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Abstract: Ship dimensions are an important component of static AIS information, and are a key factor
in identifying the risks of ship collisions. We describe a method of extracting and correcting ship
contour information using inland waterway surveillance video combined with AIS information that
does not depend on ship dimension data. A lightweight object detection model was used to determine
the ship’s position in an image. Dynamic AIS information was included to produce multigroup
control points, solve the optimal homography matrix, and create a transformation model to map
image coordinates onto water surface coordinates. A semantic segmentation DeepLabV3+ model
was used to determine ship contours from the images, and the actual dimensions of the ship contours
were calculated using homography matrix transformation. The mAP of the proposed object detection
model and the MIoU of the semantic segmentation model were 86.73% and 91.07%, respectively.
The calculation error of the ship length and width were 5.8% and 7.4%, respectively. These statistics
indicate that the proposed method rapidly and accurately detected target ships in images, and that
the model estimated ship dimensions within a reasonable range.

Keywords: contour extraction; object detection; semantic segmentation; coordinate mapping

1. Introduction

In water traffic scenarios, ship collision avoidance needs to use an automatic identifi-
cation system (AIS) or radar and other navigational equipment to obtain the movement
information of ships, and the two must complement each other. Using AIS reports, it is
often difficult to accurately calculate the distance of the ship from its surrounding objects
without considering the shape of the ship. The AIS position is determined by the position
of the GPS antenna, and the distance between the GPS antenna and the ship periphery can
range from tens to hundreds of meters. For ship–pier collisions, it is necessary to consider
the transverse distribution of ships in the river, and use the ship width data to calculate the
collision probability. The ship collision risk index (CRI) is calculated through the distance
closest point of approach (DCPA), the time closest point of approach (TCPA), and other
indexes to represent the urgency of the ship collision at a micro level. In the process of
calculating the CRI between two ships, an AIS-equipped ship is often shown as a triangle
or rectangle with the transponder at the center [1]. There are dimensional attributes in
the AIS static information to represent the length and width of the ship, but in practice,
these AIS data are often unavailable. Table 1 shows the dimensions and numbers of ships
passing through two inland waterway channels in China within a given time period. It is
clear from the table that ship dimension information is unavailable for more than 60% of
the vessels. Given the possible consequences of ship collisions, the problem of unavailable
ship size data needs urgent resolution.
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Table 1. Available information for ship dimensions.

Bulk Carrier Tanker

No.
Observed

No. with
Available

Information
Ratio No.

Observed

No. with
Available

Information
Ratio

Jingzhou
waterway 100 38 0.38 50 19 0.38

Yichang
waterway 100 33 0.33 50 26 0.52

Images have become more widely used for information extraction by computer vision
technologies. An augmented reality system based on a fusion of AIS and advanced image
processing technology can provide auxiliary information for early warning of navigation
risks for autonomous surface vehicles (ASVs) [2]. Such system can also be used for traffic
supervision that enables vessels to conform to navigation regulations in key navigable
waters [3].

Combining visual data with AIS information enables the estimation of the size of
specific ships in the image. Remote sensing or visible light images have frequently been
used to extract the contours of target ships, create matching external rectangles or ellipses
based on the contour shapes, and derive longitudinal and transverse ship dimension
information [4]. Therefore, contour extraction is the basis of ship size estimation, which has
been widely used in the transportation sector.

There have been many studies of ship contour extraction. In conventional contour
extraction methods, edge detection based on image characteristics has been used to de-
termine contours. Yan et al. [5] improved the Canny edge detection algorithm using a
two-dimensional wavelet Gaussian function to calculate the partial derivative of the struc-
tural filter gradient amplitude, and adopt maximum inhibition and threshold filters for
edge detection and connection for ships. Gu et al. [6] used a binary image gradient calcula-
tion for edge detection, and determined the minimum enclosing rectangle for ship contours.
Zhu et al. [7] demonstrated a ship recognition method that used a predicted shape template
to determine ship contours using the Otsu method, with peak density detection and column
scanning as well as a conventional area averaging algorithm. Nie et al. [8] used a binarized
normed gradient (BING) algorithm to predict the location of a ship in SAR images, and
used an active contour algorithm to predict ship contours iteratively. Standard ship contour
extraction methods are simple but are often unable to extract deep image information, and
are only suitable for simple scenes.

Convolutional neural networks (CNN) are widely used for image feature extraction in
deep learning applications in networks such as VGGNet [9], GoogleNet [10], Inception [11],
and ResNet [12]. CNNs have important applications in semantic segmentation; multicate-
gory target contours can be accurately segmented using pixel-level classification of images,
and they have been used in many ship contour extraction applications. The fully convolu-
tional network (FCN) was commonly used to extract ship contours by categorizing each
pixel in a remote sensing image into the bow, hull, land, and sea [13]. Bovcon et al. [14] de-
veloped a deep encoder–decoder framework (the water obstacle separation and refinement
network) for autonomous crewless ship navigation that extracted the contours of several
ship targets. Ust et al. [15] introduced a scaffolding learning regime (SLR) that trained
an obstacle detection segmentation network under weak supervision for individual ship
contour extraction. Kelm et al. [16] trained a CNN to identify central pixels; the network
recognized a part of an input image and calculated a rotation angle, and used the central
pixel to describe the upcoming directional change in the contour. Deep learning methods
that rely on training data are more accurate than other established methods, and are highly
adaptable to different scenarios.

Remote sensing data of a particular area are not frequently updated, and vessels are
densely distributed on inland waterways, making it difficult to accurately extract contours
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from remote sensing images at any given point in time. Visible light images are generally
made from a horizontal perspective, and this perspective is not particularly suitable for
accurate ship size estimation. Targeting the problem of missing information of some ship
dimensions in a waterway, this study innovatively proposes an intelligent identification
method of ship dimensions based on a fusion of inland waterway monitoring overhead
image and AIS information. The research scenario is shown in Figure 1, the important
stretches of the upper reaches of the Yangtze River that have high marine traffic flow and
density. The main contributions of this study are as follows:

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 3 of 17 
 

 

from remote sensing images at any given point in time. Visible light images are generally 
made from a horizontal perspective, and this perspective is not particularly suitable for 
accurate ship size estimation. Targeting the problem of missing information of some ship 
dimensions in a waterway, this study innovatively proposes an intelligent identification 
method of ship dimensions based on a fusion of inland waterway monitoring overhead 
image and AIS information. The research scenario is shown in Figure 1, the important 
stretches of the upper reaches of the Yangtze River that have high marine traffic flow and 
density. The main contributions of this study are as follows: 

 
Figure 1. The traffic flow of Jingzhou Bridge in one month: white and yellow bands are used to 
represent the traffic flow in two different directions. 

• A deep learning ship object detection model was developed based on a lightweight 
object detection model, and using the SENet attention mechanism to improve the 
network structure and increase the effectiveness of detection; 

• An optimal homography matrix solution algorithm using several AIS control points 
was developed to determine the mapping relationship between image coordinates 
and water surface coordinates; 

• Ship contours were extracted using the deep learning DeepLabV3+ semantic segmen-
tation model, in conjunction with the homology matrix transformations to determine 
the real size of the vessel. 

2. Related Studies 
2.1. Ship Object Detection 

Ship object detection technology has a research history of more than twenty years, 
and forms the basis for combining video and AIS information in our study [17]. The es-
tablished methods include those based on the water–sky boundary, saliency detection, 
and moving object detection. Kim et al. [18] used a background algorithm to detect ships, 
and combined it with AIS to match ships with ship-related information. Fefilatyev et al. 
[19] developed a method using optimal water–sky boundary extraction combined with 
Gaussian distribution and the Hough transform. Yang et al. [20] designed a ship motion 
tracking system based on the FPGA that differed from traditional inter-frame difference 
methods, which had fixed frame intervals. Its inter-frame difference method was based on 
the adaptive extraction of key frames, and was used to adaptively detect ships moving at 
different speeds.  

The CNN is used mainly to solve object detection problems, either in two-stage algo-
rithms such as Faster RCNN [21] and Mask RCNN [22], or single-stage algorithms such 
as YOLO [23] and SSD [24]. Object detection algorithms that use deep learning overcome 
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represent the traffic flow in two different directions.

• A deep learning ship object detection model was developed based on a lightweight
object detection model, and using the SENet attention mechanism to improve the
network structure and increase the effectiveness of detection;

• An optimal homography matrix solution algorithm using several AIS control points
was developed to determine the mapping relationship between image coordinates
and water surface coordinates;

• Ship contours were extracted using the deep learning DeepLabV3+ semantic segmen-
tation model, in conjunction with the homology matrix transformations to determine
the real size of the vessel.

2. Related Studies
2.1. Ship Object Detection

Ship object detection technology has a research history of more than twenty years, and
forms the basis for combining video and AIS information in our study [17]. The established
methods include those based on the water–sky boundary, saliency detection, and moving
object detection. Kim et al. [18] used a background algorithm to detect ships, and combined
it with AIS to match ships with ship-related information. Fefilatyev et al. [19] developed a
method using optimal water–sky boundary extraction combined with Gaussian distribution
and the Hough transform. Yang et al. [20] designed a ship motion tracking system based
on the FPGA that differed from traditional inter-frame difference methods, which had fixed
frame intervals. Its inter-frame difference method was based on the adaptive extraction of
key frames, and was used to adaptively detect ships moving at different speeds.

The CNN is used mainly to solve object detection problems, either in two-stage
algorithms such as Faster RCNN [21] and Mask RCNN [22], or single-stage algorithms such
as YOLO [23] and SSD [24]. Object detection algorithms that use deep learning overcome
the shortcomings of target detection algorithms, such as lack of targeted region selection,
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sliding window redundancy, and time complexity. Using a deep learning algorithm for
ship object detection significantly improves detection. The rotational CNN algorithm [25]
was used for text detection because of its excellent rotation detection capability that was
introduced to ship target detection, and this produced good results. He et al. [26] combined
the Gabor filter with the Faster RCNN to increase ship object detection accuracy from
satellite images. Zhang et al. [27] preprocessed images with a support vector machine, and
then processed the RoI images with a ship detection algorithm that used a regional CNN.
This technique improved the recall and precision of small ship detection and the overall
performance of the algorithm. Guo et al. [28] added rotation angle information to feature
extraction, which increased the detection rate of ship objects at different scales, and greatly
reduced the quantity of redundant information in the detection frame.

2.2. Video Ranging Technology

Video ranging technology is important in determining the true locations of imaged
objects. The two types of video ranging are monocular ranging and binocular ranging.
Monocular ranging has the benefits of a simple structure, rapid operation, and low cost; it
is the main field of research at present, and a commonly used method is the Kalman filter
(KF). Einhorn et al. [29] devised a feature-based extended Kalman filter (EKF) monocular
visual ranging measurement algorithm that captured images with a single camera and
used a depth estimation method to calculate a reliable initial estimate; the 3D positions
were later reconstructed via an EKF. Chen et al. [30] introduced a monocular vision ranging
measurement method based on pixel area and aspect ratio that predicted and optimized
the pixel position in the subsequent frame using KF processing.

Another widely used technique was to calculate the distance to the object using object
detection and camera projection. Raza et al. [31] used marker points to establish a line
in the image, and used a linear equation to calculate the real-world distance between
pixels based on the length of the line. Huang et al. [32] developed a monocular vision
distance measurement method using object detection and segmentation; they developed
a two-dimensional geometric vector model and used camera projection to calculate the
distance. Zhe et al. [33] developed a monocular vision distance measurement method
based on 3D detection, and created a regional distance geometric model to calculate the
distance based on 3D detection and camera projection that produced good results when
image detail was obscured.

The geometric principle of camera projection is shown in Figure 2, where C indicates
the fixed position of the camera; A and B are points on the target; A′ and B′ are the
respective projections of points A and B on the plane of the camera sensor, which are
recorded in the image; the projection line AA′ and camera optical axis plane belong to the
surface method; h is the height of the center of the camera sensor above the surface; d and
d′ are the surface distances from the target to the vertical axis of the center of the sensor; θ
is the angle between the lines OA and OB on the horizontal surface; f is the focal length
of the camera. When the conditions x = X

2 , y < Y
2 , and y = y′ are satisfied, the distances

between target points and the camera are calculated with the following:

d =
f ·h

Y/2− y
(1)

d′ =
d

cos θ
(2)
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3. Methods

There are four distinct stages of ship contour extraction: object detection, coordinate
mapping, semantic segmentation, and image correction. Figure 3 is the technical roadmap
of this research, and shows how data is transmitted between the various stages. In this
section, we describe the key steps in detail.
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image; after image correction and contour extraction, the final actual contour is output.
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3.1. Object Detection Model

In general, object detection models often have a deep network structure, and require a
large number of convolution layers with many parameters. Real-time inferences can only
be performed if the devices they run on have adequate computing power. NanoDet is an
excellent lightweight object detection model introduced in 2020 that dramatically reduces
the number of parameters using a series of optimization methods. NanoDet can be quickly
trained and ported to most embedded modules.

NanoDet uses several lightweight methods in the backbone, neck, and head, which
enable it to balance accuracy, speed, and processing volume. The backbone is ShuffleNet
V2, which removes the last layer of the convolution from the network and extracts 8, 16, and
32 downsampled features as the next inputs. ShuffleNet V2 is a CNN architecture that uses
pointwise group convolutions to simplify the calculation of 1× 1 convolutions, and uses
channel shuffle to resist negative influences. The network greatly reduces computation,
but maintains accuracy. The PAN module is a feature pyramid structure that performs
upsampling and downsampling successively, which can fully integrate high-level features
with low-level features. The neck is an optimized PAN that deletes all convolutions in the
PAN, and only uses 1× 1 convolutions extracted by the backbone for channel dimension
alignment. An interpolation algorithm is used for upsampling and downsampling, and
the multiscale feature map is added for feature fusion, which enables the network to
learn the characteristics of multiscale targets. The FCOS is a typical anchor-free object
detection algorithm with head detection through the neck of the output feature map pixel
classification and bounding box regression to obtain the detection box. The optimized FCOS
model was used as the detection head with abandoned weight sharing; it uses different
convolutions to extract features at each layer and uses batch normalization, which uses deep
separable convolution instead of group normalization. The number of convolution kernels
and convolution channels also decreases, and the generalized focal loss function is used to
resolve problems of convergence in training. In all, these methods greatly reduce redundant
convolution and the number of parameters in the model, thus decreasing computation time.

SENet [34] is a spatial attention mechanism that increases the depth of a CNN and
improves feature extraction. It consists of squeeze, excitation, and reweight functions. In
the squeeze stage, the feature space with dimensions c× h×w is compressed to c× 1× 1 by
global pooling, and the feature maps of a single channel are compressed into a weight factor.
Two fully connected devices are used in the excitation stage. The first compresses the global
information obtained from the global pooling; the feature dimension c× 1× 1 is reduced to
c/r× 1× 1. The second fully connected device is used to map the feature back to c× 1× 1
after ReLU activation. A sigmoid function is used to determine the normalized weight in a
range of 0–1 of each channel to multiply the original feature map in the reweight stage.

The network structure is shown in Figure 4. SENet was added between ShuffleNetV2
and the optimized PAN with 40 × 40, 20 × 20, and 10 × 10 feature maps are input to
emphasize useful features and suppress irrelevant features. Figure 4 shows the two feature
maps before and after the SENet mechanism for comparison, and displays the SENet-
enhanced features. After the calculations for PAN feature fusion and the FCOS detection
head, the final output represents the locations of candidate boxes and their scores for
different categories.
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3.2. Coordinate Mapping

Mapping sensor image coordinates onto the water surface is key to matching image
information with real-world information. When the camera attitude is constantly shifting,
it is often necessary to combine optical ranging methods to ensure the camera view is
parallel to the water surface. When parameters for camera height above the water surface,
focal length, and pitch angle are combined with the projection equations, the depth map of
the image can be calculated to predict the distance to each pixel on the water surface in
the image. However, deploying surveillance cameras in inland river navigation areas is
complex, and parameters such as height, focal length, and pitch angle are difficult to obtain
in a timely manner. The use of data from fixed monitoring locations often requires using
a homography transformation matrix to convert between the sensor image coordinate
system and the water surface coordinate system, depending on the control points, and then
mapping the pixel coordinates of the ship contour image to the water surface coordinates.
The equation for the homography matrix transformation is as follows:

[x′ y′ w′] = [u v 1]

 a11 a12 a13
a21 a22 a23

a31 a32 1

 = [u v 1]H (3)

where u and v are the pixel coordinates of the control points; the transformed coordinates
are represented as (u′, v′), where u′ = x′

w′ and v′ = y′
w′ . H is the homography transformation

matrix. At least four control points are required for the eight independent parameters in
the solution of H.

We used the real-time AIS position data and the corresponding observed ship positions
in the image to create several control point coordinates. This necessitates that the camera
be raised above the water’s surface so that the hull takes up as much space as possible
in the overhead image; on at least one channel, the camera can see the ship’s side and
back, as shown in Figure 5. The specific calculation steps of the optimal homographic
transformation matrix are as follows.
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1. Obtain the video and AIS data for two ships on different courses to form four groups
of matching coordinates and AIS positions. One is Ai = {(Loni, Lati), Boxi}, where
Loni and Lati are the latitude and longitude coordinates of the control point i, and
Boxi = {(ui1, vi1), (ui2, vi2) . . . , (uin, vin)} is the set of pixel coordinates of control
points in group i, which consists of coordinates of n equally spaced pixels. The control
points of two ships traveling in the forward and backward directions are combined in
pairs to produce several homography transformation matrices;

2. Detect the key point pi of Boxi, where pi is the intersection of the extended side in the
lateral and inferior directions from the saliency detection image produced by the LC
model that obtains the saliency value of a pixel by calculating the sum of the distance
in color between the pixel and all other pixels in the image. The two waterlines are
determined with linear fitting;

3. Select the two sets of coordinates for one ship, Box1 and Box2. Two key point pixels
p1 and p2 are calculated, and Equation (3) is used to calculate the corresponding
n2 groups of water surface coordinates for p1 and p2. The error calculation of the
homography matrix Hj is as follows:

→
Pj = p′2j − p′1j , j = 1, 2, 3, ...,n2 (4)

lon′2 = lon2 × cos θ − lat2 × sin θ (5)

lat′2 = lat2 × cos θ + lon2 × sin θ (6)

→
K =

(
lon′2, lat′2

)
− (lon1, lat1) (7)

β j = cos−1


→
Pj·
→
K∣∣∣∣→Pj

∣∣∣∣× ∣∣∣∣→K∣∣∣∣
, j = 1, 2, 3, . . . ,n2 (8)

where p′1j and p′2j are the mapped coordinates of p1 and p2, respectively, and θ, the
steering angle of the ship, is determined from the AIS information. When the smallest
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βα has been obtained, the matrix Hα calculated by βα is considered to be the optimal
homography matrix.

3.3. Semantic Segmentation Model

Ship contour extraction requires segmentation of the area covered by the ship surface
when viewed from above, but the area is often obscured by the superstructure of the vessel.
Commonly used image segmentation algorithms are often greatly affected by noise and lack
robustness, and it is difficult to determine the target area when it is obscured. However, the
deep learning DeepLabV3+ semantic segmentation model [35] is highly accurate, robust,
and not very susceptible to noise. Therefore, it is suitable for use in the segmentation of
specific targets in a complex environment.

The network structure of DeepLabV3+ is shown in Figure 6. It consists of an encoder
and a decoder. The main body of the encoder is a deep CNN with dilated convolution that
controls the size of the receptive field by a rate (r) without changing the size of the feature
graph. A greater value of r produces a larger receptive field. The dilated convolution in
the encoder is combined with a spatial pyramidal pooling module to produce multiscale
information. The main constituents of the encoder are the following:
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a. One 1× 1 convolution layer and three 3× 3 empty convolution layers. The rate r is
(6, 12, 18) when the output step size is 16, and is doubled when the output step size is 8.

b. A global average pooling layer is used to produce image-level features that are then
input into the 1× 1 convolution layer and bilinearly interpolated to the original size.

c. Five features of different scales are combined in the dimension channel, and then input
into the 1 × 1 convolution layer to be combined to produce 256 channels of new features.

The decoder can also combine low-level features with high-level features to increase
segmentation accuracy. The main steps of feature fusion are as follows. The multiscale
feature information is bilinearly interpolated and upsampled. The encoder then combines
it with the original features that were extracted by the CNN. The combined feature infor-
mation is then convoluted for simple feature combination. Finally, the combined features
are bilinearly interpolated and upsampled to produce the segmentation results.

Xception [36] was used as the backbone network for feature extraction (Figure 6).
Xception, which is an improved version of Inception V3, introduces depthwise convolution
derived from Inception V3 to reduce model complexity and improve segmentation. The
label in Figure 6 is from the annotation of the input images. The spatial pyramid module
combined with dilated convolution combines multiscale image information. A larger value
of r will extract features from different regions of the image into a larger receptive field,
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thus reducing obscuration by the superstructure. The marked area is the area where the
ship is vertically mapped onto the water surface.

4. Results
4.1. Ship Object Detection

The experimental platform was a desktop computer with Windows 10, a GTX1050Ti
GPU, and the PyTorch 1.8.0 framework. We created a coco dataset for training with
2535 images collected from surveillance videos from waterways upstream and downstream
of the Yichang Yangtze River Bridge and the Jingzhou Yangtze River Bridge in China.
The images included ships from different angles of different sizes, and in various lighting
conditions. The image count was increased to 5070 using data enhancement methods such
as noise processing, random angle rotation, random brightness adjustment, and simulated
rain and fog weather conditions. Labelme software was used to annotate the images, which
contained 12,376 ship objects altogether. The dataset was divided for training, validation,
and testing in a ratio of 8:2:1. The input size for detection was 320× 320. Stochastic gradient
descent (SGD) was used for optimization. The initial learning rate was set to 0.01 because it
is a common value suitable for most deep learning models.

The object detection models were trained and tested before and after validation, and
their precision and recall were calculated. Precision represents the proportion of correctly
predicted targets in total predictions, and recall represents the proportion of all target
predictions that were correct. In general, precision decreases as recall increases.

To assess detection improvement attributed to SENet, P–R curves were plotted using
precision and recall values for the two models before and after validation. In addition, the
mainstream object detection algorithms Faster RCNN and YOLOv4, and the lightweight
algorithm YOLOv4-Tiny using the test set, were selected for comparison to further assess
the accuracy and efficiency of the NanoDet–SENet model detection. Table 2 shows the
number and size of parameters for these three models. It can be seen from the table that
NanoDet–SENet is an excellent lightweight model because its network complexity is much
less than that of other models.

Table 2. Params number and size of different models.

Total Params Params Size

Faster RCNN 137.08 M 522.91 MB
YOLOv4 64.36 M 245.53 MB

YOLOv4-Tiny 6.06 M 23.10 MB
NanoDet–SENet 0.95 M 3.62 MB

The P–R curves for the experiment are shown in Figure 7. Detection by several
algorithms was assessed using four indicators: mean average precision (mAP), frames/s
(FPS), precision, and recall, which are shown in Table 3. It can be seen from the table that the
NanoDet–SENet model outperformed NanoDet, YOLOv4-Tiny, and Faster RCNN in terms
of precision and the mAP, but did not perform as well as YOLOv4. The recall was greater
than for NanoDet and YOLOv4-Tiny, but less than that for Faster RCNN and YOLOv4.
The FPS was significantly greater than for all the other models except NanoDet. These
results indicate that the SENet attention mechanism significantly influenced the detection
effectiveness of the model, and that NanoDet–SENet detected objects almost as well as
YOLOv4, although it is a simpler model.
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Table 3. Comparison test results of target detection.

Precision (%) Recall (%) mAP (%) FPS

Faster RCNN 69.68 81.51 78.84 6.35
YOLOv4 86.23 79.64 90.20 9.10

YOLOv4-Tiny 84.20 74.55 83.68 30.71
NanoDet 78.96 74.72 76.55 38.62

NanoDet–SENet 85.09 76.83 86.73 37.47

4.2. Establishment of the Homography Transformation Model

We combined AIS information with video data to create the optimal homography
transformation matrix between the sensor pixel coordinate system and the water surface
coordinate system. The critical aspect of this algorithm is the synchronization of the time of
the image sequence with the time of AIS information acquisition to ensure the accuracy of
key point detection.

A Hikvision zoom network camera remotely captured video stream was transmitted
using a real-time streaming protocol (RTSP), and a message queue telemetry transmission
(MQTT) server was used to create an AIS information transmission platform. The video
transmission rate was 3.2 Mbps with a 3.5 s delay, and the AIS signal delay was 6 s. As
described in Section 3.2, the delays were eliminated, and the video and AIS information
was used to obtain the coordinates of 250 sets of control points.

The key points were then tested. The accuracy of key point detection decreases for
small-target ships, so we needed to ensure the ship detection boxes we selected as the
control points were of adequate size and had well-defined contours, as shown in Figure 8.
Figure 8a,b show ship objects detected at two distinct time points. The ship moving away
from the sensor on the left side of the images was used to validate the optimal homography
matrix. The red pixels in Figure 8c,d show the LC significant image pixels of change
points, and the green pixels show key points after linear fitting. Figure 8d shows that the
model predicted the exact position of the key point when the ship was further away from
the sensor.
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After we derived the optimal homography matrix, as described in Section 3.2, we
used sensor data for the upstream and downstream directions to test the homography
transformation model. Consecutive AIS coordinates were obtained, and the pixel coor-
dinates of key points in the corresponding images were obtained and mapped onto the
water coordinate system to predict the trajectory. Figure 9 shows that the trajectory of key
points after coordinate mapping was very close to the AIS trajectory. The mean values
of the distances between the corresponding points in the two sets of trajectories, 11.5 m
and 77.8 m, were consistent with relative positions and distances between the real-world
GPS antenna and the ship waterline inflection point. This result shows the accuracy of
coordinate mapping using the homography transformation model.
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4.3. Ship Contour Extraction

Only images of bulk carriers and oil tankers were used, because the irregular shapes
of passenger and container ships add unnecessary complexity to the development of the
prototype model. We used surveillance cameras to obtain overhead views of vessels on
the waterway to ensure that the deck surface matched the ship hull as much as possible.
The object detection method was used to take automatic photos that were stored to create a
semantic segmentation data set. The model training platform was a desktop computer with
Windows 10 and an RTX3060Ti GPU using the Keras 2.2.5 framework. Target ship contours
were labeled using Labelme software, and pixels were classified as either foreground or
background. The ratio of the training set, validation set, and test set was 8:2:1. Online data
enhancement was used to randomly amplify the image and label data in each batch in the
training stage. The input data size for the model was 512× 512.

The mean intersection over union (MIoU), which is a standard metric of the accuracy
of a semantic segmentation algorithm, was used to assess the performance of the algorithm.
The equation is as follows:

MIoU =
1

k+1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(9)

where k is the number of pixel categories, pij is the number of pixels that originally belonged
to category i but are predicted to be in category j, and MIoU is the average number of times
the predicted value coincides with the actual value in each category. A greater value of
MIoU indicates more accurate network prediction.

The FCN is commonly used for ship image semantic segmentation [37]. An FCN
classifies images at a pixel level by selecting a sliding window for each pixel. Unet (unity
networking), an improvement on the FCN [38], has been widely used in the field of
transportation. Therefore, we compared these two models with DeepLabV3+. The IoU
results for background and foreground after training for 50 epochs are shown in Table 4. It
can be seen that DeepLabV3+ has clear advantages over FCN and Unet.

Table 4. Comparison test results of semantic segmentation.

Background_IoU (%) Boat_IoU (%) Mean_IoU (%)

FCN 99.42 79.80 89.61
Unet 99.28 67.35 83.32

DeeplabV3+ 99.54 82.61 91.07

The output images of DeepLabV3+ needed to be trimmed. Trimming was performed
by calculating the number of pixels in the stern area along the transverse axis of the ship,
and setting a threshold to eliminate scattered pixels to avoid individual misclassified pixels
having undue impact on the corrected image. The segmentation results are shown in the
first three columns of Figure 10. It can be seen from Figure 10 that the DeepLabV3+ model
segmented the target area well without obstruction from the superstructure. The fourth
column in Figure 10 shows the trimmed images that represent the actual ship contour
region after coordinate mapping. The pixel size of the image corresponds to a real-world
distance of 115 m. It is clear from these results that the size and heading of ships at different
distances in the image were approximately estimated.

A comprehensive review of all the experimental results shows that the DeepLabV3+
semantic segmentation model can be successfully used on a high-performance server that
receives automatic photos and uploading based on lightweight object detection and accom-
plishes contour extraction tasks on the cloud server, thus avoiding bandwidth usage for
transmitting large amounts of remote video data. The object detection model will determine
the rectangular region surrounding a vessel, increase the proportion of ship features in
DeepLabV3+ input, and improve the pertinence of the semantic segmentation model.
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We captured the video frame at the same time of receiving the AIS signal, and extracted
the ship’s aera with the semantic segmentation model. Based on the restored image, edge
detection was combined with the Hough transform to further detect the minimum enclosing
rectangle of the ship. We tested for several ships by estimating their dimensions, which
we then compared with the actual dimensions; the results are shown in Table 5. We found
that the average length relative error was 5.84%, and the average width relative error was
7.53%; these values are in a reasonable range. We also noted that the maximum length error
and width error were 14.2% and 16.5%, respectively; this was because the color and texture
features of the ship are not obvious enough to cause semantic segmentation errors, and
were further amplified by image correction.
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Table 5. Ship dimension data calculation results and errors.

MMSI
Length (m) Width (m)

Actual Calculated Error (%) Actual Calculated Error (%)

413773165 87 90.3 3.8 14 14.6 4.3
413774959 87 84.2 3.2 15 16.3 8.7
413779378 90 96.7 7.4 15 17.0 13.3
413781326 106 110.6 4.3 17 18.2 7.1
413783151 107 115.2 7.7 16 17.1 6.9
413803847 90 96.8 7.6 15 15.4 2.7
413811188 100 97.5 2.5 16 16.9 5.6
413819165 100 114.2 14.2 17 19.8 16.5
413831856 110 113.6 3.3 19 20.0 5.3
413801536 107 103.1 3.6 16 16.6 3.8

Mean - - 5.8 - - 7.4

According to the experimental results of Park et al. [4] using satellite-observed ships,
the RMS errors for the length and width were 12.1 m and 6.8 m, respectively. We further
calculated that the RMS error according to Table 5 and obtained the corresponding results
as 6.6 m and 1.4 m, respectively, which are obviously better. This final result is valuable
for creating and improving AIS data, and also provides a foundation for calculating ship
collision risk.

5. Conclusions

Ship dimension information is important at the micro level in ship collision risk cal-
culations. To avoid having to work with missing or incorrect ship dimension data, deep
learning algorithms were used to extract ship contours from inland waterway surveil-
lance video and real-time AIS information. According to the experimental results, the
proposed object detection model and semantic segmentation model were very accurate in
our experimental trials, and thus successfully resolved the missing AIS data issue.

The easily used lightweight ship object detection model that we developed for edge
computing processed at a high frame rate without GPU acceleration, and facilitated the
automatic acquisition and uploading of ship images. Therefore, it provides crucial support
for shipping control on inland waterways.

In this study, AIS real-time position information was taken as a virtual control point
to create a coordinate mapping model that rapidly and accurately mapped sensor image
coordinates onto water surface coordinates without the need to rely on various projection
parameters. Therefore, this method merits future development to further promote the
combination of video, AIS, and radar information.

The combination of the object detection model and the coordinate mapping model,
together with the use of the semantic segmentation algorithm, allowed us to extract the ship
contour from the image and predict its actual size. The experimental trial results suggest the
method is effective, and demonstrates the capability to extract ship dimension information
automatically. This capability will benefit inland waterway regulatory authorities by
enabling them to improve management of ship navigation.

The method still has some limitations. On the one hand, it has requirements regarding
camera heights and shooting angles for coordinate mapping, as described in Section 3.2;
therefore, a camera is best installed in the midspan of an inland river bridge with a bridge
floor elevation of more than 50 m. On the other hand, the contour extraction method is not
suitable for passenger ships and container ships, because their true contours are poorly
reflected in the image.

Errors in ship contour extraction mainly come from the coordinate mapping model
and semantic segmentation model. In our future research, we will add more ship images
to the semantic segmentation dataset to improve the generalizability of the dataset so
that the model can more exactly segment images of different types of ships. Vessel GPS
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positioning generally exists within 1 m of error, which can affect the effectiveness of the
coordinate mapping method. Thus, we will explore the error correction method based on
constructing the trajectory equation to predict the GPS positioning coordinates according
to the characteristics of GPS positioning coordinates obeying the Gaussian distribution at a
certain moment. We will also endeavor to constantly use ships to simulate the control points
during the experiment, in order to continuously update the optimal homography matrix.

Author Contributions: Methodology, validation, writing, original draft—Z.H. and Q.M.; data
curation—L.L. and C.Y.; review and editing, funding acquisition—Q.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is supported by the National Natural Science Foundation of China (Grant
No. 52372316).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bakdi, A.; Glad, I.K.; Vanem, E.; Engelhardtsen, Y. Ais-based multiple vessel collision and grounding risk identification based on

adaptive safety domain. Materials 2019, 8, 5. [CrossRef]
2. Liu, W.R.; Guo, Y.; Nie, J.; Hu, Q.; Xiong, Z.; Yu, H.; Guizani, M. Intelligent Edge-Enabled Efficient Multi-Source Data Fusion for

Autonomous Surface Vehicles in Maritime Internet of Things. IEEE Trans. Green Commun. Netw. 2022, 6, 1574–1587. [CrossRef]
3. Huang, Z.S.; Hu, Q.Y.; Mei, Q.; Yang, C.; Wu, Z. Identity recognition on waterways: A novel ship information tracking method

based on multimodal data. J. Navig. 2021, 74, 1336–1352. [CrossRef]
4. Park, J.J.; Park, K.A.; Foucher, P.Y.; Lee, M.; Oh, S. Estimation of ship size from satellite optical image using elliptic characteristics

of ship periphery. Int. J. Remote Sens. 2020, 41, 5905–5927. [CrossRef]
5. Yan, Z.; Yan, X.; Xie, L. Inland Ship Edge Detection Algorithm based on Improved Canny Operator. J. Converg. Inf. Technol. 2012,

7, 567–575.
6. Gu, D.; Xu, X. Multi-feature extraction of ships from SAR images. In Proceedings of the 2013 6th International Congress on Image

and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; pp. 454–458.
7. Zhu, J.; Qiu, X.; Pan, Z.; Zhang, Y.; Lei, B. Projection shape template-based ship target recognition in TerraSAR-X images. IEEE

Geosci. Remote Sens. Lett. 2017, 14, 222–226. [CrossRef]
8. Nie, Y.Y.; Fan, S.C.; Shui, P.L. Fast ship contour extraction in SAR images. J. Eng. 2019, 19, 5885–5888. [CrossRef]
9. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
10. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; p. 15523970.
11. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the 32nd International conference on machine learning, Lile, France, 6–11 July 2015; pp. 448–456.
12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; p. 16541111.
13. Lin, H.; Shi, Z.; Zou, Z. Fully Convolutional Network with Task Partitioning for Inshore Ship Detection in Optical Remote Sensing

Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1665–1669. [CrossRef]
14. Bovcon, B.; Kristan, M. A water-obstacle separation and refinement network for unmanned surface vehicles. arXiv 2020,

arXiv:2001.01921.
15. Ust, L.; Kristan, M. Learning maritime obstacle detection from weak annotations by scaffolding. arXiv 2022, arXiv:2108.00564.
16. Kelm, A.P.; Zolzer, U. Walk the Lines: Object Contour Tracing CNN for Contour Completion of Ships. In Proceedings of the 25th

International Conference on Pattern Recognition (ICPR), Milan, Italy, 13–18 September 2020; pp. 3993–4000.
17. Howard, D.; Roberts, S.C.; Brankin, R. Evolution of Ship Detectors for Satellite SAR Imagery. In Genetic Programming; Springer:

Berlin/Heidelberg, Germany, 1999; Volume 1598, pp. 135–148.
18. Kim, H.T.; Park, J.S.; Yu, Y.S. Ship detection using background estimation of video and AIS informations. J. Korea Inst. Inf.

Commun. Eng. 2010, 14, 2636–2641.
19. Fefilatyev, S.; Goldgof, D.; Shreve, M.; Lembke, C. Detection and tracking of ships in open sea with rapidly moving buoy-mounted

camera system. Ocean Eng. 2012, 54, 1–12. [CrossRef]
20. Yang, T.J.; Zhang, S.; Zhou, G.Q.; Jiang, C.X. Design of a real-time system of moving ship tracking on-board based on FPGA in

remote sensing images. In Proceedings of the International Conference on Intelligent Earth Observing and Applications 2015,
Guilin, China, 9 December 2015; p. 980804.

https://doi.org/10.3390/jmse8010005
https://doi.org/10.1109/TGCN.2022.3158004
https://doi.org/10.1017/S0373463321000503
https://doi.org/10.1080/01431161.2019.1711246
https://doi.org/10.1109/LGRS.2016.2635699
https://doi.org/10.1049/joe.2019.0384
https://doi.org/10.1109/LGRS.2017.2727515
https://doi.org/10.1016/j.oceaneng.2012.06.028


J. Mar. Sci. Eng. 2023, 11, 1700 17 of 17

21. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

22. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

23. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

24. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the European Conference on Computer Vision (ECCV), Amsterdam, the Netherlands, 10–16 October 2016; pp. 21–37.

25. Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H.; Zheng, Y.; Xue, X. Arbitrary-oriented scene text detection via rotation proposals.
IEEE Trans. Multimed. 2018, 20, 3111–3122. [CrossRef]

26. He, L.; Yi, S.; Mu, X.; Zhang, L. Ship Detection Method Based on Gabor Filter and Fast RCNN Model in Satellite Images of Sea. In
Proceedings of the 3rd International Conference on Computer Science and Application Engineering (CSAE), Sanya, China, 22–24
October 2019; pp. 1–7.

27. Zhang, S.; Wu, R.; Xu, K.; Wang, J.; Sun, W. R-cnn-based ship detection from high resolution remote sensing imagery. Remote Sens.
2019, 11, 631. [CrossRef]

28. Guo, H.; Yang, X.; Wang, N.; Song, B.; Gao, X. A rotational libra r-cnn method for ship detection. IEEE Trans. Geosci. Remote Sens.
2020, 58, 5772–5781. [CrossRef]

29. Einhorn, E.; Schroter, C. Attention-driven monocular scene reconstruction for obstacle detection, robot navigation and map
building. Robot. Auton. Syst. 2011, 59, 296–309. [CrossRef]

30. Chen, S.; Mei, S.; Jia, G. KFPA Monocular Ranging Algorithm Design and Application in Mobile edge Computing. J. Internet
Technol. 2021, 22, 1131–1142.

31. Raza, M.; Chen, Z.; Rehman, S.U. Framework for estimating distance and dimension attributes of pedestrians in real-time
environments using monocular camera. Neurocomputing 2018, 275, 533–545. [CrossRef]

32. Huang, L.; Zhe, T.; Wu, J.; Wu, Q.; Pei, C.; Chen, D. Robust inter-vehicle distance estimation method based on monocular vision.
IEEE Access. 2019, 7, 46059–46070. [CrossRef]

33. Zhe, T.; Huang, L.; Wu, Q.; Zhang, J.; Pei, C.; Li, L. Inter-vehicle distance estimation method based on monocular vision using 3d
detection. IEEE Trans. Veh. Technol. 2020, 69, 4907–4919. [CrossRef]

34. Jie, H.; Li, S.; Gang, S.; Albanie, S. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 8, 2011–2023.
35. Chen, L.C.; Papandreou, G.; Kokkinos, L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef] [PubMed]
36. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.
37. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 2015, 39, 640–651.
38. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1109/TMM.2018.2818020
https://doi.org/10.3390/rs11060631
https://doi.org/10.1109/TGRS.2020.2969979
https://doi.org/10.1016/j.robot.2011.02.008
https://doi.org/10.1016/j.neucom.2017.08.052
https://doi.org/10.1109/ACCESS.2019.2907984
https://doi.org/10.1109/TVT.2020.2977623
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186

	Introduction 
	Related Studies 
	Ship Object Detection 
	Video Ranging Technology 

	Methods 
	Object Detection Model 
	Coordinate Mapping 
	Semantic Segmentation Model 

	Results 
	Ship Object Detection 
	Establishment of the Homography Transformation Model 
	Ship Contour Extraction 

	Conclusions 
	References

