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Abstract: This paper mainly addresses the model-parameter-free prescribed time trajectory tracking
control issue for under-actuated unmanned surface vehicles (USVs) that are susceptible to model
uncertainties, time-varying disturbances, and saturation constraints. Firstly, a state extension based on
coordinate transformation was designed to address the lack of control in the sway channel. Secondly,
nonlinear behavior stemming from saturation constraints is not always differentiable. Regarding
this, a smooth dead-zone-based model was conducted to fit the behavior, leaving a relatively simple
actuator model. Then, an improved prescribed time–prescribed performance function (PTPPF) and
error transformation method were utilized to propose a model-parameter-free control algorithm
that guarantees user-defined constrained boundaries while ensuring all tracking errors converge
within small domains before a preassigned settling time. The theoretical analysis was conducted
by the initial value theorem, Lyapunov’s second method, and proof by contradiction, followed by
comparative simulation results that verified the effectiveness of the proposed control scheme.

Keywords: prescribed time; model-parameter-free; saturation constraints; under-actuated unmanned
surface vehicle

1. Introduction

USVs, which possess autonomous decision-making and task-execution capabilities,
have found significant applications in various fields. Recently, due to the USV’s auton-
omy and flexibility, they are used in marine scientific research, maritime surveillance,
and resource exploration [1–4]. In practical marine environments, USVs encounter con-
stantly changing weather conditions, waves, currents, and obstacles. To cope with these
environmental uncertainties, the controller needs to employ robust control algorithms
that can adapt to different conditions. As control technology continues to advance and
innovate, several advanced control theories, such as sliding mode control (SMC) [5–8]
and back-stepping control [9,10], have been applied to enhance trajectory tracking control
for USVs.

Eminent characteristics of transient and steady state are significant for the whole
system, such as small maximum overshoot and steady-state error. However, compared
with the prescribed performance control (PPC), the aforementioned control schemes need
time-consuming parameter modifications to satisfy appropriate performance. The con-
cept of PPC was first proposed in ref. [11]. As an effective control method considering
prior performance constraints, PPC adopts the output error transformation method, and
the prescribed performance function (PPF) can achieve the specified satisfactory value
of the control performances. By integrating other control methods, PPC is extensively
implemented in many fields. For instance, an adaptive prescribed-performance controller
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was described, utilizing an efficient combination of multi-layer neural networks [12]. The
work proposed an adaptive SMC strategy that provides asymptotic stability and tracking
performance in finite time [13]. Moreover, other control methods such as back-stepping
control [14,15] and SMC [16,17] also can be used in combination with PPC.

The study [18] developed a unique prescribed performance function to ensure timely
convergence for systems with time-varying inner coupling. This method allows the tracking
errors to remain within the specified performance bounds at the user-defined time. Simi-
larly, in order to achieve timely convergence for systems with time-varying inner coupling,
ref. [19] introduced a novel prescribed performance function that enables the controller
to drive the error to converge within the user-defined time. However, it is important to
note that the aforementioned methods often assume that the initial tracking error is small,
which may not always be applicable in practical systems. Taking this into consideration,
ref. [20] proposed a new error transformation method and a revised performance function.
The key concept is to set the initial value of the performance constraint boundary to infinity,
ensuring that the tracking error at the beginning falls within the permissible performance
limitations. This approach relaxes the requirement of the performance function to depend
on the initial error.

The majority of the prescribed performance control (PPC) methods mentioned above
rely on approximation techniques such as neural networks (NN) and fuzzy methods to
estimate the unknown dynamics of the model and subsequently facilitate the design of the
corresponding controllers. As a consequence, the selection of adaptive laws for numerous
unknown parameters poses challenges in implementing the designed control law in on-line
adjustment. Although the low-complexity method of prescribed performance control has
obtained many achievements [21,22], more simple and effective model-free control schemes
still need to be studied.

In practical environments, controllers for unmanned surface vehicles (USVs) are
constrained by physical limitations, with saturation constraints being the primary factor
affecting the precision of the USV system’s control. When the control output command
exceeds the actuator’s rated value, the state may be inaccurately updated, resulting in a
potential degradation of the system’s performance. To address the adverse effects caused by
saturation constraints, various solutions have been proposed. One approach involves the
design of an additional anti-saturation auxiliary system [23], which is specifically activated
when saturation occurs. Moreover, another way is to design a proper saturation model;
ref. [24] directly adopted the traditional hard saturation model, which conformed to reality,
but due to its non-differentiability, it cannot effectively deal with the nonlinear term caused
by saturation. In light of this, a differentiable saturation function proposed in ref. [25]
and a new dead-zone nonlinearities saturation model introduced in ref. [26] aimed to
ensure system stability and safety. However, when combined with PPC technology, the
mathematical derivation becomes intricate. There are alternative simple models available,
such as the Gaussian error function [27] and the hyperbolic tangent function [28], which are
easy to derive. However, they do not integrate well with the control model. To address these
concerns, we introduce a dead-zone operator-based model, which offers the advantage of
employing a linear approach.

In the actual ocean environment, USVs are significantly influenced by external dis-
turbances, leading to a decrease in trajectory tracking accuracy. In this regard, it is crucial
to emphasize the robustness of the USV system. The study [29] achieved fast and precise
control of the system states by introducing a sliding surface and exhibits strong robustness
against system parameter uncertainties and external disturbances. The study [30] intro-
duced a novel observer to calculate disturbances, hence enhancing the tracking accuracy
and robustness, in order to address unknown disturbances that impact the system stability.
To simplify the complexity of parameter adjustment, ref. [31] introduced a useful adaptive
controller based on the adaptive super-twisting method. This controller only requires
the adjustment of a single parameter. In order to handle multiple uncertainties within a
fixed time and account for unknown disturbances and uncertainties, ref. [32] proposed
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the use of an extended-state observer (ESO). To estimate velocities and perturbations, a
nonlinear ESO was proposed, and based on this, an adaptive neural network (NN) was
suggested to evaluate the unknown terms [33]. In another work [34], a reduced-order ESO
was introduced to estimate external disturbances.

This work proposes a robust model-parameter-free anti-saturation control algorithm
for trajectory tracking control of under-actuated USVs relying on the back-stepping control
design method. Then, the contributions of this article are presented here:

(1) Considering the under-actuated nature of the unmanned vehicle, where there is no
independent actuator in the swaying velocity direction, the direct application of feed-
back linearization becomes challenging. In this paper, a state-extension technique
based on coordinate transformation is employed to rewrite the control model. Addi-
tionally, the potential negative impact of saturation constraints on control stability is
addressed by utilizing a smooth dead-zone-based model instead of the conventional
hard saturation model. This approach not only facilitates the subsequent controller
design but also ensures the control stability in the presence of saturation constraints;

(2) In the trajectory tracking control of under-actuated USVs, a model-parameter-free con-
troller is utilized, simplifying the design process by reducing the number of adjustable
parameters. By employing the back-stepping control design process, it is demon-
strated that the proposed control mechanism performs effectively within the specified
performance framework. Moreover, the convergence time can be specified, allowing
for the desired control performance to be achieved within a predefined timeframe.

The content in this document is arranged as follows: The corresponding mathematical
models for the USV and saturation constraint are presented in Section 2. The design of a
model-free parameter controller is presented in Section 3, together with the accompanying
stability proofs using the initial value theorem, Lyapunov’s second method, and the proof
by contradiction. Comparative simulation outcomes are shown in Section 4. Section 5
provides a conclusion to the essay.

2. Problem Formulation
2.1. Dynamics of Under-Actuated USV

In order to express the motion of USV, two coordinates frame {XEOEYE} and {XBOBYB}
are illustrated in Figure 1.
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The entire system is provided for an under-actuated USV subject to saturation con-
straints, time-varying disturbances, and parametric uncertainties. .

x
.
y
.
ψ

 =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

u
v
r

 (1)
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m11 0 0
0 m22 0
0 0 m33

 .
u
.
v
.
r

+

 0 0 −m22v
0 0 m11u

m22v −m11u 0

u
v
r

+

 d1uh1

d2vh2

d3 sgn(r)|r|h3

 =

τu
0
τr

+

τdu
τdv
τdr

 (2)

where (x, y) represents the position of USV in the earth-fixed frame {XEOEYE}, and
ψ represents the yaw angle; u stands for the surge velocity, v stands for the sway ve-
locity, and r stands for the angular velocity; diag(m11, m22, m33) represents the inertia

mass,
[
d1uh1 , d2vh2 , d3sgn(r)|r|h3

]T
represents the hydrodynamics damping term, and

di, hi(i = 1, 2, 3) are nonlinear damping parameters; τu and τr denote the control force/torque
generated by the propeller, taking into account input saturation constraints; τdi(i = u, v, r)
denotes the external lumped disturbances. For more information about this model, please
refer to ref. [35].

The system kinematics are now rewritten by a state extension based on coordinate
transformation, which is different from the commonly used origin point of the body-fixed
frame. For the under-actuated USV, a new vector is defined as follows [36]:{

ζ1 = x + l cos ψ
ζ2 = y + l sin ψ

(3)

where l is the designed parameter.

Remark 1. In the original 3-degree-of-freedom trajectory tracking system for the under-actuated
USV, two control inputs were used to control the tracking errors in the x-direction, y-direction,
and heading. By introducing a state extension based on coordinate transformation, the x-direction
tracking error and y-direction tracking error now incorporate the heading angle. As a result, it
becomes possible to control both the x-direction tracking error and y-direction tracking error using
only two control inputs while also achieving control over the heading angle. It is important to note
that the method may introduce additional coupling effects due to the offset. Therefore, choosing an
appropriate designed parameter l should be considered in the controller design to ensure satisfactory
control performance of the heading angle.

For convenience, we set ζ = [ζ1, ζ2]
T and σ =

[ .
ζ1,

.
ζ2

]T
. By taking the derivative of

Equation (3) and combining it with Equation (1), we obtain the following result:{ .
ζ = σ
.
σ = Λτ + Γ + Λd

(4)

with τ = [τu, τr]
T, d = [τdu, τdr]

T,

Λ =

 cos ψ
m11

− l sin ψ
m33

sin ψ
m11

l cos ψ
m33

,


fu = m22/m11vr− d1uh1 /m11

fv = −m11/m22ur− d2vh2 /m22

fr = (m11 −m22)/m33uv− d3sgn(r)|r|h3 /m33

(5)

Γ =

[
fu cos ψ− ur sin ψ− vr cos ψ− ( fv + τdv/m22) sin ψ
fu sin ψ + ur cos ψ− vr sin ψ + ( fv + τdv/m22) cos ψ

]
+

[
−
(
l fr sin ψ + lr2 cos ψ

)
l fr cos ψ− lr2 sin ψ

]
(6)

The following theorem is made to simplify the design process.

Theorem 1. The time-varying disturbances and their first derivatives are bounded; |τdi| ≤ τdi,∣∣ .
τdi
∣∣ ≤ .

τdi, and i = u, v, r, and τdi and
.
τdi are constants. This assumption is frequently used in

the literature [37,38] when designing controllers.
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Remark 2. In practice, the control torque and the speed of the USV cannot be infinite, and there
must be corresponding upper bounds, combined with the condition that the time-varying external
disturbances are bounded in Assumption 1, so the terms Λ and Γ are both bounded.

2.2. Saturation Constraints

Here, we take into consideration the output limitations of the USV’s actuator, specifi-
cally the propeller. Particularly during the initial stages of tracking the desired trajectory,
there may be larger control commands that the propeller cannot accommodate, resulting in
the occurrence of saturation constraints.

Consider the actuator of under-actuated USV with saturation constraints; the control
vector τi is defined as follows [39]:

τi = sign(τic)min{|τic|, τimax} (7)

where τic is the command input, and τimax is the maximum allowable control force and
moment of the corresponding input. It is indifferentiable at τi = τimax from the expression
of saturation constraints (7). Thus, a smooth dead-zone-based model (8)–(10) is used as a
limiting filter to guarantee the desired control accuracy while the USV model is affected by
saturation constraints [40].

ϕ(τci) = niτci − gi, i = u, r (8)

gi =
∫ αi

0
li(β)z(τci, β)dβ, i = u, r (9)

z(τci, β) = max(τci − β, min(0, τci + β)) (10)

where ni =
∫ αi

0 li(β)dβ is a positive constant with αi > 0 is a parameter to be designed;
lli(β), i = u, r is a density function satisfying li(β) ≥ 0; note that gi is bounded, and this
property will be confirmed in the proof of Lemma 1.

Lemma 1. There always exists a density function li(β) such that the following equation applies for
any maximum permitted control input τimax:

τimax = lim
τci→∞

ϕ(τci) =
∫ αi

0
βli(β)dβ (11)

Proof. From our definition of z(τci, β), we can derive the following:

limτci→∞z(τci, β) = τci − β (12)

Further, by substituting the Formulas (9) and (11) into the Formula (7), we can obtain
the following:

lim
τci→∞

ϕ(τci) = niτci −
∫ αi

0
τcili(β)dβ +

∫ αi

0
βli(β)dβ (13)

Based on the definition of ni and Equation (8), Equation (11) can be derived. Additionally,
from Formula (13), it can be inferred that ϕ(τci) must be bounded because it is a continuous
function, so gi is also bounded. The curve defined by saturation constraints remains smooth
in Equations (8)–(10), as depicted in Figure 2. In contrast, the traditional method (7) is
deemed less optimal. �
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The saturation constraint of actuator ultimately is modified as follows based on
(8)–(10):

τ = nτc − g + δ (14)

where n = diag{nu, nr}, g = [gu, gr]
T, and δ = [δu, δr]

T are the parameters. δ = τi − ϕ(τci)
is the filtering error. It is evident that although this term δ is unknown, Lemma 1 implies
that it is bounded. Combining Equations (4) and (14), we obtain the following model:{ .

ζ = σ
.
σ = Λnτc + Γ + Θ

(15)

where Θ = Λ(d− g + δ).
The model-parameter-free control architecture is described in Section 3; however,

it should be noted that Γ and Θ include the USV-related parameters, which are both
unavailable to the designer here.

Remark 3. The dead-zone-based model (14), as defined in [40], effectively captures the saturation
limits in various scenarios. Moreover, the linearity of the system enables the application of robust
and adaptive control techniques.

2.3. Prescribed Time–Prescribed Performance Function

The following definition is given to show the criterion of PPF:

Definition 1 ([41]). A continuous function ρ(t) : [0,+∞)→ <+ will be called as the PPF if it
satisfies the following:

(1) For any t > 0, ρ(t) is a positive function;.
(2) The function ρ(t) is monotonic decreasing on the interval

[
0, Tp

)
;

(3) The equation ρ(t) ≡ ρ∞ > 0 holds ∀t > Tp.

By referring to [20], a piecewise function is given:

ρ(t) =


csc
(

π(t+c)
2tt

)((
ρ− ρ

)(−t+tp
tp

)1− 1
γ
+ ρ

)
, 0 ≤ t < tt − c(−t+tp

tp

)1− 1
γ
(

ρ− ρ
)
+ ρ, tt − c ≤ t < tp

ρ, t ≥ tp

(16)

where c is a positive constant; γ is between zero and one, which influences the PPF’s rate of
decline; tt ∈ (c, tp) represents the transition time; and tp stands for the settling time. The
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PTPPF ensures that the tracking error converges to the stable domains within the stable
time tp while also maintaining it within the defined performance limitations. It is evident
that Equation (16) satisfies Definition 1.

Remark 4. The detailed proof of the reasonableness of the PTPPF can refer to the work [20]. Two
parameters related to time constraints are introduced in (16), the user-defined settling time tt and
the transition time tp. According to the different requirements, tp is selected as the allowable error
convergence time, and ts should be less than the time when the error enters the range contained in the
prescribed performance function. Making a decision about the balance between the two parameters
is important since lower tt and tp result in a shorter stable time and a stronger control signal.

2.4. Control Objective

To proceed, we define ζd = [xd, yd]
T as the desired trajectory in the frame {XEOEYE},

so the error variable ζe can be defined as follows:

ζe = ζ − ζd (17)

Therefore, the goal of control is to design the controller τ such that the closed-loop
error system satisfies the prescribed performance.

Assumption 1. The trajectory ζd is a user-designed function, so ζd and
.
ζd are bounded, and ζd

and
.
ζd are constants.

3. Model-Parameter-Free Controller Design

Firstly, similar to the design steps in the literature [42], the normalized tracking error
is defined as given:

e1 = ζe/ρ1 (18)

where e1 = [e1u, e1r]
T, and |e1i(0)| < 1. As a result, it is implied that the tracking error e1

always remains exactly inside the acceptable performance limit and at the prescribed time.
The derivative of (18) yields the following:

.
e1 = ρ−2

1

( .
ζeρ1 − ζe

.
ρ1

)
(19)

By employing (17) and (18), Equation (18) can be obtained:

.
e1 = ρ−1

1 σ − ρ−1
1

.
ζd − ρ−2

1 ζe
.
ρ1 (20)

The constraint-free tracking error is derived by applying homeomorphic mapping:

w1 =
1
2

ln
(

1 + e1

1− e1

)
(21)

Based on (19) and (20), the derivative of (21) yields the following:

.
w1 =

.
e1

1− e2
1
=

.
ζeρ1 −

.
ρ1ζe

ρ2
1 − ζ2

e
=

ρ2
1

.
e1

ρ2
1 − ζ2

e
(22)

Then, we have the following:

ζe = ρ1(t)tanh(w1) (23)
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If w1 is bounded, we have |ζe| < ρ1(t), ∀t > 0 with the application of the tanh(·) function.
Then the first virtual control law is designed:

σd = −k1w1 (24)

where σd = [σdu, σdr]
T, k1 = diag{k1u, k1r}, k1i > 0, and w1 = [w1u, w1r]

T.
Then we define another tracking error as given:

σe = σ − σd (25)

where σe = [σeu, σer]
T. Then, an auxiliary variable is defined as follows:

e2 = σe/ρ2 (26)

where e2 = [e2u, e2r]
T, and the derivative of (26) according to time yields the following:

.
e2 = ρ2

−2(( .
σ − .

σd
)
ρ2 − (σ − σd)

.
ρ2
)

(27)

By employing (15), (25), and (26), Equation (27) can be obtained:

.
e2 = ρ2

−1(Λnτc + Γ + Θ)− ρ2
−1 .

σd − ρ2
−1e2

.
ρ2 (28)

The error transformation mapping is obtained as given:

w2 = tan
(π

2
e2

)
(29)

where w2 = [w2u, w2r]
T, which is a smooth and invertible function. From the inverse

transformations of w2, one can derive the following:

σe =
2
π

ρ2arctan(w2) (30)

If w2 is bounded, then applying the arc tan(·) function results in |σe| < ρ2(t), ∀t > 0,
which indicates that the error σe strictly grows inside the specified performance threshold.

The model-parameter-free control law based on the modified back-stepping control
design process is designed:

τc = −k2n−1Λ−1WTw2 (31)

W = 2
π diag

{
∂w2u
∂σeu

, ∂w2r
∂σer

}
, ∂w2i

∂σei
= π

2
(
ρ2i cos2(π

2 e2i
))−1, i = u, r

||wT
2 W|| = tan

(
π
2 e2
)
/ρ2 cos2(π

2 e2
) (32)

Remark 5. The term k2WTw2 in model-parameter-free control law (31) is introduced to en-
force the stability of the error transformation Equation (29) and make sure that the variable w2
in Equation (28) remains within the desired performance boundaries. It is important to note
that our controller is model- parameter-free and does not require complex computations. The ab-
sence of system parameters in the controller’s expression enhances its simplicity and flexibility in
practical applications.

To continue, a vital definition and lemmas are given:

Definition 2. Consider the initial value problem:
.
µ(t) = y(t, µ(t)), µ(0) ∈ Ωµ (33)
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where Ωµ ⊂ Rn is a non-empty open set, and y : Ωµ ×
{

R+, 0
}
→ Rn is a locally integrable

function. If a solution to the initial value issue (33) is also a solution to (33) and has no correct
extension, then it is maximum.

Lemma 2. Based on Definition 2, assume that y is continuous and locally integrable on t for
each fixed µ ∈ Ωµ, and h is locally Lipschitz on µ. Then, there exists a unique maximal solution
µ(t) ∈ Ωµ in the domain [0, T) of the system with T > 0 such that all solutions for any t belongs
to [0, T) are on the set Ωµ.

Lemma 3. Assume that the hypotheses of Theorem 2 hold. For a unique maximal solution, µ ∈ Ωµ

is defined in the domain [0, T). If T < +∞, then for any compact set Ω′µ ⊂ Ωµ, there exists a time
instant t∗ ∈ [0, T) such that µ(t∗) /∈ Ω′µ.

For the sake of conciseness, the extensive proofs that are provided in [43] are omitted
in this study.

Following the virtual control laws (24), the derivative of e1 finally yields the following:

.
e1 = ρ−1

1 (σe − k1w1)− ρ−1
1

.
ζd − ρ−1

1 e1
.
ρ1 (34)

According to the above analysis and design, we know that ρ1,
.
ρ1, and e1 are continuous

and locally integrable on t. Furthermore, |e1| < 1 is locally Lipschitz over Ωe1 = (−1, 1) if
we choose a small l. As a result, we can assert there exists e1 ∈ Ωe1 for any t that belongs to
[0, T) of system (34). We know that the terms ζe and

.
ζe are bounded for ∀t ∈ [0, T), and we

have the following:

ρ1,∞(t) ≤ ρ1(t) ≤ csc
(

πl1
2tt1

)
ρ1,0

− csc
(

πl1
2tt1

)(
π cot(πl1/(2tt1))

2tt1
− 1

tp1(1−γ1)

)
(ρ1,0 − ρ1,∞) ≤ .

ρ1(t) ≤ 0
(35)

Differentiating σd and substituting (22), we have the following:

.
σd = − k1ρ1

ρ2
1 − ζ2

e

( .
ζe − e1

.
ρ1

)
(36)

One can easily argue that
.
σd is bounded for ∀t ∈ [0, tmax). As a result, we can claim

that there exists e2 ∈ Ωe2 for any t ∈ [0, T) of the system (28), Ωe2 = (−1, 1).
Then, we have the following:

V1 = w1wT
1 /2 (37)

Substituting (22) and (34) into (37), one can derive the following:

.
V1 = w1

1
ρ1
(
1− e2

1
)(σe + σd −

.
ζd − e1

.
ρ1

)
(38)

Utilizing the definition of σe in Equation (25) and the fact that 1/
(
1− e2

1
)
≥ 1, we

have max
(

σe −
.
ζd − e1

.
ρ
)
< ∆1, ∀t ∈ [0, tmax). For any t, we can obtain the following:

.
V1 ≤ |w1|

1
ρ1
(
1− e2

1
) (∆1 − k1w1) (39)
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Therefore, we know that
.

V1 ≤ 0 when ∆1 − k1|w1| < 0 and can subsequently infer
the following:

V1 ≤ max
{

V1(0),
∆2

1
2 ∑2

i=1 k−2
1

}
, ∀t ∈ [0, T)

max{w1i}2
i=1 ≤ max

{
|w1i(0)|,

√
2∆1

λmin(K1)

} (40)

Then, we choose the following:

V2 =
1
π

wT
2 w2 (41)

Substituting (26) and (31) into (41), one can derive the following:

.
V2 = 2

π wT
2

π
2
(
ρ2 cos2(π

2 e2
))−1

(
Λnτc + Γ + Θ− .

σd − e2
.
ρ2ρ−1

2

)
= wT

2 W
(

Λnτc + Γ + Θ− .
σd − e2

.
ρ2ρ−1

2

)
≤ wT

2 W
(
||Γ + Θ− e2

.
ρ2ρ−1

2 ||+ ||
.
σd||

)
− k2wT

2 WWTw2

(42)

With (31), we can obtain the following:

||wT
2 W||2 ≥ max

(
ρ−2

2i (0)
)
∑2

i=1 tan2
(π

2
e2i

)
(43)

According to Remark 1 and the above analysis, we can conclude the term in Formula (41)
−Λg + Γ + Θ− .

σd − e2
.
ρ2 is bounded:

||Γ + Θ− e2
.
ρ2||+ ||

.
σd|| < ∆2, ∀t ∈ [0, T) (44)

And (42) can be further rewritten as given:

.
V2 ≤ wT

2 W
(
−k2wT

2 W + ∆2

)
, ∀t ∈ [0, T) (45)

From (45), we can conclude that
.

V2 is negative for any ||wT
2 W||2 > ∆2/k2. Then, we

can obtain the following:

V2(t) ≤ max
{

V2(0),
∆2

2
π ∑2

i=1 k−2
2

}
, ∀t ∈ [0, T)

||w2|| ≤ max
{√

πV2(0),
√

2∆2
λmin(K2)

}
, ∀t ∈ [0, T)

(46)

On the basis of the stability analysis, it is obvious that Ωe1 ×Ωe2 ⊆ (−1, 1); if we
assume that T is less than positive infinity, a time instant t belongs to [0, T) exists such that
ei
(
t
)

/∈ Ωe1 ×Ωe2, which is contradictory to what is expressed in Definition 2, and then, we
can conclude that T = +∞. As a consequence, in the presence of saturation constraints, the
system’s tracking errors converge within the given time to satisfy the performance require-
ments. Additionally, Figure 3 shows a schematic of the model-parameter-free controller.
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4. Simulations

We utilized MATLAB 2022a and Simulink for numerical simulations, which were
conducted to testify the correctness of the proposed control scheme.

To proceed, an under-actuated unmanned surface vessel was chosen as the simulation
model, whose length is 0.45 m and weight is 1.614 kg. The model parameters are given as
follows [35]: m11 = 1.956, m22 = 2.405, m33 = 0.043, d1 = 2.436, d2 = 12.992, d3 = 0.0564,
h1 = 2.51, h2 = 2.747, and h3 = 2.592. Furthermore, the parameter of Formula (3) was
chosen as l = 0.01. Three different disturbances of the time-varying ocean are shown:

Case 1:

τd =


3

100 sin( 1
2 t) cos( 1

2 t)− 1
5 cos(t) cos

(
1
2 t
)
− 3

10

1
100 sin

(
1

10 t
)

6
100 sin

(
11
10 t
)

cos( 3
10 t)

 (47)

Case 2:

τd =




−0.2 sin(−π/3 + 0.2πt) cos(0.1t)

0.05 sin(0.5πt)− 0.3

0.12 sin(1.1πt + π/5)

 i f t ≤ 20s


− sin(0.2πt) cos(0.5t)
−1.9 + 0.1 cos(0.5t)
0.6 sin(0.9πt− π/6)

 i f 20s <t ≤ 40s


−1.5 cos(0.2πt) + 0.4

0.2 cos(0.5t)
0.6 sin(0.9t) cos(πt)

 i f t > 40s

(48)
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Case 3: 
.
ζ1i = ζ2i
.
ζ2i = −µ2

i ζ1i − 2ňiκiζ2i + σiαi

di = ζ2i

(49)

where κi = 0.8976, ň = 0.1, and σi = 1.0.
The actuators’ maximum allowable force and torque were chosen as τimax = 4N and

i = u, r. The density function was chosen as l(β) = max{χi sign(αi − β), 0} with αi = 8
and χi = 0.125.

To ensure that the system performance converged within a specified time, the param-
eters of the prescribed performance function were selected as ρ = 4, ρ = 0.08, γ = 0.5,
c = 0.01, and tt = 8, tp = 10, and the control gains are k1 = diag{3.5, 3.5} and k2 = 0.5.

4.1. Robustness Verification

The first numerical simulation aimed to validate the robustness of the presented
control approach in the presence of diverse current and wave scenarios. The desired
trajectory is defined:

.
ηd =

cos(ψd) − sin(ψd) 0

sin(ψd) cos(ψd) 0

0 0 1


 ud

vd

rd

 (50)

where ud =
∫ t

0 0.001 cos(0.15πt)dt, vd =
∫ t

0 −0.005 sin(0.1πt)dt, and rd =
∫ t

0 0.001 cos(0.02
πt)dt are user-defined velocities, and the initial states are set as η(0) = (−0.4, 0.2,−π/18)T,
u(0) = 0.8, v(0) = −0.1, and r(0) = 0.05.

Remark 6. The selection of a curved trajectory (49) aligns with the practical requirements of
unmanned boat operations and provides a realistic representation of the challenges faced in ocean
scenarios. Furthermore, it allows for a comprehensive assessment of the controller’s performance
in a dynamic environment. The chosen trajectory serves as an appropriate benchmark to assess the
effectiveness and robustness of the proposed controller in tracking complex.

The simulation results under three cases are shown in Figures 4–7. Figure 4 illustrates
the trajectory of the USV under these three cases. The tracking errors xe, ye, ue, ve are shown
in Figures 5 and 6, respectively. It can be observed from the partially enlarged detail
in the figures that the tracking errors converged within the prescribed boundaries with
satisfactory convergence speed. The evolution of control inputs is displayed in Figure 7.
Under the same control settings, it is evident that the magnitude of the input was influenced
by high-frequency and greater external disturbances. In these figures, the high-precision
performance of the controller is guaranteed.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

with satisfactory convergence speed. The evolution of control inputs is displayed in Fig-
ure 7. Under the same control settings, it is evident that the magnitude of the input was 
influenced by high-frequency and greater external disturbances. In these figures, the high-
precision performance of the controller is guaranteed. 

 
Figure 4. Trajectory tracking under three different disturbances. 

  
(a) (b) 

Figure 5. Position tracking errors ((a) the tracking error in the x direction and (b) the tracking error 
in the y direction). 

  
(a) (b) 

Figure 6. Velocity tracking errors ((a) the surge speed error eu  and (b) the sway speed error ev
). 

Figure 4. Trajectory tracking under three different disturbances.



J. Mar. Sci. Eng. 2023, 11, 1717 13 of 18

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

with satisfactory convergence speed. The evolution of control inputs is displayed in Fig-
ure 7. Under the same control settings, it is evident that the magnitude of the input was 
influenced by high-frequency and greater external disturbances. In these figures, the high-
precision performance of the controller is guaranteed. 

 
Figure 4. Trajectory tracking under three different disturbances. 

  
(a) (b) 

Figure 5. Position tracking errors ((a) the tracking error in the x direction and (b) the tracking error 
in the y direction). 

  
(a) (b) 

Figure 6. Velocity tracking errors ((a) the surge speed error eu  and (b) the sway speed error ev
). 

Figure 5. Position tracking errors ((a) the tracking error in the x direction and (b) the tracking error in
the y direction).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

with satisfactory convergence speed. The evolution of control inputs is displayed in Fig-
ure 7. Under the same control settings, it is evident that the magnitude of the input was 
influenced by high-frequency and greater external disturbances. In these figures, the high-
precision performance of the controller is guaranteed. 

 
Figure 4. Trajectory tracking under three different disturbances. 

  
(a) (b) 

Figure 5. Position tracking errors ((a) the tracking error in the x direction and (b) the tracking error 
in the y direction). 

  
(a) (b) 

Figure 6. Velocity tracking errors ((a) the surge speed error eu  and (b) the sway speed error ev
). 

Figure 6. Velocity tracking errors ((a) the surge speed error ue and (b) the sway speed error ve).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 18 
 

 

  
(a) (b) 

Figure 7. Time evolution of control inputs under three different disturbances ((a) the control force 
uτ  and (b) the control torque rτ ). 

4.2. Advantages Highlight 
To provide a comprehensive evaluation of the designed control strategy and show-

case its superiority, we conducted additional numerical simulations in this subsection. 
Specifically, we compared the performance of the designed control strategy with that of 
the PID controller and ASMC controller. Appendix A contains detailed descriptions of 
these two control schemes, including their comprehensive formulations and the selected 
parameters. 

The desired trajectory is same as Formula (50), and the desired velocity are given by 

( )
0
0.01cos 0.015 d
t

du t tπ=   , ( )
0

0.05sin 0.01 d
t

dv t tπ= −  , and ( )
0
0.01cos 0.002 d
t

dr t tπ=   . 

Here, ( )0η   was set as [ ]T0.5,  0.2,  0−  , and ( ) [ ]T0 0.5,  0.0,  0.0=υ  . We chose 1 0h =  , 

2 0h = , and 3 0h = . 
From Figure 8, it can be observed that the USV, under the influence of different con-

trol strategies, effectively tracked the desired trajectory with good accuracy. The USV 
maintained stable motion throughout the entire trajectory, accurately following the de-
sired trajectory. 

 
Figure 8. Time responses of position trajectory. 

From Figure 9a,b, it is evident that the tracking errors under the influence of the three 
different controllers exhibited distinct characteristics. Specifically, under the proposed 
controller, the initial tracking errors were effectively maintained within a relatively small 
range. On the other hand, the remaining two controllers demonstrated comparatively 
large initial errors, this observation means that these controllers tend to output larger 
forces or torques during the initial stage of operation, which can potentially lead to more 
pronounced deviations from the desired trajectory. 

Figure 7. Time evolution of control inputs under three different disturbances ((a) the control force τu

and (b) the control torque τr).

4.2. Advantages Highlight

To provide a comprehensive evaluation of the designed control strategy and show-
case its superiority, we conducted additional numerical simulations in this subsection.
Specifically, we compared the performance of the designed control strategy with that
of the PID controller and ASMC controller. Appendix A contains detailed descriptions
of these two control schemes, including their comprehensive formulations and the
selected parameters.
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The desired trajectory is same as Formula (50), and the desired velocity are given by
ud =

∫ t
0 0.01 cos(0.015πt)dt, vd =

∫ t
0 −0.05 sin(0.01πt)dt, and rd =

∫ t
0 0.01 cos(0.002πt)dt.

Here, η(0) was set as [−0.5, 0.2, 0]T, and υ(0) = [0.5, 0.0, 0.0]T. We chose h1 = 0, h2 = 0,
and h3 = 0.

From Figure 8, it can be observed that the USV, under the influence of different
control strategies, effectively tracked the desired trajectory with good accuracy. The
USV maintained stable motion throughout the entire trajectory, accurately following the
desired trajectory.
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From Figure 9a,b, it is evident that the tracking errors under the influence of the three
different controllers exhibited distinct characteristics. Specifically, under the proposed
controller, the initial tracking errors were effectively maintained within a relatively small
range. On the other hand, the remaining two controllers demonstrated comparatively large
initial errors, this observation means that these controllers tend to output larger forces or
torques during the initial stage of operation, which can potentially lead to more pronounced
deviations from the desired trajectory.
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Figure 9. Position tracking errors ((a) the tracking error along X axis xe and (b) the tracking error
along Y axis ye).

Figure 10 provides the velocity tracking errors under the influence of the three different
controllers. Notably, when the proposed controller was employed, the velocity error
remained relatively stable, which ensured satisfactory tracking performance. However,
when the PID controller was utilized, a small amount of initial overshoot was observed
during the early stages, which can impact the transient response of the system. Under
the influence of the ASMC controller, a certain degree of chattering was observed as
the USV approached the desired trajectory. While this chattering may introduce some
deviation from the desired trajectory, it is important to note that the system still exhibited
an overall robustness.
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Moreover, to enhance the precision and clarity of our analysis, we provide a compre-
hensive quantitative comparison in Table 1. It becomes evident that the proposed control
algorithm demonstrates superior performance and outperforms the other considered con-
trollers in terms of stability and tracking accuracy.

Table 1. Quantitative Analysis of Tracking Error (RMSE).

Control Scheme
Steady-State Error

xe ye ue ve

Proposed
method 0.0031 0.0032 0.0025 0.0026

ASMC 0.0035 0.0037 0.0031 0.0032

PID 0.0040 0.0040 0.0027 0.0031

5. Conclusions

In this paper, we studied the anti-saturation prescribed performance tracking control
problem of USVs subject to model uncertainties, time-varying external disturbances, and
actuator saturation.

First, for the under-actuated USV, we employed a coordinate transformation-based
state-extension method. By offsetting the center of gravity of the USV, we incorporated the
influence of the heading angle into the tracking errors in the x- and y-directions. This offset
resulted in a redefinition of the tracking errors, allowing us to use the same two control
inputs to simultaneously control the position tracking errors and the heading angle without
requiring additional control inputs. This method provides a concise and efficient solution
for the trajectory tracking of under-actuated USVs.

Second, we addressed the trajectory tracking problem of the USV under external
disturbances and saturation constraints. By combining PTPPC with the back-stepping
method, we reduced the complexity of the controller design and ensured satisfactory control
performance within the specified performance framework. Additionally, we achieved the
desired convergence time. This integrated control strategy offers a feasible and effective
solution for trajectory tracking of USVs in practical applications where disturbances and
constraints are present.

However, the limitations of this study are that our research primarily focused on
theoretical developments and simulation validation to demonstrate the effectiveness of
our approach. Conducting experimental tests on USVs involves significant logistical
challenges, but such experiments could enhance the value of our research. Therefore, future
research directions could involve designing under-actuated USV controllers and conducting
experimental validation, particularly in scenarios involving actuator failures. This would
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contribute to a more comprehensive evaluation and validation of the performance and
robustness of our approach in practical applications.
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Appendix A

1. PID control scheme

We adopted the PID controller as one of the comparative methods; the PID controller
has been extensively researched and applied in many fields, making it a common bench-
mark for comparison with our designed control strategy. Thus, the controller is given
as follows:

τ = G−1
(

α1ζe + α2

∫ t

0
ζedt + α3

.
ζe

)
(A1)

where α1, α2, and α3 are the control gains. Here, we selected α1 = −15, α2 = −10, and
α3 = −15.

2. Adaptive SMC control scheme

We used the ASMC (adaptive sliding mode control) method proposed in the work [44]
as one of the comparative methods in our simulation study. Regarding the parameter
selection, we sought guidance from the referenced paper, which provides a detailed
explanation of the parameter selection process and the underlying rationale.

The following controller is given:

τ = MR−1
(

u−
.

Rv
)
+ Cv + Dv

u = ηd + H
.
η̃− k1k2e−0.1t

.
η̃−Hη̃

||
.
η̃−Hη̃||

(A2)

where H, k1, and k2 are the control gains. In the present case, the gains we selected as
H = diag(−0.3,−0.3,−0.5), k1 = 0.205, and k2 = 1.205.
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