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Abstract: It is found that the classic finite element method (FEM) requires much time for adequate
meshes to acquire satisfactory numerical solutions, and is restricted to acoustic problems with low
and middle frequencies. In this work, a coupled overlapping finite element method (OFEM) is
employed by combining the overlapping finite element and the modified Dirichlet-to-Neumann
(mDtN) boundary condition to solve underwater acoustic scattering problems. The main difference
between the OFEM and the FEM lies in the construction of the local field approximation. In the
OFEM, virtual nodes are utilized to form the partition of unity functions while no degree of freedom
is assigned to these virtual nodes, which suppresses the linear dependence issue in other generalized
finite element methods. Moreover, the user-defined enrichment functions can be flexibly utilized
in the local field, and thus the numerical dispersions can be significantly mitigated. To truncate the
infinite problem domain and satisfy the Sommerfeld radiation condition, an artificial boundary is
constructed by incorporating the mDtN technique. Several numerical examples are studied and
it is shown that the proposed method can greatly diminish the numerical error and is insensitive
to distorted meshes, indicating that the proposed method is promising in predicting underwater
acoustic scattering.

Keywords: overlapping finite element method; underwater acoustic scattering; Helmholtz equation;
modified Dirichlet-to-Neumann boundary condition

1. Introduction

The research on acoustic problems has aroused much attention in past decades. The
methods for solving acoustic problems mainly include experiments, analytical methods
(and semi-analytical methods) [1], and numerical methods [2-5]. Experiments usually
require much expense and suitable experimental conditions. Analytical methods and
semi-analytical methods can be only applied to acoustic models with simple geometry and
it is difficult to figure out analytical solutions to complex acoustic problems. Thus, most
acoustic problems are solved by resorting to the numerical method due to its universality
and robustness. Various numerical methods have been applied to computational acoustics
in past decades [6,7], and the finite element method (FEM) [8] and the boundary element
method (BEM) [9-11] are the most universally used methods in engineering practice.

In the BEM, which is based on boundary integral equations, only the boundaries of
the problem field need to be discretized, resulting in a significant reduction in the number
of unknown variables in the BEM compared to the FEM [12]. Moreover, the BEM can be
directly used to deal with acoustic problems in infinite and semi-infinite fields since the
boundary conditions at infinite distances can be automatically satisfied [13,14]. However, it
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is relatively difficult for the classic BEM to address acoustic problems in an inhomogeneous
medium. Meanwhile, there is no unique solution for some specific frequencies when
exterior acoustic problems are dealt with in the standard BEM. In addition, the coefficient
matrix in the classic BEM is non-symmetric and non-sparse, resulting in prohibitively
expensive computational costs [15].

The FEM plays a significant role in engineering applications, such as acoustic wave
propagation, fluid flow, heat conduction, and structural mechanics. However, there are
three main sources [16] of error in the FEM in the application of acoustics: (1) discretization
error, when the computational domain is discretized and the shape functions are employed
to approximate the solutions; (2) the dispersion error [17,18], caused by the distinction
between the computational and the exact wave speed; (3) the boundary truncation error for
exterior acoustic problems. The discretization error can be dealt with by refining the mesh,
but the dispersion error, which leads to the numerical pollution effect, is more difficult to
handle [16,19]. Moreover, the dispersion error sharply rises as the wavenumber increases.
Thus, numerical solutions using the conventional FEM are only acceptable with relatively
low and middle frequencies, and are unreliable at high frequencies.

To reduce the numerical error of the FEM model, many techniques have been de-
veloped. It has been reported that the conventional FEM model is overly stiff compared
with exact models [20,21], which can lead to numerical dispersion [22]. In recent years,
the smoothed finite element method (S-FEM) [21,23-25], combining strain smoothing tech-
niques and the conventional FEM, has been proposed, and the ‘overly stiff” issue, thus,
can be mitigated to some extent. In the generalized finite element method (GFEM) [26,27],
on the basis of the partition of unity (PU) configuration, a specific function can be added
to enrich the original FEM space to improve the solution accuracy. However, it has been
reported that a special iterative solver is required in the GFEM due to the linear dependence
problem [28].

The mesh-free method [29] was developed to avoid the prohibitive cost of meshing
and improve the solution accuracy. The problem domain is discretized based on nodes
rather than predefined meshes in the mesh-free method. On the basis of the moving
least square method, the element-free Galerkin method (EFGM) was presented to solve
problems that are relatively hard to solve using the FEM, such as crack propagation [30,31]
and acoustic analyses [32,33]. Inspired by wavelet analysis, the reproducing kernel particle
method (RKPM) [34] was constructed. The meshless local Petrov—Galerkin method (MLPG)
was proposed, removing the global background cell for numerical integrations [35]. The
point interpolation method (PIM) and radial point interpolation method (RPIM) [36,37]
are widely employed in acoustic problems. However, a singularity problem may be
encountered in the moment matrix in the PIM. You analyzed the dispersion error of PIM
and dealt with the unique problems of the matrix by using the Gauss—Jordan elimination
method [38]. Recently, the RPIM was modified by You et al. to present a modified RPIM
for the acoustic problem [39,40]. It has been proved that the modified method performs
better than the conventional FEM and standard RPIM in terms of the solution precision
and efficiency [41]. However, the application of these mesh-free methods usually requires
relative knowledge of analysts and, thus, is limited in engineering practice.

In addition to the methods mentioned above, resorting to the method of finite sphere [42,43],
the overlapping finite element method (OFEM) has been proposed to overcome the dif-
ficulty in meshing [44,45]. However, the bandwidth of the coefficient matrix is relatively
large, indicating expensive computational expense. To reduce the bandwidth and improve
computational efficiency, a new overlapping element [46] was presented. It has been proven
that the new paradigm is insensitive to distorted meshes and has better solution accuracy
than the conventional FEM [47]. In this work, this novel overlapping element is employed
for analyzing underwater acoustic scattering.

However, for exterior acoustic problems, a difficulty for the OFEM is the treatment of
the unbounded problem domain [48]. In this work, the computational domain is truncated
by the artificial boundary. To satisfy the Sommerfeld radiation condition, that the waves at



J. Mar. Sci. Eng. 2023, 11, 1676

30f22

infinity only travel outward, the special technique is always required to reduce the spurious
wave reflection, such as the Dirichlet-to-Neumann (DtN) boundary condition [48] and the
perfectly matched layer technique [49]. The DtN boundary condition is a popular technique
and the pressure on the DtN boundary is represented by infinite Fourier series. However,
it takes a large computational cost to guarantee the accuracy of the solution, especially
for a high wavenumber and large computational domains. A modified DtN boundary
condition [50] is then proposed to solve this problem. A coupled mesh-free method that
combines RPIM and this modified DtN boundary condition [51,52] was proposed by
Wau et al. to predict acoustic scattering and acoustic radiation in an infinite field.

Underwater acoustics is a key area concerning the marine environment and marine
navigation [53]. A large number of methods have been applied for underwater acoustic
prediction in the past few years. In addition to the FEM, computational fluid dynamics [54]
has been applied to predict underwater acoustic noise too. Otherwise, in waveguide which
is a special medium, mode-matching techniques [55-57] are proposed to deal with acoustic
problems and perform well in accuracy and robustness.

In this work, our objective is to present a coupled overlapping finite element method
by combining the novel OFEM and the mDtN boundary condition to solve underwater
acoustic scattering problems. The rest of this work is constructed as follows: the formulation
of OFEM is presented in detail in Section 2; then, in Section 3, the Helmholtz equation and
its Galerkin weak form are derived; in Section 4, three numerical examples are used to
verify the properties of OFEM,; finally, conclusions are given in Section 5.

2. The Formulation of Overlapping Elements

The OFEM is a novel method that combines the advantages of the FEM and the mesh-
free method. The main difference between the OFEM and the FEM lies in the construction
of the local field approximation. In the traditional FEM, the nodal unknown is only a single
value, while in the OFEM, the nodal unknown can be any reasonable function. In the OFEM,
virtual nodes are utilized to form the partition of unity functions in the approximation of the
local field while no degrees of freedom are given to these virtual nodes, which suppresses
the linear dependence issue in some other generalized finite element methods. Moreover,
the user-defined enrichment functions can be flexibly utilized in the local field, and thus,
the numerical dispersions can be significantly mitigated. Then, the unknown coefficients
turn to the amplitude of the enrichment functions rather than the nodal pressures.

2.1. Local Interpolation

As shown in Figure 1, the relevant variables of the local field are first defined. The
local field D; of the node I consists of six triangular elements. Let N be the set of nodes
contained in D; and S; be the sphere including all nodes in Dj. r; is the radius of the sphere
S1. The approximations of the local field in the domain S; can be given by [46]

pi(x) =Y Y @j(x)(pactjn) )

JENT neS

in which (p}(x) is the interpolation function satisfying the PU, «;,, denotes the unknown
nodal field variables, and p, denotes the user-defined functions. Actually, any reason-
able functions can be used in the OFEM, and in this work we mainly focus on complete
polynomials of order n, with considerable generality in engineering practice

p=[xyPxyy .. 2)

where the variables (x, y) are measured from node J.
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(a) (b)

Figure 1. The local field of node I in the OFEM. (a) The local field of node I; (b) the virtual nodes in
the OFEM.

Then, in the new OFEM scheme shown in Figure 1, virtual nodes are automatically
generated in each triangular element to construct the approximation of the local field.
It is worth mentioning that the interpolation function (p}(x) plays a significant role in
dealing with mesh distortion. In the past scheme, the Shepard function is directly used
in the overlapping formulation. In the new scheme, the interpolation function in every
overlapping region is given as [46]

hi; ®3)
where /1; is the second-order shape function of the traditional FEM, and (f)}i is the predefined

weight function [46].

2.2. Global Interpolation

Once the approximation of the local field is obtained in the OFEM, the global approx-
imation can be established by using the partition of unity. Consider a two-dimensional
domain (), shown in Figure 2, is composed of N, triangular elements and N, nodes. In
traditional FEM, the field variables in each element can be obtained by

u—= Zh[ﬂ] (4)

where iy (with I =i, j, k) is the shape function of the corresponding nodes and u; is the
nodal field variable.

\/ \/

VAVAVAVERRNVAVAVAN:
SN/,

J, { K

Figure 2. Schematic of the FEM with triangular elements.

For the OFEM, the triangular domain €” is the overlap region of the local domains Dj,
Dj, and Dk. I is the set of nodes which are the intersection of the local domain D; and the
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overlap region ™. The global approximation in the present OFEM scheme is constructed

as [46]
N,

u(x) =YY hyi(x)

m=1I1€ly

Substituting Equation (1) into Equation (5),
Ne ;
u(x) = Z Z hy Z Z <P]<x)(Pn°‘]n)
m=1I1€l, JENT neS
The expression in Equation (6) can be rewritten as
3
w=13_f1 Y, pne
J=1 neS

with the new interpolation functions f; given as

®)

(6)

@)

®)

Substituting the detailed expression of the weight function (f)} into Equation (8), the

interpolation function f; can be written as

£ W P W,
fl = hl + h4(l’11 + hz) levz‘m + h4h3 W1+W;+W3

. +fl6(h1 + hg) %

~ Wl
Hhsh Wi+ Wo+Ws | X6

~ Wl
+heha Wi+Wo+Ws |

~ ~ W 2 W
for= o+ Bl + o) gt |+ Bahs i

7 W 7 W;
+h5(h2 + }’lg) WZV\/?, x5 + h5h1 Wm’

X5

~ W,
+h6h2 Wi +Wr+Wj3 X

~ ~ W
fa=hz+hyhs W1+W§+W3

+ ﬁ5(h2 +h3) %
4

X.

P W 7 W
Hhshy s |t he(h 4 hs)

~ Ws
+h6h2 Wi+Wr+W3

X6

X6

in which the weight function W;(] = 1,2,3) is defined as [41]

W — 1-6s2+8%—3st 0<s<1
7 o s>1

with the variable s given by [46]
d
s
]

where dj represents the distance from node ] to point x = (x,y).

) )
) (10)
) (11)
(12)
(13)
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3. The Standard Galerkin Weak Form for the Exterior Acoustics

Considering a bounded problem domain () without an external source term, the
acoustic medium inside this domain is homogeneous and inviscid. The boundary condition
I' consists of three parts, which are the Dirichlet boundary I'p, the Neumann boundary I'y,
and the Robin boundary I'z. Note that 'p UI'y UT'g =Tand Ip NIy NT'r = @.

The acoustic pressure u can be obtained by solving the Helmholtz equation

V2u+ku=0 (14)

where V is the Hamiltonian operator, k = w/c is the wavenumber, and w and c denote the
angular frequency and wave speed, respectively.
The boundary conditions can be given as

u=up onlp
Vun = —jowv, onIy (15)
Vun = —jowAyu onl'g

where n, p, A, represent the unit normal outwards vector on the boundary, the density of
the media, and the admittance coefficient on the boundary I'r, and v, is the normal velocity
on the boundary I'y.

In addition, according to the conservation of momentum, the acoustic particle velocity
v can be related to the acoustic pressure u in the form of

Vu = —jpwv (16)

By resorting to Equations (14) and (15), the acoustic field for interior acoustic problems
can be easily sloved. However, for underwater acoustic scattering problems with an infinite
problem domain, an artificial boundary is usually required to form the computational do-
main. Furthermore, the absorbing boundary conditions can be prescribed on this boundary
to satisfy the Sommerfeld radiation condition

d—-1
lim 7 @‘r‘ - ]'ku) —0 (17)
where d is the dimension of the considered problem.

There are many absorbing boundary conditions such as the DtN boundary condi-
tion [50], a family of Bayliss-Gunzburger-Turkel boundary conditions [58], and the per-
fectly matched layer technique [49,59]. Among these techniques, the DtN boundary con-
dition is an exact non-reflection boundary condition without any additional manually
selected parameters, and thus, is employed in this work. The shape of the DtN boundary is
usually a circle, as shown in Figure 3. The exact acoustic pressure on I'y; is denoted as [49]

o 2T (1)
1 Hy, 7 (kr)
u(r,0) = = c cos n(6 — ®)u(R,, 0)dd (18)
”r;)O/ "HO (kR,) ’

where R, is the radius of the DtN boundary; H, y(,l) is the Hankel function of the first kind; and

05 n=0
C"_{l, n>0 (19)



J. Mar. Sci. Eng. 2023, 11, 1676

7 of 22

Figure 3. Schematic of acoustic scattering in an exterior field.

Taking the derivative of u with respect to argument r, the new equation is

00 27

ou(r,0) -y Cn/ 1(0 — 0)u(Ry, 0)d0 (20)

on r=R, n=0 0

in which /
_k H,M (kRy,)
mu (0 —0) _7;mcosn(970) (21)
Equation (20) can be rewritten as
au(r,G) _ *MM(RQ, 9) (22)
an V:Ra

with M being the DtN operator, which makes the Sommerfeld radiation condition a bound-
ary condition on the artificial boundary.

However, the infinite series involved in the DtN operator needs to be truncated in
practical numerical implementation

ou(r,0)
on

N 21
~-Y cn/ 1 (6 — 9)u(Ra, 9)d9 = — MNu(R,, 0) 23)
=R, n=0 0

where N is the number of truncated terms, and MY is the truncated DtN operator.
The number of truncated terms can affect the accuracy of the DtN boundary condition
and the well-posedness regarding the uniqueness of solutions. To overcome these diffi-

culties, a local differential operator B is applied in the modified DtN boundary condition.

Assume B is a linear operator such that Equations (14) and (15) and w kT Bu(r,0)

is a well-posed problem. The operator B is applied to the higher modes without modifying
the exact boundary condition on the lower modes. Adding and subtracting operator B on
the right side of Equation (23), the new equation is

ou(r,6)
on r=Ry

~ ~MNu(R,,0) = — (MN - BN>u(Ra,9) — Bu(R,,0) (24)

where MY is the modified DtN operator.

However, it is necessary to present a suitable condition on B on higher modes. Detailed
discussions about the operator B can be found in ref. [60]. In this work, the local differential
operator is

L (R, 0) (25)

Bu(rlg)|T:Ra = (]k_ ZRg
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Thus, the modified DtN boundary condition can be expressed as

ou(r,0 N 2 , 1
ugrr )V_Ra:_ngom/o cos(O — 8)u(Re, )t — (jk — 5z )u(Ra ) (26)
1, kH,V'(kR,) . 1
’Y—E(—m—]k‘*‘ ZRg) (27)

Then, the weak form of the exterior acoustic scattering problems can be constructed
by resorting to the weighted residual method. Multiplying the weight function w on both
sides of the Helmholtz equation and integrating over the problem domain (), the following
equation can be reached

/ w(Au + Ku)dQ = 0 (28)
Q
Integrating Equation (28) by parts, the new equation is
/ Vo VudQ — k2/ w-udQ — / w-(Vu-n)dT = 0 (29)
Q Q r
Applying the boundary conditions mentioned above, Equation (29) can be written as

Jo V- VudQ — k2 [ w-udQ +jpw fp,, woadl+

jowA fp, wudl + [ w-Mpy-udl =0 (30)
In the Galerkin form, the weight function is
Nn
w(x) = éu(x) = Y Nij(x)du; = N(x)ou (31)

i=1

in which N;, u; are the shape function and the pressure value of the ith node, respectively.
Substitute Equation (31) into Equation (30), the new equation is

Jo (VN)T-VNAOU — i, [, NT-NdQU + jow [ A;NT-NdTU+

) (32)
Jry NT-MJ'NdI'U = —jpw [ NT-0,dT
Equation (32) can be rewritten in the matrix form
(K — kM + jowC + Kppey) U = —jowF (33)

with:
the acoustic stiffness matrix K = [, (VN)TVNAO;
the acoustic mass matrix M = f a NTNdAO;
the acoustic damping matrix C = er A,NTNdT;
the modified DtN matrix Kypin = er NTMNNAT;

the vector of acoustic force F = er NTv,dT;

the vector of unknown variables U = {uq, up,us, ..., un}T.

4. Numerical Tests

In this section, the performance of OFEM in handling underwater acoustic scattering
problems is investigated by several typical numerical examples. When the complete
polynomials of the first and second order are used in the local basis functions in Equation (2),
these schemes are termed as the OFEM-N3 and the OFEM-NG6, respectively. In addition, the
numerical results obtained by the traditional finite element discretization using the linear
and the quadratic triangular elements are also given for comparison, and these schemes
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are termed the FEM-T3 and FEM-T6, respectively. The surrounding medium is water. The
density is p = 1000 kg/m?> and the wave speed in water is ¢ = 1500 m/s.

4.1. Cylinder Scattering in Underwater Acoustic Field

The acoustic scattering by an infinite rigid cylinder with radius a = 0.2 m is studied in
this section. As shown in Figure 4, the incident wave is a unit plane wave and the direction
of the wave is along the x-axis direction. Since variables are unchanged along the z-axis
direction, this problem can be reduced to a two-dimensional problem. The DtN boundary is
a circle centered at the origin with radius R, = 1.2 m. Then, the acoustic scattering pressures
can be sought by solving the following acoustic problem

Au+ku=0 inQ

Vun = —jowv, only (34)
ou(Ry,0
9uRaf) — _MNu onTy

Incident wave ~ —~— Incident wave Vo

<~

Figure 4. Schematic of cylinder in an exterior field.

The analytical acoustic pressure can be obtained from

u= +ZO:0 —(—i)”chHfll)(kr) cos(nf), (35)
=0 HYY (ka)

where [, and H,(ll) are the Bessel function and Hankel function of the first kind, respectively.

4.1.1. The Computational Accuracy

The computational domain is discretized to be a set of triangular elements with
the average element size h = 0.050 m as shown in Figure 5. In practical engineering
projects, the rule of thumb [38], that more than six elements should be generated per
wavelength, needs to be satisfied to generate an acceptable solution for the traditional finite
element discretization.
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Figure 5. Cylinder discretized by a uniform mesh.
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The contour maps of acoustic pressure obtained from numerical methods and ana-
lytical solutions for k = 10 are displayed in Figure 6. It can be observed that the FEM-T3
yields almost meaningless results as apparent oscillations can be observed. In addition,
by comparing the wavefront on which the acoustic pressure is 0.5 Pa, it is noted that the
FEM-T6 and the OFEM-N3 can yield very similar solutions. Moreover, the numerical waves
generated by these two schemes travel faster than the exact waves. This is because the
numerical model of the two schemes has an over-stiff behavior [61,62], leading to a smaller
numerical wavenumber than the exact wavenumber. By contrast, the OFEM-N6 model,
with the close-to-exact stiffness of the exterior acoustic scattering systems, can provide the
most precise solutions among all numerical methods.

Pressure(Pa Pressure(Pa
T3 T3

1.18
1.01
0.85
0.68
0.51
0.35
0.18
0.02

(a) FEM-T3 (b) FEM-T6
Pressure(lPa) Pressure(lPa)
35 35

1.18
1.01
0.85
0.68
0.51
0.35
0.18
0.02

(c) OFEM-N3 (d) OFEM-N6

1.18
1.01
0.85
0.68
0.51
0.35
0.18
0.02

1.18
1.01
0.85
0.68
0.51
0.35
0.18
0.02

P1ressure(lP§1)5

1.18
1.01
0.85
0.68
0.51
0.35
0.18
0.02

(e) Analytical solutions

Figure 6. The distribution of the acoustic scattering pressures by an infinite cylinder for k = 10.

Then, the real part of the scattering pressure at r = 1 m away from the center (the
directivity patterns) for different wavenumbers is given in Figure 7 for detailed comparison.
A similar conclusion can still be reached according to Figure 7. The solutions obtained from
all of the numerical methods are consistent with the analytical results for the wavenumber
k =5, indicating that all of the numerical methods can achieve high accuracy at relatively
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low frequency. However, the solutions obtained from FEM-T3 are different from the
analytical solutions for k = 10, 20, and 30. The curves of FEM-T6 and OFEM-N3 coincide
with analytical solutions for wavenumbers k = 10 and k = 20, whereas apparent deviations
can be noted between FEM-T6, OFEM-N3, and the analytical solution for wavenumber k = 30.
By contrast, only OFEM-NG6 can reach a high accuracy at the relatively high frequency.

| FEM-T3 =———FEM-T6 OFEM-N3 ==——=QOFEM-NG{ ====x== Referencel
900 900
(a) 120° 03 60° (b) 120° 04 60°
03
150° 02 30° 150° 300
02
0.1
180° 0° 180° 0 0°
210° 360° 210° 360°
240° 300° 240° 300°
270° 270°
90° 90°
(© 120 60° (d) 1200 06 60°
0.6
150° 0.4 30° 150° i 30°
0.2
180° 0° 180° e
210° 360° 210° 360°
240° 300° 240° 300°
270° 270°

Figure 7. The pressure at a distance of 1 m from the center with different wavenumbers. (a) Wavenum-
ber k = 5; (b) wavenumber k = 10; (c) wavenumber k = 20; (d) wavenumber k = 30.

To further measure the numerical solution accuracy, the following relative error indi-
cator is adopted

\/f (u*exact _ u*h)T(uexact _ uh)dQ
Q
e =

(36)
\/f (uexact)TuexactdQ
Q

5

where u* is the complex conjugate of the pressure u, and the superscripts ‘exact” and ‘h’
represent the analytical solutions and the numerical solutions, respectively.

Figure 8 illustrates the relationship between the relative error and the wavenumber. It
can be observed that the relative error of all of the numerical methods rises with increasing
wavenumber in the acoustic scattering problems. The FEM-T6 behaves in a similar way
to the OFEM-N3 and can provide a reasonable solution accuracy for non-dimensional
wavenumber kh < 1. In addition, the relative error in OFEM-NG6 increases slowly and is
less than 1% for all computed wavenumbers. Note that the overlapping elements can be
applied to the finite element model without changing the mesh topology. This means that
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the p-adaptive analysis can be easily achieved and the available computational frequency
range of the original numerical model can be enlarged flexibly.

0.5 : . . .
FEM-T3
0 H——FEM-T6 ;
~ OFEM-N3
— —0.5 }|—-4—OFEM-N6 .
&b
% 1t ‘ ]
g ErP=1 _Th=1
S 15} - ]
(0] o
= -
éj I / |
—25 /24/"’" ]
rFaiy . .
5 10 15 20 25

Wavenumber &

Figure 8. The relative error versus the wavenumber.

4.1.2. The Control of the Numerical Error

The performance of all schemes in the acoustic scattering problem deteriorates with
increasing wavenumber, indicating that the numerical pollution effect is also inevitable in
high-order elements. Actually, the total numerical errors in H1 semi-norm in the traditional
FEM have been studied and can be bounded by [63]

kh " kh 2"
;) +Czk(;) (37)

TH < Ci(
where C; and C, are constant coefficients which are unrelated to the wavenumber k and
the average element size I; n represents the order of the shape functions.

In Equation (37), the dispersive error is the first term and the second term is the
interpolation error. When the wavenumber k is kept to a small value, both the interpolation
error and the dispersive error are maintained at a reasonable level. However, for a large
computational frequency, the total numerical errors can surge sharply. This means that
another effective criterion instead of the rule of thumb is required for the control of the
total numerical error.

To further investigate the criterion for controlling numerical errors, two schemes are
compared separately. First, keeping the non-dimensional wavenumber kh as a constant to
control the interpolation error as the requirement of the rule of thumb. Second, keeping the
term k>h? as a constant to control the dispersion error. The results of the above two cases
are displayed in Figure 9. There is an obvious rise in the relative errors of the traditional
FEM as the average element size decreases when kh is constant. The same conclusion can
be obtained for OFEM-N3. It is interesting to note in the OFEM-N6 scheme that there is
a turning point at the average element size i = 0.0295 m. With a larger element size, the
relative error can be well controlled with the mesh refinement, but with a smaller size, the
solution accuracy deteriorates with the mesh refinement.
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Figure 9. The relative error versus wavenumber with (a) ki = constant; (b) 3h? = constant.

As for the second criterion, where the term k3h? is kept as a constant, the solution
accuracy of all methods can be improved with decreasing the element size. Moreover, the
convergence rate of the OFEM-NG6 is higher than that of the OFEM-N3, and the OFEM-N6
can always yield the most accurate solutions. Considering that the high-order elements are
easily reached without any mesh adjustment, the coupled OFEM model possesses significantly
superior in controlling the total numerical errors in underwater acoustic problems.

4.1.3. The Convergence Property

As shown in Figure 10, the convergence of all of the schemes is studied with k = 20. It
can be observed that the numerical errors go down with the mesh refinement, revealing that
all numerical methods are convergent. Moreover, the solution accuracy of the OFEM-N3
and the FEM-T6 is almost identical for the relatively small non-dimensional wavenumber
kh. In addition, the OFEM-NG6 can yield very satisfactory solutions even by using a very
coarse mesh, indicating that the coupled OFEM is very promising in handling underwater

acoustic scattering problems.
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Figure 10. The convergence property of all considered schemes.

4.1.4. Sensitivity to Nodal Irregularity

A comparison of different methods between regular meshes and irregular meshes is
made to assess the influence of a distorted mesh on the solution accuracy. The irregular
meshes are generated based on the regular meshes

X' =x+ Ax-re-Bi
38
]// =y+AyrepBir (38)
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where 1" and i’ are the coordinates of the irregular nodes, x and y are the coordinates of the
regular nodes, Ax and Ay are the regular nodal spacings in the x-axis and y-axis directions,
tc is a random number whose value is between —1 and 1, and B, is a prescribed parameter
that can control the irregularity degree.

The directivity patterns at different wavenumbers are plotted in Figure 11. A precise
solution can be provided by four numerical methods at a low frequency using irregular
meshes. As Figure 11 shows for wavenumber k = 10, the conventional FEM is sensitive
to irregular meshes. There is a slight difference between the analytical solution and the
solution of OFEM at wavenumber k = 25. Moreover, the solution of OFEM-NG6 is consistent
with the analytical solution all the time.

| FEM-T3 =—FEM-T6 =——=QFEM-N3 =———=QFEM-N§ *rs===s= Reference
a 90° b 90°
(2) 120° 60° (b) 120° 60°
0.3 04
150° 30° 150° 0.3 30°
02
0.1
180° 0° 180° 0 0°
210° 360° 210° 360°
240° 300° 240° 300°
270° 270°
90° 90°
(©) 1200 60° GO RPE 08  60°
0.6
150° 04 30° 150°
180° ) 0° 180°
210° 360° 210° 360°
240° 300° 240° 300°
270° 270°

Figure 11. Sensitivity analysis for the distorted mesh: (a) wavenumber k = 5; (b) wavenumber k = 10;
(c) wavenumber k = 20; (d) wavenumber k = 25.

Further studies were performed in the sensitivity analysis. The result of the OFEM with

an irregular mesh is plotted in Figure 12. The result is fairly accurate even for wavenumber
k = 40, which is twice the wavenumber obtained from the rule of thumb.
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Figure 12. Sensitivity analysis with distorted mesh.

4.1.5. The Computational Efficiency

Figure 13 illustrates the relationship between the error, 7, and time, t. It is apparent
that the performance of the traditional FEM-T3, regarding the computational efficiency, is
undesirable because more computational time is needed to reach a comparable solution
accuracy. However, the computational times of the FEM-T6 and the OFEM with linear and
quadratic local basis functions are much more similar for a comparable solution accuracy.
This phenomenon does not mean that the coupled OFEM is inferior to the traditional FEM
using high-order elements in terms of the computational efficiency. We herein emphasize
again that the high-order functions can be directly added into the approximation space
because all of these enriched DOFs are only associated with the vertex nodes of each
element, meaning that no mesh adjustment is needed, while in the traditional FEM, the
efficiency of the hp-adaptive analysis is related to the mesh refinement strategy [64,65]. In
addition, as mentioned before, any reasonable nodal DOFs can be included in the OFEM
to further improve its performance, as in the GFEM/PUFEM, but the linear dependence
issue can be avoided in the OFEM, while additional treatments are required [63,66] in
the GFEM/PUFEM to handle the singular coefficient matrix when Lagrange polynomial
functions are used in the approximations. Actually, for a similar computational accuracy, the
OFEM-NG6 requires the least number of elements to discretize the problem domain according
to the convergence curve in Figure 13, meaning that the coupled OFEM can significantly
reduce the cost in dividing an adequate mesh in the acoustic scattering problem.

1
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2 ol OFEM-N3 ]
2 ——OFEM-N6
2
= -1
=}
R
s
=
g -2
(o}
O
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Relative error 1Og10(7}1)

Figure 13. The computational efficiency analysis.
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4.2. Scattering by a Rudder-Shaped Scatterer

The scattering of a rudder is studied in this section. The geometry of the considered
scatterer is obtained from the NACA0010 airfoil with length L = 1 m for simplification. The
diameter of the DtN boundary is 4 m. The sketch map is shown in Figure 14.

Incident wave

aan

Figure 14. Schematic of the rubber-shaped scatterer.

The computational domain is bounded by the rubber and the DtN boundary with
the average element size of i1 = 0.0628 m. The scattered acoustic pressure obtained from
FEM-T6 with a small element size is considered as a reference.

The distributions of the real part of the acoustic pressure for wavenumber k = 5 and
k = 20 are presented in Figures 15 and 16, respectively. When the frequency is in a relatively
lower range, the results computed from all numerical methods are consistent with the
analytical solution. It is noted that the acoustic wave travels faster in FEM-T3 than the
acoustic wave in the reference solution for wavenumber k = 20 because of the ‘overly stiff’
numerical model from the conventional FEM.

Presssum(ggalz Presssureéi?
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0.06 0.06
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(a) FEM-T3 (b) FEM-T6
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Figure 15. The distribution of the scattering acoustic pressure for wavenumber k = 5.
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Figure 16. The distribution of the scattering acoustic pressure for wavenumber k = 20.

4.3. Scattering by a Submarine Scatterer

Consider an acoustic field where the acoustic wave is scattered by a submarine struc-
ture. This structure is normalized and the length is 1 m. The incident wave of the acoustic
field is the plane simple harmonic wave which travels along the x-axis direction. The radius
of the artificial boundary is 2 m. The sketch map is shown in Figure 17. There are two
observation points at a distance of 1 m with angles § = 90° and 6 = 180°.

Incident wave v,

\

e

T

Figure 17. Schematic of the submarine scatterer.
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There is no available analytical solution for the acoustic scattering by a submarine
scatterer, so a reference solution is obtained for the high-order FEM with finer meshes. The
scattering problem is solved with different numerical methods for comparison. The results
of the real part of pressure at the observation points are displayed in Figure 18. Figure 18
indicates that the numerical solution of the OFEM is in accord with the reference solution.
The numerical solution of FEM-T6 is also fairly accurate. There is a certain deviation for
the solution of FEM-T3 when the wavenumber is more than k = 18. The result of the
observation at the angle § = 180° shows a good performance of the OFEM.

Pressure

0 10 20 30 40
Wavenumber &

(a) Angle of 6 =90°.

0.7 T r .
—FEM-T6 7
0.6 OFEM-N3 ‘\ |
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% 0.4+
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0.2
0.1F
0
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Wavenumber &

(b) Angle of 0 =180°.
Figure 18. The scattering acoustic pressure at the observation points.

4.4. The Multi-Object Scattering Problem

The multi-object acoustic scattering problem is examined in the frequency domain
to illustrate the performance of the OFEM in this section. As shown in Figure 19, the
multi-object system consists of two cylinders with radii of 2 = 0.2 m. The centers of the
cylinders are located at the origin and (0.4, 0), respectively. The cylinders are surrounded
by water with a density of 1000 kg/m?. The infinite domain is truncated by an artificial
boundary, which is a circle centered at the origin with a radius of 1.2 m. The incident wave
travels in the x-axis direction with a speed of ¢ = 1500 m/s. The observation points are
located on a circle centered at the origin with a radius of 1 m in different directions. Since
the system is complex and it is difficult to derive a theoretical solution, a reference solution
is obtained from a high-order finite element analysis with a refined mesh.
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Figure 19. Schematic of the submarine scatterer.

Figure 20 illustrates the acoustic scattering pressure versus the wavenumber k with
different numerical methods. According to the results of the previous example, the per-
formance of the proposed OFEM-N3 is similar to that of the classic quadratic triangular
finite element. Thus, the solutions of the conventional FEM-T6 are not plotted in Figure 20.
It can be found that all solutions obtained from numerical methods are exact in the low
frequency range. However, in the higher frequency range, there is a deviation between the
solutions obtained from the FEM and the reference solutions, while the OFEM-N6 solutions
are consistent with the reference solutions.
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Figure 20. The scattering acoustic pressure at the observation point with 8 = 90°.

5. Conclusions

In this work, a coupled OFEM for solving underwater acoustic scattering problems is
proposed by combining the overlapping element and the modified Dirichlet-to-Neumann
boundary condition. Any reasonable nodal DOFs can be included in the OFEM to further
improve its performance as in the GFEM/PUFEM, but the linear dependence issue can be
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avoided in the OFEM. By using the modified Dirichlet-to-Neumann boundary condition,
better solution precision can be achieved than the original truncated form with fewer terms,
and unique solutions can be ensured. According to the numerical tests, the following
conclusions can be given.

The coupled OFEM shows better accuracy and stability in computing underwater scat-
tering problems in an unbounded field compared to a conventional finite element method.
Considering that the high-order elements can be easily reached without any mesh adjust-
ment, the coupled OFEM model is significantly superior in controlling the total numerical
errors. Therefore, the OFEM behaves well even with relatively high wavenumbers in the
underwater acoustic problems. Moreover, the OFEM has better convergence properties,
which means that a more accurate solution can be obtained with less computation. In addi-
tion, the OFEM is much less sensitive to distorted meshes, meaning that the coupled OFEM
can significantly reduce the cost of dividing an adequate mesh in the acoustic scattering
problem. The superiority of the coupled OFEM is that p-adaptive analysis can be easily
achieved to improve the solution accuracy without the linear dependence problem of the
classic GFEM /PUFEM.

However, additional degrees of freedom (DOFs) are associated with each field node,
and thus, the total number of DOFs still increase with the increasing computational fre-
quencies in practical engineering scenarios, which limits the application of the coupled
OFEM for acoustic problems at relatively high frequencies due to the finite computing
resource. Future studies may mitigate this issue further by using a model order reduction
technique or efficient adaptive analysis strategy.
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