitude state more accurately than standard RANSAC.
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Table 13. The angle and angular rate average evaluation indexes 1 and reduction percentage.

Attitude State Method Average RMSE Average MAE

Angle
Improved RANSAC with VF 0.5855◦ 0.4879◦

Standard RANSAC with VF 8.3367◦ 8.1395◦

Reduction Percentage 2 91.62% 92.93%

Angular Rate
Improved RANSAC with VF 5.3970◦/s 4.2197◦/s
Standard RANSAC with VF 29.7819◦/s 17.1257◦/s

Reduction Percentage 2 71.81% 75.36%
1 Angle average indexes are computed by averaging the data from roll angle and yaw angle. Angular rate average
indexes are computed by averaging the data from roll rate and yaw rate. 2 Reduction percentage is calculated by
subtracting the division of “improved RANSAC with VF” by “standard RANSAC with VF” from one.

4.3. Discuss the Density Sensitiveness of Improved RANSAC

To investigate the density sensitiveness of our method, we applied the improved
RANSAC with VF and improved RANSAC without VF to estimate the attitude. The voxel
filter applied in this framework can reduce the density of the point cloud and help reduce
time consumption. Given that the proposed method mainly involves the extraction of
major geometric features of a ship model and that the voxel filter usually affects minor
details, the drawback of the voxel filter should not be a concern. The experimental results in
Tables 4, 10 and 11 indicate that the above two methods achieve similar estimation results,
which supports the application of a voxel filter. We note that the adopted voxel filter and
leaf size can preserve the features in the point cloud and, if the feature is clearly scanned,
the density of the point cloud will have little influence on the estimation process.

4.4. Discuss the General Applicability of Improved RANSAC

Our method requires the extraction of the feature plane and estimation of the attitude.
Different ship types may have different feature planes. In this paper, we used a real USV, a
container ship model, and a yacht model as targets to verify our method. The above targets
have varied shapes and sizes, and our method achieved satisfying results on these targets
(indicated in Tables 4, 10 and 11), which demonstrates that our method can be applied to
different ship types.

The drawback is that the parameters of our method for different ship targets are
different. We comment that this problem can be solved by constructing a parameter
database for typical ship types and applying existing classification methods [31–33] to
acquire the type of target ship.

4.5. Discuss Single LiDAR and Multiple LiDARs

In this study, we applied single LiDAR to observe the target ship and develop an
attitude-estimation framework. The mechanism of LiDAR makes the occlusion problem
of single LiDAR inevitable. Under the decreased relative scanning angle of LiDAR, the
occlusion of the ship’s bow or stern will invalidate the method, which is an important
issue to resolve in the future. A promising direction is combining multiple LiDARs with
the attitude-estimation framework proposed in this paper to cover the blind area of a
single LiDAR.

5. Conclusions

In this study, we proposed an attitude estimation framework that extracts the board-
side plane through an improved RANSAC method and computes the roll angle, yaw angle,
roll rate, and yaw rate of the target ship. We added a normal vector-based filter to the
standard RANSAC method to rule out the noise points in a point cloud and improve the
accuracy of the feature-extraction process. Specifically, we first prepared the point cloud
through down-sampling and calibration transformation. Next, we estimated the normal
vectors of the points and used our filter algorithm to rule out noise points. Then, the
RANSAC process provided the optimal plane function, which was adopted to calculate
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attitude information according to geometric relation. Next, we conducted a real experiment
via a USV and two numerical tests using two typical ship models (container ship and yacht)
to show the accuracy and general applicability of the proposed method.

The experimental results reveal that the average mean absolute errors of the estimated
angle and angular rate are 0.4879 deg and 4.2197 deg/s, respectively, which are 92.93%
and 75.36% more accurate than the estimation based on standard RANSAC. Remarkably,
we demonstrated the filtering ability and the practical applicability of our method in real
water-pool experiments under real environmental noises. We also investigated the density
sensitiveness of our method and found that the density of input point clouds has little
influence if the feature is clearly scanned.

However, there are some defects in this study owing to the limitations of our experi-
mental resources. The classification of target ships and auto-adaptation of the parameters
could be achieved using more abundant data sets, such as real target ships of more types.
In addition, the occlusion problem of a single LiDAR can be solved by merging multiple
LiDARs, which will be the focus of our future study.
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