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Abstract: Underwater object detection (UOD) has attracted widespread attention, being of great
significance for marine resource management, underwater security and defense, underwater in-
frastructure inspection, etc. However, high-quality UOD tasks often encounter challenges such as
image quality degradation, complex backgrounds, and occlusions between objects at different scales.
This paper presents a collaborative framework for UOD via joint image enhancement and super-
resolution to address the above problems. Specifically, a joint-oriented framework is constructed
incorporating underwater image enhancement and super-resolution techniques. The proposed
framework is capable of generating a detection-favoring appearance to provide more visual cues for
UOD tasks. Furthermore, a plug-and-play self-attention mechanism, termed multihead blurpooling
fusion network (MBFNet), is developed to capture sufficient contextual information by focusing on
the dependencies between multiscale feature maps, so that the UOD performance of our proposed
framework can be further facilitated. A comparative study on the popular URPC2020 and Brackish
datasets demonstrates the superior performance of our proposed collaborative framework, and the
ablation study also validates the effectiveness of each component within the framework.

Keywords: underwater object detection; underwater image enhancement; super-resolution; joint
learning; deep learning

1. Introduction

The exploration of marine environments has received tremendous attention due to
the urgent demand for natural resource management and ecosystem monitoring [? ]. In
recent years, the use of remotely operated vehicles (ROVs) and autonomous underwater
vehicles (AUVs) has become increasingly prevalent in various ocean engineering-related
applications. This trend further emphasizes the significant potential and value of the
underwater imaging community. As an essential step in perceiving and understanding
complex marine habitats, underwater object detection (UOD) technology plays a pivotal
role in maritime target positioning [? ], wreck salvage [? ], underwater archaeology [? ], and
many other practical applications, providing an effective strategy to uncover the mysterious
underwater world.

With the rapid development of deep learning, the great potential of object detection
technology has been significantly stimulated [? ]. At present, various schemes presented
by convolutional neural networks (CNNs) have been developed to deliver state-of-the-
art performance in complex UOD tasks [? ]. However, as opposed to ordinary camera
imaging, underwater optical imaging often encounters more challenges. The images
captured in marine environments inevitably suffer from severe quality degradation due to
light attenuation and scattering effects, resulting in undesired haziness, underexposure,
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and color distortion [? ]. Specifically, since red light with the longest wavelength can be
strongly absorbed in water, underwater images typically present a blue or turquoise color
palette. This poses challenges in accurately distinguishing different underwater objects.
Additionally, the irregular congregations and movements of marine organisms can also
lead to undesired image blur and clutter, significantly increasing the difficulty of precise
UOD [? ? ]. It should be noted that the low-end underwater imaging equipment will further
exacerbate the aforementioned drawbacks due to associated cost and hardware constraints,
leading to reduced imaging resolution and loss of detailed texture information [? ].

In summary, the current challenges in UOD extend beyond determining the locations
and categories of diverse underwater objects. It also involves the pursuit of non-degraded
and high-resolution images to effectively highlight the distinctive features of these ob-
jects. This presents a significant obstacle that has yet to be adequately addressed in
prior research [? ]. As a straightforward solution, degraded underwater images can be
pre-processed by underwater image enhancement (UIE) and super-resolution (SR) tech-
nologies, so that the UOD-related schemes can better capture the characteristics of diverse
underwater objects, effectively improving the detection precision.

1.1. Underwater Object Detection

Object detection is considered a fundamental task in the computer vision community,
which refers to determining the locations and corresponding categories of objects in a
given image. Traditional methods typically require three stages to achieve object detection,
including informative region selection, feature extraction, and classification [? ]. Extensive
experiments have demonstrated that the traditional methods for object detection are typi-
cally intuitive and easy to implement. However, these methods are extremely limited in
feature representation, which may lead to a high sensitivity of object detection precision
to factors such as illumination, scale, and occlusion. Furthermore, traditional methods
often encounter challenges when addressing object detection in complex scenarios. The
confusion between object edges and the background leads to an increased likelihood of
both false positives and negatives in detection results.

The emergence of deep learning has significantly facilitated advances in object detec-
tion. Due to the powerful feature learning and representation capabilities, the utilization of
CNNs has demonstrated superior performance and efficiency. It should be noted that UOD
is regarded as an extension of general object detection, which can be broadly categorized
into the two-stage and one-stage frameworks.

The procedure of the two-stage framework is somewhat similar to that of traditional
schemes. It first generates candidate region proposals, and then classifies them into different
object categories. Representative models based on two-stage framework include R-CNN
series [? ? ? ], spatial pyramid pooling network (SPP-Net) [? ], R-FCN [? ], feature pyramid
network (FPN) [? ], etc. Inspired by the two-stage framework, several well-received
approaches have been proposed to address the specific challenges of UOD tasks. Zeng
et al. [? ] developed a novel framework for robust detection of underwater seafood by
aggregating the adversarial occlusion network (AON) into the standard Faster R-CNN.
Superior performance can be achieved through mutual competition and learning between
the two networks. Xu et al. [? ] designed a refined marine object detector, which improves
the SPP-Net with an appropriate attention mechanism. The features from different depths
are fused utilizing an innovative bidirectional feature fusion strategy, thereby alleviating
the weakening of features and further enhancing the overall detection precision. Liu et al. [?
] presented a novel two-stage UOD network, which adopts the popular Swin Transformer
as the backbone and eliminates the quantization errors of region of interest (ROI), so that
the performance can be effectively enhanced. Song et al. [? ] designed a new region
proposal network termed RetinaRPN. It fully considers the intersection over union (IoU)
prediction for uncertainty, and the object prior probability can be accordingly modeled.

One-stage framework eschews the use of region proposals and directly extracts hier-
archical features to predict the detection results, significantly highlighting the powerful
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real-time processing capabilities. At present, five representative benchmark methods based
on the one-stage framework have been widely used in various UOD tasks, namely Single
Shot MultiBox Detector (SSD) [? ], CenterNet [? ], RetinaNet [? ], You Only Look Once
(YOLO) series [? ? ? ? ], and DEtection TRansformer (DETR) series [? ? ]. Li et al. [? ] devel-
oped a YOLOv3-based network for zooplankton detection, which adopts densely connected
structures to facilitate feature transmission. Hu et al. [? ] focused on the real-time detection
of uneaten feed pellets in underwater images. It combines the popular DenseNet with the
YOLOv4 model to achieve simultaneous improvement of detection precision and efficiency.
Wang et al. [? ] proposed a lightweight underwater object detection network termed
LUO-YOLOX using weighted ghost-CSPDarknet and simplified PANet. Additionally, the
authors also presented an efficient self-supervised pre-training joint framework based on
underwater auto-encoder transformation (UAET), which can address the problems of color
distortion and unclear targets in underwater images. Zhang et al. [? ] presented the
Transformer-based bi-directional feature pyramid network (BiFPN) for object detection. It
combines the multihead self-attention into the original CSPDarkNet to achieve effective
cross-scale feature fusion. Zhang et al. [? ] proposed an attractive one-stage network for
UOD, which combines the MobileNetv2 and depth-wise separable convolution to effec-
tively reduce the computational load. Zhao et al. [? ] proposed an improved YOLOv4
network for more precise UOD, which consists of a symmetrical bottleneck-type structure,
an enhanced FPN-Attention module, and a label smoothing training strategy. Sun et al. [? ]
presented a novel UOD network combining the MobileViT and YOLOX, further facilitating
the feature extraction ability of the network.

1.2. Underwater Image Enhancement and Super-Resolution

Generally speaking, underwater images inevitably suffer from severe quality degra-
dation due to the following three common reasons [? ? ? ]: (1) Light attenuation and
scattering often lead to color distortion, low contrast, and opacity in underwater images.
(2) Diverse active floating particles and suspended bodies in marine environments further
aggravate image degradation, resulting in haze-like and blurred effects. (3) Low-end optical
cameras are unable to fully consider the problems inherent in diverse marine environments,
which often result in random noise and regional ambiguity in the generated underwa-
ter images. In this context, the above deficiencies seriously impact the effectiveness and
precision of the UOD tasks. Figure ?? shows some visualized object detection samples in
underwater images of varying visual quality based on the popular YOLOv5 model. As
observed, high-quality underwater images are more conducive to stimulating the potential
of such context-aware object detection approaches, which indicates that the necessary
pre-processing of underwater images can boost the performance of UOD tasks. To this
end, we will focus on two common image pre-processing schemes in this paper, namely
underwater image enhancement (UIE) and super-resolution (SR), to provide more effective
visual cues for UOD tasks.

Figure 1. Object detection samples in underwater images of varying visual quality based on the
popular YOLOv5 model.

UIE aims to correct the distorted colors and enhance the reduced contrast of raw
underwater images, thereby alleviating the influence of light attenuation and scattering [?
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? ]. Existing UIE techniques can be broadly categorized into physical model-based [? ? ],
nonphysical model-based [? ? ], and learning-based [? ? ] methods. Physical-model-based
methods estimate the background light and transmission map according to the underwater
optical imaging model [? ], but the precise enhancement of underwater images relies
significantly on prior knowledge. Nonphysical-model-based methods directly modify
image pixels to generate visually pleasing results without considering the degradation
mechanism. Learning-based methods achieve end-to-end modeling of complex nonlinear
systems by learning the mapping between paired raw and enhanced underwater images.
On the other hand, SR is considered to address the inherent ill-posed problem, which aims
to reconstruct a high-resolution image from its low-resolution observation, so that the
image clarity can be improved [? ? ]. Existing SR techniques can be broadly categorized
into interpolation-based [? ], reconstruction-based [? ? ], and learning-based [? ? ? ]
methods. Interpolation-based methods treat each image pixel as an individual grid, and
SR is performed by estimating pixel values between adjacent grids. Reconstruction-based
methods involve deducing the inverse degradation process by utilizing prior information
from the raw low-resolution image with necessary constraints. Learning-based methods
infer the degradation by learning the mapping between paired low- and high-resolution
images, enabling the exploration of the optimal SR process. To summarize, Table ?? presents
an overview of the categories, definitions, advantages, and disadvantages of the UIE and
SR techniques, respectively.

Table 1. Descriptions of the UIE and SR techniques.

Techniques Categories Definitions Advantages Disadvantages

UIE

Physical Model-Based [? ? ]

Estimating background light
and transmission map based

on underwater optical
imaging formulation

Sensitive to transparency,
scattering effects, and

absorption coefficients of
water

Difficulty in parameter
adjustment and optimization
with limited generalization

Nonphysical Model-Based [? ?
]

Directly modifying image
pixels

Simple and
easy-to-implement

Lacking theoretical basis and
guidance from physical

models

Learning-Based [? ? ]
Learning the mapping

functions between paired raw
and enhanced images

Strong performance in
constructing complex

mapping with excellent
generalization

Requiring sufficient training
data

SR

Interpolation-Based [? ]
Interpolating pixel values

between known adjacent pixel
grids

Simple and cost-effective Limited improvement in
high-frequency image details

Reconstruction-Based [? ? ]
Inferring inverse degradation

process based on prior
information

Promising preservation of
enhanced image structures

and details

Sensitive to noise and artifacts,
and requiring additional prior

information

Learning-Based [? ? ? ]
Learning the mapping

functions between paired low-
and high-resolution images

Superior performance in
capturing and generating
image details and textures

Requires sufficient training
data

At present, continuous efforts have demonstrated that the learning-based methods
can deliver state-of-the-art performance in both UIE and SR techniques. Furthermore, the
learning-based methods can also avoid the construction and estimation of complex degra-
dation models, which significantly increases the generalization ability to cope with diverse
and complex underwater scenarios. Therefore, we adopt the learning-based mathematical
model for both UIE and SR in this paper to construct complex mapping between degraded
and high-quality image pairs. To summarize, our objective is to leverage the aforemen-
tioned salient properties and present the collaborative framework by jointly integrating the
functions of UIE and SR, so that more detection-favoring visual cues can be revealed to
facilitate the subsequent UOD tasks.
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1.3. Main Novelties and Contributions

In this paper, a novel collaborative framework for UOD is proposed. The main
novelties and contributions of our work can be summarized as follows:

• As opposed to the existing schemes, we present a collaborative framework via joint
image enhancement and super-resolution. By employing a joint-oriented network
training strategy, the proposed framework is more effective at generating a detection-
favoring appearance to stimulate efficient and precise object detection of underwater
images.

• A plug-and-play self-attention mechanism called multihead blurpooling fusion net-
work (MBFNet) is developed, which enables our proposed framework to capture suffi-
cient contextual information concerning the dependencies between feature maps from
a broader and more focused viewpoint, thereby further enhancing UOD performance.

• A heuristic step-by-step training strategy is designed for our proposed collaborative
framework. Compared with the conventional end-to-end training strategy, our de-
signed step-by-step training strategy can effectively alleviate the potential gradient
vanishing or exploding by dividing the whole training process into refined stages, so
that the framework architecture can be better controlled.

2. Proposed Method

We first provide an overview of our proposed collaborative framework in Section ??.
The three primary components of our proposed framework, namely MBFNet, pre-processing
module (PPM), and underwater object detection module (UODM), are then illustrated in
Section ??. Subsequently, Section ?? describes the loss function of our framework. Finally,
the step-by-step training strategy of our framework is overviewed in Section ??.

2.1. Overview of the Proposed Collaborative Framework

The architecture of our proposed collaborative framework is shown in Figure ??, which
mainly consists of three primary components including MBFNet, PPM, and UODM. The
MBFNet is essentially considered a plug-and-play self-attention mechanism, which not only
generates enhanced feature maps with coherent structures and rich details, but also enables
our proposed collaborative network to better understand images from both global and
local perspectives to capture more representative features. The PPM aims to pre-process the
raw underwater images in terms of color correction and resolution improvement, thereby
enhancing the availability of visual cues for better detection of diverse underwater objects.
The UODM is defined as the central component for detecting fuzzy and difficult-to-find
underwater objects. Note that the popular PANet structure [? ] is utilized in the UODM for
precise prediction of small-scale underwater objects, and the step-by-step training strategy
is also operated to promote the high-quality integration and interaction between the PPM
and UODM.

Backbone

Neck 

PPM

cc

cc

1×1 CBL 3×3 CBL+3×3Conv

Channel Concatenation

UFB DFB

SPP

SR ComponentUIE Component
Prediction Head

S3  S4  S5 

P1 P2 

P3  
2P


1P


3P

Figure 2. Architecture of our proposed collaborative framework.
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2.2. Composition of the Proposed Collaborative Framework
2.2.1. Multihead Blurpooling Fusion Network

Inspired by the well-received multihead attention mechanism from Transformer-based
models [? ], we develop the effective MBFNet to facilitate the interaction of multiscale
information, so that more reasonable weights can be generated. Our proposed MBFNet
contains two initial versions, termed MBFNet-I and MBFNet-II, as shown in Figure ??.
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Figure 3. Architecture of the MBFNet. (a) MBFNet-I. (b) MBFNet-II.

For the implementation process of the MBFNet-I, the input feature map � ∈ R�×,×�
is firstly fed into the dual branches processed by a 1 × 1 convolutional layer and a 3 × 3
convolutional layer, respectively. Then, the transmissive feature map �C< ∈ R�×,×� can
be generated by the element-wise addition operation, which can be expressed by

�C< = �>=E1×1 (�) +�>=E3×3 (�) (1)

Subsequently, the generated �C< is further squeezed into two weight vectors by the
blurpooling and full connection operations, which can be formulated by{

+1 = �� (�%1×1 (�C<))
+2 = �� (�%3×3 (�C<))

(2)

where +1 ∈ R1×1×� and +2 ∈ R1×1×� symbol the two generated weight vectors. �%=×=
denotes the blurpooling operation with the filter size of = × =. �� represents the full
connection. Finally, the output feature map �̃ can be computed as follows:

�̃ = X(�>=E1×1 (�) ◦+1 +�>=E3×3 (�) ◦+2) (3)

where ◦ denotes the channel-wise multiplication, and X symbols the sigmoid activation
function. The MBFNet-II is highly similar to the MBFNet-I in implementation process,
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except that the former adopts a triple-branch network structure guided by the 1 × 1, 3 × 3,
and 5 × 5 convolutional layers, respectively.

In summary, our proposed MBFNet consists of multiple parallel branches, which
process the same input feature maps to compute weighted aggregation results. This
mechanism effectively enhances the self-representation capability of the model, so that the
features at different scales can be significantly prioritized. Furthermore, the MBFNet adopts
the blurpooling operation instead of traditional maxpooling, which can effectively address
the issue of shift-equal variance with minimal computational load, so that the features
can be better represented. As a consequence, our proposed MBFNet can capture and
associate contextual information from a large neighborhood, which is useful for learning
spatial information between difficult-to-find objects and backgrounds. This self-attention
mechanism can not only improve semantic discrimination but also significantly reduces
confusion between object categories, so that the challenges of the UOD tasks in complex
marine environments can be well addressed.

2.2.2. Pre-Processing Module

The proposed PPM aims to improve the visual quality of underwater images for better
detection and prediction of diverse underwater objects, which is composed of the UIE
component and the SR component processed in parallel.

The UIE component is developed to alleviate the visual deficiency in marine envi-
ronments including color distortion and contrast reduction. As shown in the top left
portion of Figure ??, the UIE component adopts a symmetrical and lightweight CNN-based
structure, which can be further abstracted into three procedures: (a) The feature extraction
is conducted through a 3 × 3 CBL layer (In this paper, the = × = CBL layer is defined as
the combination of a = × = convolutional layer, Batch Normalization, and Leaky ReLU
activation function.) and a residual block. Note that the residual block consists of two
3 × 3 CBL layers and a shortcut connection with a 1 × 1 convolutional layer, as shown
in the top right portion of Figure ??. (b) The feature optimization is operated through
the MBFNet-II to learn more representative and distinctive features. (c) The information
recovery is performed through a residual block and a 3 × 3 CBL layer, which is exactly
opposite to the feature extraction stage. Mathematically, the implementation process of the
UIE component can be briefly formulated as follows:

.*�� = ℱ(- , \*�� ) (4)

where - ∈ R�×,×� and .*�� ∈ R�×,×� denote the raw underwater image and its
corresponding predicted UIE image, respectively. ℱ(·, \*�� ) indicates the overall function
of the UIE component parameterized by \*�� .

The SR component is designed to restore the clear underwater image with abundant
high-frequency details based on low-resolution observation. As shown in the bottom
portion of Figure ??, the architecture of the SR component is similar to that of the UIE
component, but the difference lies in the following three aspects: (a) For the feature
extraction stage, the SR component adopts two residual blocks (For the first residual block
here, all the CBL layers maintain a consistent number of output channels, which is slightly
different from the parameters shown in the top right portion of Figure ??). (b) The bicubic
upsampling operation is conducted followed by the embedded MBFNet-I. Note that we
set the upsampling factor to 2 as an example, but it is self-evident that the upsampling
factor can be modified accordingly based on the actual situation. (c) For the information
recovery stage, the SR component adopts two 3 × 3 CBL layers, and a shortcut connection
with a 1 × 1 convolutional layer is operated to add the input feature maps to the output.
Mathematically, the implementation process of the SR component can be briefly formulated
as follows:

.(' = �(- , i(') (5)
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where .(' ∈ R�×,×� denotes the predicted SR image. �(·, i(') indicates the overall
function of the SR component parameterized by \('.
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Figure 4. Architecture of the UIE component and the SR component.

Finally, the quality-enhanced 32-channel feature map .&� output from the PPM can
be obtained by performing the channel concatenation operation between .*�� and .(',
which is expressed as follows:

.&� = [.*�� ,.('] (6)

2.2.3. Underwater Object Detection Module

The proposed UODM aims to achieve precise detection and prediction of diverse
underwater objects with different scales. In line with the typical object detection framework,
our proposed UODM also consists of three components including the backbone, the neck,
and the prediction head [? ].

The backbone is utilized to extract sufficient features from the quality-enhanced image
.&� . To fully stimulate the network performance, we mainly employ the well-received
ResNet-50 [? ] as the backbone, which has been pre-trained on the VOC2007 dataset for
network initialization. Note that our proposed UODM can also be implemented using any
other widely-used benchmark model as the backbone.

The neck in our proposed UODM aims to enhance the feature aggregation by integrat-
ing both low- and high-level information, so that a multiscale feature pyramid map can be
generated to capture underwater objects at different scales. Here, we develop a lightweight
strategy based on the popular PANet structure [? ], which comprises two efficient blocks
termed upsampling fusion block (UFB) and downsampling fusion block (DFB) to reduce
the redundancy of gradient information by employing the cross-stage operation. As shown
in Figure ??, the UFB is composed of an upsampling layer, the MBFNet-I, and a 1 × 1 CBL
layer. The DFB adopts a highly similar structure to the UFB, but it replaces the upsampling
layer in the UFB with a 3× 3 CBL layer with stride 2. These two blocks are used to facilitate
the fusion and transmission of multiscale contextual information, which benefits further
improvements in the precision and efficiency of UOD. Note that the popular SPP-Net [? ]
is also employed at the beginning of the neck to enhance the robustness and precision of
our model. This implementation is considered to alleviate the issue posed by the excessive
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number of channels in the final stage of the backbone, which may potentially prolong
inference times.

Following the general object detection framework, the prediction head of our proposed
UODM leverages the multiscale features output from the neck to achieve the prediction
at different scales, which enables the UODM to precisely locate and detect objects with
distinctive sizes in underwater images. Finally, our proposed UODM can generate the
outputs at three scales, and the corresponding bounding boxes and classification results
are determined using non-maximum suppression.

Mathematically, the implementation process of the UODM can be briefly formulated
as follows:

.*$� =ℋ(.&� , d*$�) (7)

where .*$� denotes the predicted UOD set consisting of the images with three scales.
ℋ(·, d*$�) indicates the overall function of the UODM parameterized by d*$� .

Upsampling
(2x)

MBFNet‐I

cc

1×1 CBL

Upsampling Fusion Block

2H×2W×C'
S3(or S4)

H×W×C
P1(or P2)

2H×2W×C

2H×2W×C

2H×2W×(C+C')

2H×2W×(C+C')/2
P2(or P3)

3×3 CBL
(Stride 2)

MBFNet‐I

c

1×1 CBL

H×W×C'

2H×2W×C
      (or     )

H×W×C

H×W×C

H×W×(C+C')

H×W×(C+C')/2     (or     )

Downsampling Fusion Block

P2(or P1)


2P


1P


3P


2P

(a) (b)

Figure 5. Architecture of the upsampling fusion block and the downsampling fusion block.
(a) Upsampling fusion block. (b) Downsampling fusion block.

2.3. Loss Function

In this paper, we formulate a composite loss function to align with the optimization
objective of our model, which is composed of the UIE loss, the mean square error (MSE)
loss, and the UOD loss.

2.3.1. UIE Loss

Since no ground truths are available for the UIE tasks in our collaborative framework,
we employ the self-correlated total variation (TV) loss ℒ)+ [? ] to promote spatial smooth-
ness while preserving the image style. Mathematically, the TV loss can be expressed by

ℒ)+ =

"∑
8

#∑
9

√
(.*��
8+1, 9 −.

*��
8, 9 )2 + (.*��8, 9+1 −.

*��
8, 9 )2 (8)

where .*��
8, 9 symbols the pixel value at the location (8, 9) in the predicted UIE image.

Moreover, the feature reconstruction loss ℒ5 40C [? ] is adopted to further constrain the
bias between the raw underwater image - and the corresponding predicted UIE image
.*�� , which can be expressed by

ℒ5 40C =
1

� ×, ×� ‖Z (-) − Z (.
*�� )‖2 (9)
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where Z (·) [? ] represents the function used to extract the feature representation from the
candidate image, which is pre-trained through the VGG-16 [? ] network.

Finally, the overall UIE loss ℒ*�� can be computed by the linear combination of the
above two loss functions, which is formulated as follows:

ℒ*�� = l)+ℒ)+ +l 5 40Cℒ5 40C (10)

where l)+ and l 5 40C are two weight coefficients for ℒ)+ and ℒ5 40C , respectively.

2.3.2. MSE Loss

The MSE loss ℒ"(� is considered a commonly used loss function for the SR task, as
it can effectively preserve the sharpness of edges and refined details. Mathematically, the
MSE loss can be expressed as follows:

ℒ"(� =
1
#B

#∑
8=1

‖.8 −.('8 ‖
2

(11)

where #B is the number of training samples in the SR component. .8 and .('
8

symbol the
predicted SR underwater image and its corresponding ground truth, respectively.

2.3.3. UOD Loss

To achieve precise detection of fuzzy and difficult-to-find underwater objects, we
design the UOD loss inspired by [? ], which is the combination of classification loss ℒ2;B,
localization loss ℒ;>2 , and IoU loss ℒ8>D . These three components of the loss functions can
be formulated as follows:

ℒ2;B =
1
#D

∑#
8 �! (?8 , ?̂8)

ℒ;>2 =
1

#%>B

∑#
8∈%>B 1 −��>*8

ℒ8>D =
1

#%>B

∑#
8∈%>B ���

(
��>*8 , ˆ��>*8

) (12)

where #D denotes the total grid number in the image, �! symbols the focal loss [? ], #?>B
denotes the prediction box, ��>*8 and ˆ��>*8 represents whether the #?>B box in the #D
grids contains objects or not. ��� denotes the cross entropy loss function [? ]. Then, the
UOD loss ℒ*$� is defined as the linear combination of the above three components, which
can be expressed as follows:

ℒ*$� =ℒ2;B +ℒ;>2 +ℒ8>D (13)

Considering that we have adopted a joint learning strategy to train both the PPM and
UODM, the final loss function ℒ of our proposed collaborative network can be formulated
as follows:

ℒ = _*��ℒ*�� + _('ℒ(' + _*$�ℒ*$� (14)

where _*�� , _(', and _*$� are three weighting coefficients. In this paper, we empirically
set these coefficients as 1, 1, and 10, respectively.

2.4. Step-by-Step Training Strategy

Since our proposed collaborative framework consists of different modules with specific
functions, we adopt a step-by-step training strategy for the model in this paper. Compared
with the conventional end-to-end strategy, the step-by-step training strategy allows for each
distinctive module to be trained individually, so that the overall framework architecture can
be better controlled. In addition, the step-by-step training strategy can effectively alleviate
the potential gradient vanishing or exploding by dividing the whole training process into
refined stages, facilitating more reasonable controlled optimization and possible faster
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convergence. The pseudo-code of the training process for our proposed collaborative
framework is illustrated in Algorithm ??. Note that the validation and testing procedures
in our proposed collaborative framework follow the standard rules of general CNN-based
models. The performance on the validation set is evaluated after each training epoch
to determine the hyperparameter tuning or early stopping, and the performance on the
testing set provides an unbiased estimate of the model’s ability to detect diverse underwater
objects.

Algorithm 1 Step-by-Step Training Strategy
Input: The overall collaborative framework Φ with parameter group:
1: A set of outputs from different modules . =

{
.*�� ,. (' ,.*$�

}
;

2: Training set: g;
3: Mini-batch (GB , HB) ∈ g;
4: Convergence threshold: W;
5: Loss function: ℒ = {ℒ*�� ,ℒ(' ,ℒ*$� };
6: Actual value of the loss function: ;

Output: Untrained network: Φ(- ;.*$�) ;
7: // Step 1: Train the PPM individually.
8: procedure TRAIN(Φ, g)
9: repeat

10: ; ←ℒ*�� (ℱ (GB , \*�� ) , HB) ;ℒ(' (� (GB , i(') , HB)
11: until ; < W
12: end procedure
13: . ← . \

{
.*�� ,. ('

}
// Freeze the PPM.

14: // Step 2: Train the UODM individually.
15: procedure TRAIN(Φ, g)
16: repeat
17: ; ←ℒ*$� (ℋ (GB , d*$�) , HB)
18: until ; < W
19: end procedure
20: . ← . ∪

{
.*�� ,. ('

}
// Activate the PPM.

21: // Step 3: Train the PPM and UODM jointly.
22: procedure TRAIN(Φ, g)
23: repeat
24: ; ←ℒ*�� (ℱ (GB , \*�� ) , HB) ;ℒ(' (� (GB , i(') , HB) ;ℒ*$� (ℋ (GB , d*$�) , HB)
25: until ; < W
26: end procedure
27: return Trained network: Φ

(
- ;.*$�

)
// Regress bounding box, the object location, and classification result.

3. Experiments
3.1. Data Processing

To demonstrate the effectiveness of our proposed collaborative network, all experi-
ments have been performed on two popular datasets, namely URPC2020 (Available online:
https://www.urpc.org.cn/index.html (accessed on 17 October 2022) ) and Brackish (Avail-
able online: https://www.kaggle.com/aalborguniversity/brackish-dataset (accessed on
18 May 2023). URPC2020 is a well-received dataset specifically used for the UOD task. It
contains a total of 7543 images with four categories including echinus, holothurian, scallop,
and starfish. The URPC2020 dataset can be considered a long-tailed dataset due to signifi-
cant differences in the number of samples across different categories, which poses a great
challenge in achieving accurate UOD performance. Brackish is an open-source underwater
dataset, which is annotated based on real filmed underwater videos. It contains a total of
14,518 video occurrences with six categories including large fish, crabs, jellyfish, shrimps,
small fish, and starfish. For each dataset, we randomly allocate 80% of the data for training,
10% for validation, and 10% for testing. Note that we have refrained from utilizing data
augmentation means to thoroughly demonstrate the superior performance of our proposed
collaborative framework. Instead, we have implemented label smoothing to reduce the
discrepancies between different bounding boxes. The detailed descriptions of the two
datasets are shown in Table ??.

https://www.urpc.org.cn/index.html
https://www.kaggle.com/aalborguniversity/brackish-dataset
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Table 2. Descriptions of the URPC2020 and Brackish datasets.

Dataset Species Category Annotations Data Type

URPC2020

Holothurian 5537

Jpg imagesEchinus 22,343
Star fish 6841
Scallop 6720

Brackish

Big fish 3241

Video occurrences

Crab 6538
Jelly fish 637
Shrimp 548

Small fish 9556
Star fish 5093

3.2. Experimental Setup

The proposed collaborative framework is implemented using the PyTorch platform
with the version 1.10.0. The parameters are tuned using the Adam optimizer. All exper-
iments are performed on a server with a 2.10 GHz Inter(R) Xeon(R) Gold 6130 CPU, an
NVIDIA RTX 3090Ti GPU, 24 GB RAM, and Ubuntu 21.04 operating system. During the
training process, the batch size is set to 16 with a total of 200 training epochs. We employ the
cosine learning rate decay strategy, where the initial learning rate is 0.01, and a momentum
of 0.937 is also applied to accelerate convergence. Additionally, the weight decay coefficient
is set to 0.0005 to prevent data overfitting.

For quantitative evaluation, we adopt the commonly used average precision (AP)
metrics at different levels of IoU thresholds, including AP0.5:0.95 (the AP at IoU thresholds
ranging from 0.5 to 0.95 with increments of 0.05), AP0.5 (the AP at the fixed IoU threshold
of 0.5), and AP0.75 (the AP at the fixed IoU threshold of 0.5). In addition, we evaluate the
computational complexity of the model by employing the metrics including the size of
parameters, float point operations (FLOPs), inference time, and frames per second (FPS).

3.3. Comparative Study

We compared our proposed collaborative framework with several well-received object
detection methods including Faster R-CNN [? ], SSD [? ],CenterNet [? ], RetinaNet [? ],
YOLOv3 [? ], YOLOv4 [? ], YOLOv5m, YOLOv5l, YOLOx [? ], YOLOv7 [? ], DETR [? ],
YOLOv4-AFFM [? ], and YOlOx-DCA [? ].

Table ?? reports the comparative study results for different methods in detection
precision on the URPC2020 dataset, where the numbers in red, blue, and green, respectively,
indicate the best, the second-best, and the third-best results. As observed, our proposed
collaborative framework consistently yields the most promising overall AP values, and
the AP values in all categories are competitively strong among the candidate methods. In
addition, we also provide further experiments that apply our proposed PPM to several
well-received general object detection networks including YOLOv5m, YOLOv5l, and DETR.
The experimental results reveal that the performance of these networks is still inferior to
our proposed collaborative framework, even if they have been input with quality-enhanced
underwater images by the PPM. Figure ?? shows the Precision–Recall (PR) Curves of
different methods for object categories on the URPC2020 dataset. It can be seen that our
proposed collaborative network generally exhibits the most promising performance across
different categories in terms of precision and recall.

Table ?? reports the comparative study results for different methods in detection preci-
sion on the Brackish dataset, which includes more challenging and complex underwater
scenarios. As observed, all candidate methods exhibit a significant decrease in detection
performance on the Brackish dataset compared to URPC2020. However, our proposed
collaborative framework still outperforms other comparison methods with the best AP
performance. In addition, it can also be observed that when our proposed PPM is applied
to the competitive YOLOv5m, YOLOv5l, and DETR, their performance is still far inferior to
our proposed collaborative framework, which is consistent with the conclusions obtained
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from Table ??. Figure ?? shows the PR Curves of different methods for object categories on
the Brackish dataset, and the results can also demonstrate the outstanding advantages of
our collaborative framework in detecting fuzzy and difficult-to-find underwater objects.

Table 3. Results of comparative study for different methods in detection precision on the URPC2020
dataset.

Method Backbone
AP(%)

AP0.5:0.95 AP0.5 AP0.75
Scallop Starfish Holothurian Echinus

Faster R-CNN [? ] VGG-16 31.25 53.90 48.33 60.93 24.34 48.73 20.01
SSD [? ] VGG-16 55.19 75.75 47.34 79.73 27.76 64.50 17.78

CenterNet [? ] ResNet-50 68.57 79.96 51.81 85.22 31.82 71.39 22.23
RetinaNet [? ] ResNet-50 28.76 59.20 47.75 54.80 21.45 47.63 15.68
YOLOv3 [? ] DarkNet-53 67.31 74.87 55.21 78.28 31.20 68.92 29.01
YOLOv4 [? ] CSPDarkNet-53 61.49 69.89 59.10 79.53 31.28 67.54 28.75
YOLOv5m CSPDarkNet-53-M 70.82 77.87 77.79 86.17 43.21 78.16 38.53
YOLOv5l CSPDarkNet-53-L 76.17 79.17 73.60 88.30 44.28 79.13 42.13

YOLOx [? ] ResNet-50 65.28 76.68 51.58 84.40 31.92 69.49 24.56
YOLOv7 [? ] ELAN-Net-L 57.78 79.49 46.95 85.58 29.81 67.45 20.13

DETR [? ] ResNet-50 69.93 84.28 62.07 87.22 42.16 75.87 40.07

YOLOv4-AFFM[? ] MobileNetv2 73.06 86.00 66.85 90.14 36.61 79.01 29.78
YOLOx-DCA [? ] MobileVIT 79.22 86.77 72.28 88.73 41.82 81.75 37.63
YOLOv5m-PPM CSPDarkNet-53-M 66.62 80.08 51.98 84.53 32.30 70.08 24.06
YOLOv5l-PPM CSPDarkNet-53-L 71.89 83.31 59.19 86.19 36.21 75.14 29.40

DETR-PPM ResNet-50 78.51 86.55 71.39 87.91 37.91 81.09 27.03

Ours ResNet-50 80.95 81.38 76.72 90.04 44.51 82.27 40.73

(a) (b) (c) (d)

Figure 6. PR Curves of different methods for object categories on the URPC2020 dataset (IoU = 0.5).
(a) Scallop. (b) Starfish. (c) Holothurian. (d) Echinus.

Table 4. Results of comparative study for different methods in detection precision on the Brackish dataset.

Method Backbone
AP(%)

AP0.5:0.95 AP0.5 AP0.75
Crab Fish Jellyfish Shrimp Smallfish Starfish

Faster R-CNN [? ] VGG-16 54.81 64.75 7.25 21.48 17.50 85.74 12.34 41.92 11.01
SSD [? ] VGG-16 24.01 87.28 21.25 22.36 11.38 79.08 15.56 40.94 14.31
CenterNet [? ] ResNet-50 75.25 89.55 27.97 28.27 11.39 91.08 22.86 53.92 18.31
RetinaNet [? ] ResNet-50 66.71 83.75 18.43 20.30 7.30 86.72 18.21 47.20 15.34
YOLOv3 [? ] DarkNet-53 70.92 83.71 21.96 24.02 7.70 86.01 26.17 49.05 23.49
YOLOv4 [? ] CSPDarkNet-53 65.53 87.91 0.01 8.71 26.15 91.73 17.71 46.67 13.22
YOLOv5m CSPDarkNet-53-M 87.08 77.47 45.00 62.32 42.73 94.99 39.12 68.27 38.03
YOLOv5l CSPDarkNet-53-L 87.06 95.95 65.00 75.38 32.55 94.56 44.33 75.08 42.14
YOLOx [? ] ResNet-50 77.71 82.44 28.01 33.11 36.06 94.43 30.13 58.63 29.04
YOLOv7 [? ] ELAN-Net-L 78.82 93.30 35.29 44.63 18.27 93.21 31.25 60.59 27.65
DETR [? ] ResNet-50 88.04 94.50 67.39 74.00 27.17 94.04 43.18 74.19 41.02

YOLOv4-AFFM [? ] MobileNetv2 86.86 95.66 64.33 75.47 32.40 94.57 44.31 74.88 41.33
YOLOx-DCA [? ] MobileVIT 85.61 92.11 36.79 56.65 41.50 94.30 35.21 67.83 33.97
YOLOv5m-PPM CSPDarkNet-53-M 75.56 85.02 25.49 28.16 9.02 87.90 21.03 51.86 20.65
YOLOv5l-PPM CSPDarkNet-53-L 79.99 88.20 36.19 40.69 11.58 90.64 27.06 57.13 24.79
DETR-PPM ResNet-50 75.11 92.59 46.00 54.97 20.68 91.31 33.19 63.44 30.87

Ours ResNet-50 89.07 96.52 75.56 81.40 37.71 95.04 47.32 79.21 45.21
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(a) (b) (c)

(d) (e) (f)

Figure 7. PR Curves of different methods for object categories on the Brackish dataset (IoU = 0.5).
(a) Starfish. (b) Crab. (c) Fish. (d) Smallfish. (e) Shrimp. (f) Jellyfish.

To intuitively demonstrate the superior detection performance of our proposed col-
laborative framework compared to other comparison methods, some qualitative results
of representative underwater images are provided, as shown in Figure ??. As observed,
underwater images typically suffer from color distortion, resolution reduction, and texture
blurring, which pose significant challenges for accurate object detection. However, our
proposed collaborative framework can always achieve robust detection for a more diverse
range of underwater objects with the highest precision. Particularly, when there are occlu-
sions between multiple underwater objects, our framework still produces promising and
robust detection results. In addition, Figure ?? shows the visualization results of the indi-
vidual UIE and SR components, including the intermediate outputs and the corresponding
heatmaps generated by the Grad-CAM technique [? ]. As observed, the PPM has been
demonstrated to generate more visually pleasing intermediate outputs in the proposed
collaborative network. Moreover, the results of the Grad-CAM heatmaps further reveal
that our PPM enables the UODM to focus more on the underwater object-related regions,
thereby facilitating a significant improvement in UOD performance.

Furthermore, the computational complexity of our proposed collaborative framework
is fully concerned. As shown in Table ??, although our framework is not inferior to some
extremely lightweight object detection models in computational complexity, it still performs
similarly to other popular methods including RetinaNet, YOLOv5m, YOLOx, YOLOv7,
and DETR, which indicates that our framework is also capable of addressing real-time
UOD problems.
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(a)

(b)

(c)

Figure 8. Qualitative detection results of representative underwater images. Note that for each
representative underwater image, the detection results in the first row are provided by Faster R-CNN
[? ], SSD [? ], CenterNet [? ], RetinaNet [? ] YOLOv3 [? ], YOLOv4 [? ], while the detection results in
the second row are provided by YOLOv5m, YOLOv5l, YOLOx [? ], YOLOv7 [? ], DETR [? ], YOLOv4-
AFFM [? ], YOlOx-DCA [? ] and ours. (a) Representative underwater image 1. (b) Representative
underwater image 2. (c) Representative underwater image 3.

 

 

(a) (b) (c)

Figure 9. Visualization results of the individual UIE and SR components. Note that for each rep-
resentative image, the left column from top to bottom represents the raw underwater image, the
intermediate output of UIE, and the intermediate output of SR, respectively. The right column
shows the corresponding results of the Grad-CAM heatmaps. (a) Representative underwater image 1.
(b) Representative underwater image 2. (c) Representative underwater image 3.
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Table 5. The comparative study results for different methods in computational complexity on the
URPC2020 dataset.

Method Backbone #param FLOPs Inference Time FPS(M) (G) (ms)

Faster R-CNN [? ] VGG-16 28.30 909.57 58.12 17.20
SSD [? ] VGG-16 3.941 2.653 6.22 160.27
CenterNet [? ] ResNet-50 33.67 70.21 7.08 141.21
RetinaNet [? ] ResNet-50 36.39 69.71 20.81 48.03
YOLOv3 [? ] DarkNet-53 61.54 65.62 10.69 94.49
YOLOv4 [? ] CSPDarkNet-53 63.95 59.98 13.28 75.33
YOLOv5m CSPDarkNet-53-M 21.01 21.39 18.95 52.75
YOLOv5l CSPDarkNet-53-L 46.65 48.42 11.07 90.31
YOLOx [? ] ResNet-50 54.15 65.77 22.75 43.95
YOLOv7 [? ] ELAN-Net-L 37.62 44.98 20.21 49.49
DETR [? ] ResNet-50 36.74 31.924 21.64 46.28
YOLOv4-AFFM [? ] MobileNetv2 10.73 63.22 21.47 44.18
YOLOx-DCA [? ] MobileVIT 4.51 25.35 27.28 56.73
Ours ResNet-50 26.63 48.94 24.97 40.05

3.4. Ablation Study

In this section, an ablation study is performed to further demonstrate the effective-
ness of each component in our collaborative framework, which involves the following
experiments:

(1) -w/o UIEC: Removing the UIE component so that only the SR component remains
operational in the PPM.

(2) -w/o SRC: Removing the SR component so that only the UIE component remains
operational in the PPM.

(3) -w/o PPM: Removing both UIE and SR components so that the PPM is completely
disabled.

(4) -rp EWA-PPM: Replacing the original channel concatenation with the element-wise
addition in the PPM.

(5) -rp MBFNet-I-PPM: Replacing the MBFNet-II with the MBFNet-I in the PPM.
(6) -rp MBFNet-III-PPM: Replacing the MBFNet-II with the MBFNet-III (MBFNet-III is

defined as a four-branch structure, which further adds a similar branch guided by a
7 × 7 convolutional layer on basis of the MBFNet-II) in the PPM.

(7) -rp MBFNet-II-UODM: Replacing the MBFNet-II with the MBFNet-I in the UODM.
(8) -w/o MBFNet: Removing all the MBFNets embedded in the PPM and UODM.
(9) -rp ETE: Replacing the step-by-step training strategy with the end-to-end training

strategy to train the collaborative framework.

For a fair comparison, all candidate methods adopt the collaborative framework with
ResNet-50 as the baseline, and the experiments employ the same experimental setup.
Table ?? reports the results of ablation study about network composition. Some crucial
conclusions can be revealed as follows:

• The effectiveness of our proposed PPM has been demonstrated. When either compo-
nent in the PPM is removed, the corresponding AP values experience a decrease of
approximately 11% to 50%. In addition, the channel concatenation has been shown to
be an operation that significantly outperforms the element-wise addition, where the
latter demonstrates a substantial decrease in different kinds of AP values to 14.5%,
13.6%, and 5.1%, respectively.

• The effectiveness of our proposed MBFNet has been demonstrated. We attempt to
modify different versions of the MBFNet, but the detection performance with such
changes is significantly inferior to the existing framework. Furthermore, when all the
MBFNets are removed, the UOD performance of the framework experiences a drastic
decline, with a decrease in different kinds of AP values to 19.1%, 18.9%, and 16.5%,
respectively.
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• The effectiveness of the step-by-step training strategy in our framework has been
demonstrated. When our proposed collaborative framework is trained by the conven-
tional end-to-end strategy, the corresponding AP values have even dropped by more
than 30%, indicating a significant decrease in UOD performance.

Table 6. Results of ablation study regarding network composition. ↓ denotes the number after the
arrow represents the change compared to ours.

Method AP0.5:0.95 AP0.5 AP0.75

-w/o UIEC 35.91 (↓ 19.3%) 72.70 (↓ 11.6%) 19.20 (↓ 52.8%)
-w/o SRC 37.43(↓ 15.9%) 69.83 (↓ 15.1%) 33.89(↓ 16.6%)
-w/o PPM 37.91(↓ 14.8%) 69.76(↓ 15.2%) 35.89(↓ 11.8%)
-rp EWA-PPM 38.06(↓ 14.5%) 71.05 (↓ 13.6%) 38.67(↓ 5.1%)
-rp MBFNet-I-PPM 37.46 (↓ 15.8%) 77.31 (↓ 6.1%) 35.16(↓ 13.7%)
-rp MBFNet-III-PPM 40.07 (↓ 9.9%) 71.31 (↓ 13.3%) 39.05(↓ 9.9%)
-rp MBFNet-II-UODM 35.89(↓ 19.4%) 66.52 (↓ 19.1%) 33.12(↓ 18.6%)
-w/o MBFNet 36.01(↓ 19.1%) 66.76 (↓ 18.9%) 34.00 (↓ 16.5%)
-rp ETE 27.18(↓ 38.9%) 56.87 (↓ 30.9%) 25.13 (↓ 38.3%)
Ours 44.51 82.27 40.73

4. Conclusions

This paper presents a novel collaborative framework via joint image enhancement and
super-resolution, which aims to address UOD tasks in complex marine environments. The
proposed framework mainly consists of the PPM and the UODM, where the former can
achieve pre-processing of underwater images to provide more effective visual cues for UOD
tasks, and the UODM can effectively detect various fuzzy and difficult-to-find underwater
objects. Moreover, a convenient self-attention mechanism termed MBFNet is developed,
which can capture and associate scene information from a large neighborhood, so that
the confusion between different object categories can be significantly reduced. Extensive
experiments based on the URPC2020 and Brackish datasets reveal that our proposed
collaborative framework outperforms other well-received competitors in terms of both
quantitative evaluation metrics and qualitative detection effects. Additionally, results from
the ablation study also demonstrate the effectiveness of each component in our framework.
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