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Abstract: In the multiple-phase pipelines in terms of the subsea oil and gas industry, the occurrence
of slug flow would cause damage to the pipelines and related equipment. Therefore, it is very
necessary to develop a real-time and high-precision slug flow identification technology. In this study,
the Yolo object detection algorithm and embedded deployment are applied initially to slug flow
identification. The annotated slug flow images are used to train seven models in Yolov5 and Yolov3.
The high-precision detection of the gas slug and dense bubbles in the slug flow image in the vertical
pipe is realized, and the issue that the gas slug cannot be fully detected due to being blocked by
dense bubbles is solved. After model performance analysis, Yolov5n is verified to have the strongest
comprehensive detection performance, during which, mAP0.5 is 93.5%, mAP0.5:0.95 is 65.1%, and
comprehensive mAP (cmAP) is 67.94%; meanwhile, the volume of parameters and Flops are only
1,761,871 and 4.1 G. Then, the applicability of Yolov5n under different environmental conditions, such
as different brightness and adding random obstructions, is analyzed. Finally, the trained Yolov5n is
deployed to the Jetson Nano embedded device (NVIDIA, Santa Clara, CA, USA), and TensorRT is
used to accelerate the inference process of the model. The inference speed of the slug flow image is
about five times of the original, and the FPS has increased from 16.7 to 83.3.

Keywords: subsea engineering; flow assurance; deep learning; Yolo; slug flow; Jetson Nano

1. Introduction

With the continuous improvement and innovation of subsea engineering technology,
oil and gas exploitation is gradually shifting from land/coastal waters to ocean areas [1].
Deep sea oil and gas exploitation has also become an important part of marine resource
development [2]. In the field of the subsea oil and gas industry, it is widely observed that
multiple phases, such as oil, gas, water, or even impurities, are involved [3]. Therefore,
when oil and gas energy is extracted and transported, there are usually several situations,
such as a two-phase flow of gas–liquid and liquid–liquid and a three-phase flow of gas–
liquid(oil)–liquid(water). Sometimes when solid impurities are contained, there will be a
two-phase flow of gas–solid and liquid–solid, and so on. Among them, gas–liquid two-
phase flow is a common fluid flow state in subsea oil and gas transportation [4]. In deep sea
waters, the seabed usually has complex landforms. If rich oil and gas resources are explored
in this water area, the pipe shape of the mixed transportation pipeline laid on the seabed
will be forced to present a different style [5]. The most common pipe types are horizontal
pipe [6], riser [7], and inclined pipe [8]. However, regardless of the pipe type, when the
two-phase flow of gas–liquid flows in the pipeline, and the gas flow velocity and liquid
flow velocity are just in a certain range, slug flow may occur [9]. Especially for the riser,
when the air flow is large, slug flow occurs easily. The slug flow is the liquid slug and the
gas slug in the pipeline that flows in a way that alternately fills the pipeline [10]. Sometimes
when slug flow occurs, a large number of dense bubbles in the pipe may be observed [11].
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However, slug flow is harmful to pipelines [12]. The gas slug will have high pressure, and
a gushing phenomenon will occur at a certain position in the pipeline, and the pressure
will be released instantly, which may lead to much vibration in the pipe together with the
impact of the liquid slug [13]. The high pressure will also affect the fatigue degree of the
pipeline [14]. Dense bubbles are attached to the pipe wall, and a large area of rupture often
occurs. The impact of bursting bubbles will also cause corrosion to the pipeline, and the
pipeline will be damaged. Therefore, to strengthen the monitoring of slug flow in pipes
and optimize pipeline design, it is necessary to develop a real-time detection technology
for slug flow.

1.1. Related Studies

The generation and evolution of slug flow are very complicated processes [15]. Many
studies have been conducted to explore the flow mechanism and evolution process of slug
flow [16,17]. The research methods are roughly divided into experiments [18,19], simula-
tions [20,21], and their combination [22]. Both experiment and simulation are important
ways to gain a deep understanding of the behavior and features of slug flow. Certain condi-
tions are required for the formation and development of slug flow. Deendarlianto et al. [23]
and Dinaryanto et al. [24] carried out slug flow experiments in horizontal transparent pipes,
based on which the initiation mechanism of slug flow is investigated, and the effect of
the superficial velocities of gas and liquid on the transition of slug flow is analyzed. In
addition, the slug flow transition mechanism is also an important research entry point.
Zhang et al. [25] studied the upward slug flow transition mechanism in a vertical pipe to
obtain the in-fluence mechanism of the size and shape of the bubble on the bubble flow rate
ratio. Based on this, a new transition criterion from bubble flow to slug flow is established,
which provides a strong reference for the cognition of slug flow. The features of the fluids
in the process of oil and gas development are very complex. In addition to the superficial
velocity of each phase fluid, the factors that have a greater impact on slug flow also have
viscosity. Naidek et al. [26] focused on exploring the correlation between bubble velocity,
slug frequency, slug length, and liquid viscosity. Cao et al. [27] used the relevant data from
the elbow collected in the experiment as the basic data of the numerical simulation. The
flow features of the slug flow at the pipe elbow are studied by comparing the experiment
with the numerical simulation. Schmelter et al. [28] performed numerical simulations using
data on the flow velocities of each phase in six large horizontal pipes. The effectiveness of
the CFD model in the numerical prediction of slug flow is verified.

Nowadays, computer vision technology has developed to be more and more powerful
and intelligent and has been widely used in various industries [29,30]. It can replace peo-
ple’s subjective consciousness and reduce labor costs to achieve special needs in different
applications of visual scenarios. In the field of computer vision, image processing tech-
niques and object detection algorithms represent two crucial branches of technology that
have found extensive applications. Wang et al. [31] employed traditional image processing
techniques, such as the Canny operator and Douglas–Peucker algorithm to accomplish
shape detection and attribute recognition of contaminants within maritime hydraulic oil.
Huang et al. [32] applied recursive filtering and MSRCR image enhancement algorithms
for preprocessing foreign object images in coal mining transportation. Subsequently, they
deployed MSAM-Yolov5 on the NVIDIA Jetson Xavier NX platform to achieve real-time
detection of large foreign objects on coal mine conveyor belts. Zhao et al. [33] changed the
backbone part of Yolov7 to GhostNet, the neck part was replaced by BiFPN, the CBAM
attention module was introduced into the model, and LW-Yolov7 was constructed to realize
the lightweight detection of corn seedlings. Slug flow identification is an important part
of gas–liquid two-phase flow pattern identification technology. Previously, many scholars
have conducted relevant research on the intelligent identification method of gas–liquid
two-phase flow [34,35]. Image data can fully reflect the features of slug flow. Common
types of slug flow images are photographic images from high-speed cameras and 2D or 3D
images reconstructed using tomography equipment. Flow pattern images are used as basic
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data by many researchers to identify flow patterns using deep learning or machine learning
methods. The identification of slug flow is included in these studies. Xu et al. [36] combined
the two methods of machine learning and deep learning. The classification module in
ResNet50 is replaced with a Support Vector Machine (SVM). Efficient classification and
identification of gas–liquid two-phase flow patterns are realized. The feature extraction
ability of deep neural networks and the classification ability of SVM are fully utilized in
this method. Qiao et al. [37] improved ResNet by embedding CBAM and ECA attention
modules into ResNet50. The recognition performance of the gas–liquid two-phase flow
regime is improved. Nie et al. [38] applied four classic convolutional neural network (CNN)
models to the flow pattern recognition. And, the recognition performance of different
models is analyzed. The feasibility of the CNN model to replace the subjective judgment of
the human eye for flow pattern recognition was verified. Banasiak et al. [39] reconstructed
the flow state with 3D electrical capacitance tomography (ECT) and then used two algo-
rithms to classify and identify the reconstructed images, namely SVM and FCM (Fuzzy
C-Means). Shibata et al. [40] used the time strip method to disassemble and reorganize the
transition process from bubble flow to slug flow into sequence images and then input them
into CNN for training. Finally, the recognition of the transitional flow pattern was realized.
Li et al. [41] used ECT technology to obtain flow pattern reconstruction images in the
jumper and used CNN for training and classification. The CNN model they adopted is the
advanced EfficientNet, which is very rare in flow pattern recognition methods. Moreover,
after the optimizer is replaced by Adam, it is proved that the proposed model has stronger
flow recognition performance than other classical models.

1.2. Innovative Contribution

On the one hand, for the method of using artificial intelligence (AI) computer vision
technology to identify the flow pattern image, the classification model is used, i.e., the
image is classified to judge the flow pattern. But, if the means of image acquisition are to
use a camera to take pictures of the flow pattern, gas slugs in slug flow are likely to be
blocked by other bubbles. The images captured in this case will be difficult to correctly
identify in the classification model. On the other hand, the currently used models are
relatively complex, with a large scale and a large number of parameters, making it difficult
to carry out real-time identification and monitoring in the actual industrial production
environment. Generally, both data and models need to be sent to the cloud for inference,
and then the results are returned. The main contributions of this study can be summarized
as follows:

• The Yolo object detection algorithm was first applied to the field of slug flow detection
technology. High-precision detection of gas slug and dense bubbles in slug flow is
realized. The problem where gas slug in slug flow could not be correctly identified
due to being obscured by other bubbles has been resolved.

• The model with the strongest overall performance is deployed to the Jetson Nano
embedded device. It is also the first time that it is based on a low-power embedded
device and combined with object detection algorithms to detect slug flow in real-time.
Then, TensorRT is used to accelerate the model inference process, and the real-time
inference detection speed of the slug flow video is greatly increased. The detection
capability of the embedded devices provides the basis for simultaneous real-time
detection and related analysis of multiple locations.

The remainder of the paper is organized as follows: Section 2 introduces the algorithms,
datasets, and operating conditions for model training deployment. The training results
of the model and the running effect of the model deployed on the embedded device are
analyzed and discussed in Section 3, and the study is concluded in Section 4.
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2. Materials and Methods
2.1. Yolov3 and Yolov5 Algorithm

Currently, many object detection algorithms based on deep neural networks have
been proposed [42] with the development of AI-related technologies. And, it has been
applied to various fields, aiming to use the object detection algorithm in computer vision
technology to solve related problems in various industries. Yolo (you only look once) is a
classic object detection algorithm based on a deep neural network [43]. It does not have a
fixed model, it has many series, such as Yolov1-v8, and in each series, there are different
versions. The practical application value of the object detection algorithm is to accurately
identify the object category in terms of image or video; as a result, the object location would
be marked. The advantage of the Yolo series algorithm is that it not only has considerable
identification efficiency and accuracy, but more importantly, it must have a high speed,
especially the inference speed after the model is deployed, because Yolo is a one-stage
object detection algorithm [44]. Good identification efficiency and high detection speed
can meet some special requirements in different scenarios. For example, in some scenarios,
real-time identification and detection of video stream data are required. Simpler models
and higher identification and detection speed are also extremely important for deploying
object detection algorithms to embedded devices because the hardware capabilities of
embedded devices are limited compared to cloud servers and fixed computers [45]. In this
study, two series of Yolo object detection algorithms, Yolov3 and Yolov5, are applied to the
detection of slug flow. Both Yolov3 and Yolov5 were created and published by Ultralytics.
So far, although the Yolo algorithms of the v3 and v5 series are not the latest, they are
relatively mature and widely used.

Yolov3 is an improved object detection algorithm based on Yolov2, and the detection
accuracy and speed have been improved [46]. In Yolov3, the pooling layer and the fully
connected layer are removed. The purpose of the pooling layer is generally to downsample
the feature map, but in Yolov3, a convolutional layer with a step size of 2 is used instead
of the pooling layer. The purpose is to effectively prevent the loss of feature information
caused by the pooling layer. It means Yolov3 in the overall model structure, except for
some necessary upsampling layers and neck layers, is using convolutional layers for feature
extraction and feature integration. The DarkNet-53 network is adopted in the backbone
part of the basic Yolov3. The DarkNet-53 network borrows the idea of the ResNet [47]
network, and the residual connection structure is introduced [48]. On the side of the
feature extraction process, a data connection route is reintroduced, and the original feature
information is directly connected to the next layer to prevent the problems of gradient
disappearance and gradient explosion caused by deeper neural networks. To perform
feature extraction more efficiently [49], Yolov3 also has other derivative versions, such
as Yolov3-tiny and Yolov3-spp. Yolov3-tiny is different from the classic Yolov3 in that it
continues to use the maximum pooling layer for downsampling; the purpose is to discard
the identification accuracy to reduce the complexity of the model, thereby improving the
identification speed. As with Yolov3-spp, a SPP (spatial pyramid pooling) module is added
in the neck part. The SPP module is a special module composed of four parallel branches,
which contain three max-pooling layers and a residual connection structure [50].

The overall architecture of Yolov5 still uses the network structure of the previous Yolo
model, including Input, Backbone, Neck, and Prediction [51]. The data are preprocessed
and fed into the neural network in the Input section. Performing deep feature extraction on
images in Backbone, the bidirectional structure of FPN + PAN is adopted in the Neck part
of Yolov5 to transfer and integrate feature semantic information of different scale layers [52].
Mosaic data augmentation technology, adaptive anchor technology, and adaptive image
scaling technology are used in Yolov5. The common purpose is to improve the detection
effect of Yolov5 on objects so that the model can have stronger adaptability when facing
different application scenarios [53]. In Yolov5, the loss function used to measure the
prediction difference of the model and drive the weight update is composed of three loss
functions, namely classification loss, localization loss, and confidence loss [54]. In this study,
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the Yolov5 v6.0 version is used. Different from the previous Yolov5 version, the Focus
module is canceled, and the convolutional layer with the Batchnormalization and SiLU
activation function is used instead. The activation functions in other convolutional layers
are all replaced by SiLU [55]. The original SPP module was removed and replaced by SPPF.
The forward direction of the main body of the SPPF module is serial, which is different from
the parallel branches of the SPP module. The calculation amount of the module is reduced,
and the calculation speed is improved [56]. In the v6.0 version, Yolov5 is also divided into
different model styles according to the complexity of the model and the number of modules,
mainly including Yolov5n, Yolov5s, Yolov5m, Yolov5l, etc. The difference between them
lies in the number of C3 modules and the change in the number of feature map channels
during the convolutional layer operation. Figure 1 shows the Yolov5n model structure.
Yolov5n has fewer parameters and has certain advantages in inference speed.
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2.2. Data Acquisition and Preprocessing
2.2.1. Data Acquisition

To validate the feasibility of Yolov3 and Yolov5 object detection algorithms for slug
flow detection, this study selected a public video of a gas–liquid two-phase flow in the
riser [57]. The video is cut into images frame by frame, and valuable images are selected
to build a dataset as the data for model training and validation. The dataset contains
733 images of slug flow in a vertical pipe. To mitigate the impact of human subjectivity on
data balance, the approach of random sampling without replacement is employed. This
involves selecting 70% of the image data for training purposes, while the remaining 30% is
designated as the validation set. To make the features of the gas slug and dense bubbles
more obvious in the slug flow image, the size of the image is cropped to 300 × 750 × 3.
There is no transparency property in the image. The channel dimension attributed to the
image is RGB three-channel. Figure 2 shows part of the slug flow image data. When slug
flow occurs, the sizable gas and liquid slugs alternate, leading to a rapid increase in pipeline
pressure. This fluctuation in gas content can result in the emergence of numerous bubbles
at times. Similarly, a series of problems, such as increased pressure drop, unstable flow,
corrosion, and wear, can be caused by a large number of dense air bubbles. Therefore,
it is of great engineering value to efficiently detect the slug flow, especially gas slug and
dense bubbles.
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2.2.2. Data Augmentation and Annotation

Mosaic data augmentation is a special form of data augmentation in Yolov5, which
is different from traditional data augmentation methods [58]. First, the original images in
the four datasets are randomly scaled, randomly cropped, etc., and then, the randomly
generated new image data are spliced into a combined image in a random distribution
manner. This combined image is used as data in the model input. In addition, the label
and annotation information of the image will also be converted along with the operation
in the data enhancement to correspond to the new combined image data. The size of the
combined image is 320 × 320 × 3. Data preprocessing using mosaic data augmentation
technology has the following advantages:

(1) Data diversity can be greatly enhanced. The model can learn more image data
features from different perspectives. The generalization ability of the trained model is
improved.

(2) Mosaic data enhancement can simulate the occlusion and overlapping scenes between
objects to a certain extent, which helps the model to solve the detection defects of
occlusion and overlapping objects. It can adapt the model to more complex application
scenarios and improve the stability of the model.

(3) If the effectiveness of the trained models is roughly the same, mosaic data augmen-
tation can be employed to decrease the dataset size because the data are more fully
utilized. Similarly, if the original data remain unchanged and the mosaic data en-
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hancement technology continues to be used, the occurrence of overfitting during the
training process will be effectively suppressed, and the model performance can be
further improved.

After the datasets were allocated, Labelme data labeling software was used to label the
image data. Figure 3 shows an example of the Labelme software interface and data labeling
process. Label information includes the coordinates information and object category. The
red label indicates gas slug, and the green label indicates dense bubbles. After each image
is annotated, the annotated information will be saved in JSON file format. The annotation
files are then converted into the standard COCO data format, corresponding to the image
data. The dataset and label set are fully constructed. Table 1 shows the quantity of images
within the dataset and the number of labeled instances.
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Table 1. Images and instances quantity in the dataset.

Dataset Number of Images Number of Gas Slug Instances Number of Dense Bubbles Instances

Training 513 520 573
Validation 220 228 200

Total 733 748 773

Better training data distribution and instance labels are the prerequisites for the
model to have stronger inference accuracy. Figure 4 shows the visualization results of
data instances in the training set, including the number of instances, size ratio, location
distribution, and size distribution. From Figure 4a, it can be concluded that the number of
instances of gas slug and dense bubbles in the training set is roughly balanced, and the data
labels quantity is even. Figure 4b shows that the proportion of label sizes of instances is
also average. Figure 4c,d shows the center location and size distribution of instances. The
darker the color, the more frequently the represented instance occurs. Since the rectangular
shape of the pipe defines where the objects to be detected are located, the locations and size
distributions of instances are relatively concentrated. However, in the special application
scenario of a gas–liquid two-phase flow-mixed transportation, it can also meet the detection
requirements.
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2.3. Model Training and Deployment
2.3.1. Training Environment and Parameter Settings

The model training process in this research was carried out in the Windows 11 op-
erating system. The running memory of the operating system is 16 G. To accelerate the
Yolo model training process, we formulated the GPU to accelerate the calculation of the
neural network. The GPU model is the NVIDIA GeForce RTX3050 laptop GPU, VRAM 4 G.
The type and model of the computer language interpreter are Python 3.9 (Python Software
Foundation, Amsterdam, The Netherlands), and the deep learning framework is PyTorch
(FAIR, Palo Alto, CA, USA), version 1.10.0.

In this study, seven Yolo models were used for training and validation on the slug flow
image dataset, including Yolov3, Yolov3-tiny, Yolov3-spp, Yolov5n, Yolov5s, Yolov5m, and
Yolov5l. The transfer learning methodology is applied, wherein the weight parameters of a
pre-trained model, trained on the COCO dataset, serve as the initial parameters for training
in this study. Table 2 shows the setting of key parameters during the training process. The
optimizer uses SGD. To stabilize the weight parameter update during model training, the
learning rate decay strategy of cosine annealing was used in this study. The initial learning
rate was set to 0.001 and the overall decay rate was 0.01. Momentum was set to 0.937, and
the weight decay was set to 0.0005; the purpose was to prevent the occurrence of overfitting.
Under the capability of the GPU, the batch size was 8. For the model to be fully trained, the
max epoch was set to 200.
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Table 2. The configuration of primary training parameters.

Parameters

Optimizer SGD
Momentum 0.937

Weight decay 0.0005
Initial learning rate 0.001

Decay rate 0.01
Image size 320
Batch size 8
Max epoch 200

2.3.2. Model Performance Evaluation Metrics

The detection performance and robustness of the model need to be judged by impor-
tant evaluation indicators. Moreover, it is more convincing to evaluate different models
with the same indicators. The comprehensive performance of several models was com-
pared using object detection algorithms, which were more commonly used and the main
evaluation criteria in this study. Evaluation metrics included precision, recall, average
precision (AP), mAP0.5, and mAP0.5:0.95. mAP is an average metric commonly used by
object detection models to evaluate detection precision. To be more comprehensive when
comparing model performance, an evaluation metric comprehensive mAP (cmAP) was
added in this study, and different weights were assigned to mAP0.5 and mAP0.5:0.95 to obtain
a comprehensive evaluation index. Among them, when the intersection over union (IoU)
is 0.5, the average precision under different recalls is mAP0.5, and IoU means the overlap
ratio between the boundary box of the prediction (pr) and the ground truth (gt). The related
expressions are defined as:

IoU =
Areapr ∩ Areagt

Areapr ∪ Areagt
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

AP =
∫ 1

0
Precision× Recalldr (4)

mAP =
∑C

1 AP
C

(5)

mAP0.5:0.95 =
1

10
(mAP0.5 + mAP0.55 + · · ·+ mAP0.9 + mAP0.95) (6)

cmAP = 0.1×mAP0.5 + 0.9×mAP0.5:0.95 (7)

where TP is the true positives, FP is the false positives, FN is the false negatives, and C is
the number of categories.

2.3.3. Embedded Deployment and Operating Environment

Although personal computers (PC) or various servers have powerful computing
capabilities and can quickly infer and detect image data or video stream data in neural
networks, devices, such as PC and servers, are less mobile and not suitable for being
developed into a product. If the data are sent to the cloud for processing and calculation,
the processing time will be lengthened, and it cannot be applied to special industrial
scenarios that require real-time detection, such as video surveillance detection, lane line
detection in driverless driving, etc. During the flow pattern detection procedure within
the submarine pipeline, and because the fluid flow is sometimes very fast, the detection
method with a high frame rate and real-time detection are very important. In this study,
the selected detection models were compared for comprehensive performance, and the
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best model was deployed to the Jetson Nano embedded device to develop a mobile and
real-time slug flow detection method. Jetson Nano is an AI-embedded edge computing
development device [59]. Figure 5 and Table 3 show the basic hardware composition and
hardware model of Jetson Nano, respectively.
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Table 3. Jetson Nano hardware types.

Hardware Names Specifications

CPU Quad-Core ARM® Cortex®-A57 MPCore Processor
GPU NVIDIA MaxwellTM architecture with 128 NVIDIA CUDA® cores

Memory 4 GB 64-bit LPDDR4

In order to facilitate the deployment of corresponding inference models on Jetson Nano,
the operating system is Ubuntu 18.04, and the deep learning combination development
toolkit is Jetpack 4.6.1 launched by NVIDIA. The interpreter is Python 3.6.9, the deep
learning framework is PyTorch 1.8.0, Torchvision 0.9.0. Graphics-accelerated computing
framework is CUDA 10.2, cuDNN 8.2. Figure 6 shows the main flow of the deployment
of the slug detection model. Using the prepared dataset, with the pre-training model,
the model is trained on a high-performance computer to obtain a new model for slug
flow detection. The new model is then deployed to the Jeston Nano embedded device.
The TensorRT acceleration tool is used to accelerate the model inference process, and the
version of TensorRT is 8.2.1. Finally, high-speed and high-precision detection of slug flow
is realized.
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3. Results and Discussion
3.1. Training Results Analysis

In the process of training different models, after each epoch training, the model’s
performance will be assessed using the validation set data. Strictly, the validation set
data has never been encountered by the model, so the performance indicators obtained
after inferring and testing the validation set are convincing. The inference results of the
validation set also reflect the model’s capacity for generalization. The batch size is set
to 8. Figure 7 shows the pattern of a batch of data in the training set when it is input to
the model. Due to the use of mosaic data enhancement technology for image data, each
datum in the batch is not a separate image, but a spliced image after image processing.
And, the annotation information will also be scaled and spliced to ensure that the instance
coordinates correspond to the image size. The objective remains centered on enhancing the
model’s robust generalization capability. In the model validation phase, the training of the
model and the update of the weight parameters will not be affected by the setting of the
batch size. So, in order to speed up the model validation, the batch size of the validation
set is set to 16. Figure 8 shows the validation process of the Yolov5n model for a batch of
data in the validation set. Table 4 and Figure 9 clearly show the detection effect of different
versions of the Yolov5 model on gas slug and dense bubbles instances in the validation
set. The highest detection precision of the gas slug and dense bubbles is 97.9% and 86.3%,
respectively, with both using the Yolov5s model. Yolov5m has the highest detection cmAP
for the gas slug, reaching 73.46%. On the contrary, Yolov5s is the lowest at 66.87%. For
dense bubbles, Yolov5l’s cmAP is the highest, reaching 65.57%, and Yolov5s is the lowest,
at 62.50%. In general, the detection effect of the gas slug is better than that of dense bubbles.
The reason is that in image data the features of the gas slug are more obvious than dense
bubbles. And, when detecting slug flow, it is most important to detect gas slug accurately
and efficiently. But, for one of the categories, the difference in cmAP of the four models
is not large, which means that the average detection accuracy is similar. To compare the
comprehensive performance of different models, we continued to compare the overall
average detection performance of the models, including the indicators of precision, recall,
and mAP. The complexity of the model was also analyzed.
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Table 4. Detailed indicators for different classes.

Class
Yolov5n Yolov5s Yolov5m Yolov5l

Precision/
%

Recall/
%

cmAP/
%

Precision/
%

Recall/
%

cmAP/
%

Precision/
%

Recall/
%

cmAP/
%

Precision/
%

Recall/
%

cmAP/
%

Gas slug 93.1 93.9 71.83 97.9 90.8 66.87 95.3 93.4 73.46 95.3 93.9 72.95
Dense

bubbles 82.1 86.5 63.95 86.3 84.9 62.50 83.3 83.5 64.85 84.4 89.3 65.57

Table 5 shows the overall performance of Yolov5’s related models for the validation
set data. The cmAP of Yolov5l is the highest, reaching 69.25%. However, compared with
other models, the model complexity of Yolov5l is also the highest, with a parameter amount
of 46113663 and Flops of 107.7 G. The performance of embedded devices is often inferior
to that of fixed computers, so if such a complex and computationally intensive model is
deployed to the device, the inference speed will be very slow, which is not conducive to
the realization of applications in special scenarios. The cmAP of Yolov5n is 67.94%, which
is only 1.31% lower than Yolov5l, and the precision and recall are only 2.2% and 1.4%
lower than Yolov5l, respectively. However, the parameter amount and Flops of Yolov5n
are only 3.8% of Yolov5l, which are 1761871 and 4.1G, respectively. Among the Yolov5
comparison models, the model complexity of Yolov5n is the lowest. Although the cmAP is
a little lower compared with Yolov5m and Yolov5l, the difference of about 1% frequently
does not significantly affect the model’s performance. For practical applications, it can
also perform very well. Therefore, in the related comparison model of Yolov5, Yolov5n
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has the most outstanding comprehensive performance. Figure 10a shows the change
curves of some important indicators of the Yolov5n model during the training process,
such as loss, precision, recall, and mAP. All loss indicators are gradually decreasing, and
precision, recall, and mAP are gradually increasing. All metrics tend to stabilize in the later
stages of training. There is no over-fitting phenomenon in the training process, and the
model’s capacity for generalization is assured. Precision and recall are a set of contradictory
indicator parameters. Figure 10b shows the precision–recall (PR) curve. It reflects the
relationship between precision and recall of the model with the best overall performance
during the training process when the IoU threshold is 0.5. The area bounded by the PR
curve and the x-axis and y-axis is mAP0.5, with a value of 0.935.
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Table 5. Overall indicators comparison of the different models of Yolov5.

Model Parameters Flops/G Precision/% Recall/% mAP0.5/% mAP0.5:0.95/% cmAP/%

Yolov5n 1,761,871 4.1 87.6 90.2 93.5 65.1 67.94
Yolov5s 7,015,519 15.8 92.1 87.9 94.2 61.4 64.68
Yolov5m 20,856,975 47.9 89.3 88.5 93.9 66.4 69.15
Yolov5l 46,113,663 107.7 89.8 91.6 94.1 66.5 69.25

Figure 11 illustrates the inference detection outcomes obtained from the Yolov5 series
model applied to certain data. Yolov5s and Yolov5l are capable of detecting dense bubbles
located along the edges of the image. The detection effect is good. The most important
gas slug part can be detected by all models. But sometimes, the gas slug will be blocked
by bubbles. Solely using a computer vision classification model makes it challenging to
accurately identify the gas slug. Therefore, the strength of the object detection algorithm
is that it can still exert a strong performance on partially obstructed objects. Yolov5l can
completely detect the gas slug hidden behind the bubbles. Although other models do not
fully detect a small part of the gas slug, most of the gas slug is also detected when it is
obstructed by bubbles. Taking the image data in a validation set as an example, Figure 12
shows the feature map changes in Yolov5n in the process of inferring and detecting images.
Each layer in the network is playing an important role in feature extraction, and all have
the nature of learning and parameter updating. The deeper the feature extraction layer,
the more abstract the obtained feature map, indicating that Yolov5n has strong feature
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extraction and integration capabilities, providing a solid foundation for the work of the
detection head. The input image consists of three channels (c = 3), representing the RGB
three channels, respectively. In the first two Conv parts, the number of channels of the
feature map is changed from 16 to 32, and the feature map will carry more channel feature
information. With the process of feature extraction and feature integration, as the network
deepens, the size of the feature map progressively decreases, which makes the receptive
field of the feature map larger and larger. The 23rd layer is the last layer of the overall
network, with the largest receptive field, and the corresponding detect head will be more
sensitive to big objects. On the contrary, the depth of the 17th layer is lower, the receptive
field is smaller, and the detect head will be more sensitive to small objects. Similarly, the
detect head pair corresponding to the 20th layer is more focused on objects of medium size.
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Similarly, the Yolov3 series of models also includes lightweight models and high-
precision models. Table 6 shows the overall performance of different models in the Yolov3
series for inference on the validation set data. Figure 13 shows the detection results of
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Yolov3 series models on slug flow images. In Yolov3, the lightest is Yolov3-tiny, with only
8,669,002 parameters. The volume of Flops is 12.9 G, about 80% of Yolov5s. Although the
model of Yolov3-tiny is small, the overall performance of Yolov3-tiny is the worst among the
models of the Yolov5 and Yolov3 series, mAP0.5 and mAP0.5:0.95 are the lowest, and cmAP
is only 62.52%. The cmAP of Yolov3 and Yolov3-spp is 68.27% and 67.47%, respectively,
which are basically the same as the performance of Yolov5n. However, the parameters of
Yolov3 and Yolov3-spp are 35 times that of Yolov5n, and Flops are 38 times that of Yolov5n.
Therefore, due to the huge model size of Yolov3 and Yolov3-spp, the inference detection
speed is very low. When the cmAP is roughly equal, the comprehensive performance is
low, and Yolov3 and Yolov3-spp are not suitable for being deployed in embedded devices
for functional development. Figure 14 shows the overall detection performance metrics for
Yolov3 and Yolov5. In general, the different models of the Yolov3 and Yolov5 series show
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Table 7 and Figure 15 provide comparison with previous research methods. The con-
trastive models encompass two one-stage object detection models: SSD and Yolov5-bifpn.
Yolov5-bifpn is an enhancement over Yolov5l, where the neck section is replaced with
the bifpn structure. Additionally, the two two-stage object detection models are included:
Faster R-CNN and Mask R-CNN. The backbone component for the SSD model is VGG16,
whereas Faster R-CNN and Mask R-CNN employ ResNet50 as their backbone. Both VGG16
and ResNet50 are well-established deep convolutional neural networks renowned for their
exceptional feature extraction capabilities. Analyzing the comparative results from Table 7
reveals that the cmAP for SSD and Mask R-CNN surpasses that of Yolov5n, achieving
68.05% and 68.36%, respectively. Furthermore, the mAP0.5 and mAP0.5:0.95 metrics also
outperform Yolov5n due to the robust feature extraction and integration capabilities of
SSD and Mask R-CNN. For Faster R-CNN, mAP0.5 is higher than Yolov5n, reaching 93.8%.
But, mAP0.5:0.95 is slightly lower than Yolov5n at 65.1%. This led to a decrease in cmAP as
well, which was 0.06% lower than Yolov5n. For Yolov5-bifpn, the primary differences are
observed in mAP0.5:0.95 and cmAP, both of which are lower compared to Yolov5n by 1.2%
and 1.07%, respectively. When comparing the mAP metric, the recognition performance of
the five models does not exhibit significant discrepancies. Minor differences in average pre-
cision are unlikely to heavily impact practical detection outcomes. However, considering
model complexity, the distinction among the five models is substantial. Apart from Yolov5n,
SSD possesses the smallest parameter count at 34.31M, approximately 19 times that of
Yolov5n. Excluding Yolov5n, the model with the lowest Flops is Faster R-CNN at 20.7 G,
roughly five times that of Yolov5n. In summary, compared to models employed in previ-
ous research, Yolov5n demonstrates similarly excellent detection precision. Furthermore,
Yolov5n holds a significant advantage in terms of model complexity and computational
load. This lays a strong foundation for high-speed slug flow detection and embedded
deployment.

Table 7. Comparison with previous studies.

Model Parameters/M Flops/G mAP0.5/% mAP0.5:0.95/% cmAP/%

Yolov5n 1.76 4.1 93.5 65.1 67.94
SSD 34.31 38.56 93.7 65.2 68.05

Faster R-CNN 41.53 20.7 93.8 65.0 67.88
Mask R-CNN 43.75 71.8 94.1 65.5 68.36
Yolov5-bifpn 46.38 108.5 93.6 63.9 66.87
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3.2. Applicability and Limitation Analysis
3.2.1. Applicability Analysis

Mixed pipelines are often found in various environments, such as the seabed, where
the brightness of light is subject to fluctuations. The features of the image are greatly
influenced by the changes in brightness. There could potentially be variations in the
object detection model’s performance when applied to images under different brightness
conditions. Therefore, a correlation analysis on the applicability of the Yolov5n model with
new weight parameters needs to be conducted. To simulate the changes in light brightness
in the actual industrial production environment, brightness processing is performed on
the validation set image data. The image data are subjected to brightness adjustments,
with the brightness increased by a maximum of 45 units and decreased by a minimum of
75 units compared to the original brightness. The experimental conditions include eight
groups, and the brightness scale for the comparison experiment is set at 15 units. The
inference detection result of the updated Yolov5n model on the validation set image data
under different brightness conditions is demonstrated in Figures 16 and 17 and Table 8.
Within the brightness range from −45 to +45, the accurate detection of the position and
overall size of the gas slug and even the detection of partially obstructed gas slug areas
by bubbles is achieved using the Yolov5n model. Large areas of dense bubbles are also
correctly detected, as depicted in Figure 16a–f. However, when the brightness is reduced by
60 or more units, the gas slug detection results deviate significantly from reality, with even
the entire image being detected as a gas slug. The potential reason is that the features of the
gas slug become blurred with a considerable decrease in brightness, resulting in confusing
features similar to gas slugs formed by large dark areas in the image. In terms of result
indices, the original image data demonstrate the most optimal detection performance. As
the brightness gradually increases, there is a decrease in mAP0.5, mAP0.5:0.95, and cmAP to
varying degrees, while precision shows a gradual increase. Upon increasing the brightness
by 45 units, the cmAP is reduced by 3.37% to 64.57%, and precision increases by 3.2% to
90.8%. Conversely, as the brightness gradually decreases, all indicators start to decrease.
The cmAP remains above 60% until the brightness is reduced by 30 units, after which
the model detection effect is significantly weakened. It can be deduced that the model’s
performance is significantly impacted by the quality of the original training data. Despite
the image data being processed by data enhancement technology before training, the
features of the data are still based on the original data. If a large number of processed
images are inferred, the detection performance will be affected, with the degree of influence
depending on the deviation of the processed images from the original image data. The
larger the deviation, the worse the detection effect, and vice versa. When the brightness
changes, the cmAP drops. The main impact is on the part of the image data that are more
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difficult to detect. For the obvious and clear gas slug and dense bubbles, the model can still
perform accurate inference and identification under varying brightness conditions.
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Table 8. Yolov5n performance under different brightness conditions.

Brightness Precision/% Recall/% mAP0.5/% mAP0.5:0.95/% cmAP/%

+45 90.8 89.0 92.2 61.5 64.57
+30 90.6 88.2 93.0 63.6 66.54
+15 88.8 90.2 93.0 64.1 66.99
(−) 87.6 90.2 93.5 65.1 67.94
−15 91.7 85.3 91.2 61.4 64.38
−30 90.1 87.1 91.3 56.8 60.25
−45 90.5 81.0 87.6 47.0 51.06
−60 80.4 75.0 76.8 35.6 39.72
−75 69.5 66.4 68.1 27.2 31.29

(−) represents the original dataset with constant brightness.

In the impact of the external environment, in addition to the impact caused by differ-
ent light brightness, the obstruction of the image by the external environment is also very
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common and cannot be ignored. For example, mixed transportation pipelines laid on the
seabed, suspended solids and impurities in seawater, fish, dirt on pipeline walls, etc., will
all obstruct the flow pattern image, thereby the features of the image will be affected. The
obstruction environment in the actual environment is simulated by adding a circular occlu-
sion at a random position to the image to analyze the detection applicability of the model
when the image is obstructed. The radius of the randomly generated circular obstruction is
between 0.05 and 0.1 of the width of the short side of the image. The obstruction numbers
of the comparative experiments were three, five, and seven, respectively. Figures 18 and 19
and Table 9 show the detection effect and performance evaluation metrics of Yolov5n on the
obstructed image dataset. In general, even if the gas slug and dense bubbles are obstructed
in a distributed manner, those objects with clear features can be detected normally. But, if
the obstructions are concentrated in a certain area, the inference process of the model will
determine that area is a gas slug, as shown in Figure 18b. It is evident that the variability
in obstruction positions introduces a random factor that influences the model’s detection
performance. For performance metrics, precision, recall, and mAP are all lower than the
original data. The cmAP is lower than 60%, and the detection performance effect has been
greatly affected. The reason is that the unique features of the gas slug and dense bubbles
in the image may be affected by random obstructions. The more obstructions, the more
severely the features are affected. For areas with less obstruction, the detection effect can
still be maintained. For places with a lot of obstructions, the detection effect will be greatly
weakened. A similar external environment will have an uncontrollable influence on the
efficient detection of slug flow.
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3.2.2. Limitation Analysis

The models discussed in this study have the advantages of high detection precision
and fast inference speed. The model can still show excellent performance when there are
small fluctuations in environmental conditions. But, the model still has deficiencies and
limitations. In this study, the slug flow image data within the dataset were captured under
the same conditions. Therefore, the size, brightness, and other formatting aspects of the
images remain consistent. Despite employing mosaic data augmentation on the dataset, the
overall structure of the dataset still closely resembles the original data. As inferred from the
previous analysis and discussions, significant variations in image brightness or extensive
occlusions negatively impact the model’s detection performance. Performance metrics, such
as precision, recall, and cmAP, experience substantial decreasing. Consequently, limitations
are introduced to the model. Furthermore, the dataset comprises a mere 733 images.
Typically, a larger dataset size contributes to the model’s enhanced performance after
training. This also constitutes a facet of the model’s limitations.
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Table 9. Yolov5n performance under different obstruction conditions.

Number of
Obstructions Precision/% Recall/% mAP0.5/% mAP0.5:0.95/% cmAP/%

0 87.6 90.2 93.5 65.1 67.94
3 84.9 88.9 90.0 55.4 58.86
5 79.7 87.0 86.3 51.1 54.62
7 82.3 82.1 83.4 46.0 49.74

The limitations imposed on the model by specific image data can be addressed through
the following methods. Firstly, a significant increase in the quantity of image data can
be achieved. Subsequently, within the augmentation of data volume, the diversity of
images can be enhanced, for instance, incorporating a multitude of images with varying
brightness levels, sizes, and occlusion patterns into the dataset. Employing data augmen-
tation techniques further enhances data diversity, thus emulating real-world production
environments. This approach strengthens the model’s generalization ability, enabling its
weight parameters to accommodate a broader array of data styles. The updated model
can adapt to a more extensive range of challenging production environments, fulfilling
detection requirements across a wider spectrum of application scenarios.

3.3. Embedded Deployment Results of Yolov5n

In the previous analysis, for the slug flow image data, the Yolov5n model with the best
comprehensive performance was obtained. It has a strong average detection accuracy. The
most important thing is that the number of model parameters is very small; Flops is only
4.1 G, which provides the foundation and data guarantee for the embedded deployment
of the model and the development of special detection application functions. To validate
the practicality of the model for slug flow detection on embedded devices, we initially
collected video data showcasing slug flow phenomena. The dimensions of this video data
correspond to those of the image data used during model training, ensuring the model can
fully leverage its inference and detection capabilities when applied to video data. Then, we
deployed the trained Yolov5n model (.pt file format) in the Jetson Nano embedded device
to perform inference detection on the slug flow video data. Figure 20 shows the detection
effect of the Yolov5n model on slug flow video data in Jetson Nano. Since the image in
the video data is the same as the image data in the dataset of the previous training model,
and the size is also the same, the detection accuracy is the same as that in the training
results analysis. This aspect of the research is dedicated to assessing the detection speed of
the Yolov5n model on the Jetson Nano platform because the realization and development
of detection functions in special scenarios are directly affected by the detection speed of
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embedded devices. During Yolov5n’s inference and detection of slug flow video data, the
average preprocessing, inference, and NMS (Non-Maximum Suppression) time for each
image are 2.1 ms, 50.2 ms, and 8.6 ms, respectively, a total of about 60 ms. The FPS of video
inference is about 16.7. Such inference is very slow, and the basic requirements of industrial
production cannot be met. Therefore, it is very necessary to accelerate the inference of the
model in Jetson Nano.
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TensorRT is an integrated tool designed for deep learning inference acceleration,
which can convert the Yolov5n model into a TensorRT dedicated model and combine it with
NVIDIA GPU to accelerate the inference process of the model. First, the Yolov5n model
(.pt) is converted into another new format (.wts) using a file written in the Python language.
Then, the serializable file is generated by continuing to execute the CMake command.
Also, it is important that the new model format (.wts) must be converted to a final format
(.engine) that TensorRT can read. Finally, the video data are inferred by reading the model
file (.engine). Figure 21 shows the inference detection effect after TensorRT acceleration. In
the detection results, category 0 represents the gas slug, and category 1 represents dense
bubbles. During inference, the gas slug and dense bubbles can be accurately detected.
Importantly, however, the total time of inference processing for each image in the video
data is reduced to about 12 ms, and the FPS reaches about 83.3. Therefore, after using
TensorRT to accelerate model deployment, the inference speed is greatly improved, which
is five times that before the acceleration. The power of TensorRT for inference acceleration is
proven. This method provides a new idea and method for real-time detection of slug flow.
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4. Conclusions

During the process of mixed transportation of subsea gas–liquid two-phase flows,
the presence of slug flows can often result in damage to pipelines and related production
equipment due to high pressure and vibrations. Accurate detection of slug flows is im-
perative. Gas slugs within the slug flow are sometimes concealed by a large number of
bubbles, and the determination of slug flow patterns can also be influenced by subjective
human perception. In this study, the Yolo object detection algorithm is introduced for the
first time to slug flow identification. Based on experimental results, all seven models within
the Yolov3 and Yolov5 series achieved high-precision detection of gas slugs and dense
bubbles within the slug flow. The issue of gas slugs being undetectable due to bubble
occlusion has been effectively resolved. Notably, when compared to previous research, the
Yolov5n model demonstrated superior inference performance with the fewest parameters
and Flops, totaling 1,761,871 and 4.1 G, respectively. It exhibited exceptional detection
accuracy, with mAP0.5 reaching 93.5%, mAP0.5:0.95 at 65.1%, and cmAP reaching 67.94%. In
contrast, Yolov5n displayed the most comprehensive detection performance for slug flows.
Furthermore, Yolov5n exhibited robust applicability under simulated conditions involving
changes in image brightness and occlusion levels. This suggests that the trained Yolov5n
model can adapt to varying real-world production environments within a certain range of
environmental conditions, achieving proficient slug flow detection outcomes.

Additionally, due to the limitations in real-time performance posed by cloud servers
and fixed computers, this study introduces for the first time the combination of the slug
flow recognition algorithm with the Jetson Nano embedded device. The new Yolov5n
model is embedded within the Jetson Nano and accelerated using the TensorRT tool during
the inference process, resulting in a speed enhancement of approximately five times for
the inference of slug flow video data. The achieved Frames Per Second (FPS) reached
83.3. The integration of the Yolo object detection algorithm with the Jetson Nano for slug
flow detection enables real-time detection of slug flows with lower power consumption
and fewer computational resources. Moreover, it offers the convenience of simultaneous
deployment for multi-location detection. The proposed method not only lays the founda-
tion for the development of relevant equipment for subsea slug flow detection but also
provides fresh insights and guidance for efficient real-time detection of slug flows within
subsea pipelines. However, this study does have limitations. For instance, in cases where
significant changes occur in the production environment, image quality may be severely
affected, resulting in a notable decline in slug flow detection accuracy. Future work should
focus on enhancing the diversity of data within the dataset, including images with varying
brightness levels and occlusions, to enable the model to adapt to a broader range of image
scenarios. Furthermore, exploring faster inference methods for slug flow detection can
potentially elevate detection efficiency.
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