
Citation: Qi, J.; Chen, T.; Zheng, J.;

Wang, S. Port Call Optimization at a

Ferry Terminal with Stochastic

Servicing Time and Additional Visits.

J. Mar. Sci. Eng. 2023, 11, 1644.

https://doi.org/10.3390/

jmse11091644

Academic Editor: Claudio Ferrari

Received: 9 July 2023

Revised: 17 August 2023

Accepted: 21 August 2023

Published: 23 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Port Call Optimization at a Ferry Terminal with Stochastic
Servicing Time and Additional Visits
Jingwen Qi 1 , Tingting Chen 2, Jianfeng Zheng 3,* and Shuaian Wang 1

1 Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University,
Hung Hom, Hong Kong, China; jingwen.qi@connect.polyu.hk (J.Q.); wangshuaian@gmail.com (S.W.)

2 Department of Industrial Systems Engineering and Management, National University of Singapore,
Singapore 117576, Singapore; chen_tingting@u.nus.edu

3 Transportation Engineering College, Dalian Maritime University, Dalian 116026, China
* Correspondence: jfzheng@dlmu.edu.cn

Abstract: Ferry shipping is an indispensable method of public transportation, especially in areas
with well-developed river systems or coastal areas. The increasing demand for transport requires
additional visits and introduces the problem of ship visit schedule engineering at ferry terminals with
stochastic servicing time. In this paper, we propose a ferry visit planning problem to maximize the
total profit, in which the berthing time, berthing location, and servicing time for each ferry visit are
optimized. Then, a mixed-integer nonlinear programming model is proposed to formulate the focal
problem. We propose a tailored solution method to convert the mixed-integer nonlinear programming
model to a mixed-integer linear programming model. We further devise an inserting algorithm to
test the performance of our model. A comparison between the results of the basic instance yielded
by our model and those of the inserting algorithm validates our model and solution method. We
then conduct sensitivity analyses of the impacts of different numbers of existing ferry visits and
added ferry visits, different expectations of the real time taken by all the ferry visits, and different
distribution patterns of existing ferry visits, to further validate the performance of our model.

Keywords: ferry shipping; port call optimization; visit schedule engineering; stochastic servicing time

1. Introduction

Ferry shipping is an important component of public transportation servicing and
plays an essential role in providing mobility for passengers in cities with coastal areas
and river systems, such as Hong Kong [1] and Sydney [2]. In the management of ferry
transportation, arranging ferry visits at the ferry terminal is a critical issue that potentially
influences the service level and total profit of the ferry operation company. In practice, ferry
servicing companies generally arrange ferry visits to provide the servicing for the ferry
passengers at the ferry terminal. Specifically, a ferry visit denotes the process of a ferry
arriving at the terminal, mooring at a berth, and servicing the disembarking and boarding
passengers. The arrangement for ferry visits, including berthing time (ferry arrival times at
the port), berthing locations (the berths that ferries moor at), and servicing time (time taken
for disembarking and boarding), are generally stipulated in advance by the ferry visit plan,
which is designed at the planning stage.

The servicing time of ferry visits is mainly affected by the numbers of boarding and
disembarking passengers on each ferry visit. In practice, the number of passengers on
each ferry visit is uncertain, which will result in the stochastic servicing time of ferry visits.
This is due to the exact value of the passenger demand being unknown at the planning
stage, and the servicing time of ferry visits is, thus, stochastic. The ferry servicing company
allocates the servicing time for each ferry visit based on the historical passenger demand,
which is referred to as allocated servicing time in this paper. The number of passengers
taking the ferry will be revealed when the servicing is finished. Then, the actual servicing
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time of ferry visits will also be acquired. Figure 1 illustrates the ferry visit plan of three
ferry visits at two berths, which is designed at the planning stage. Additionally, the actual
servicing time of three ferry visits at the operational stage is also revealed in Figure 1.
The x-axis and y-axis represent the time and berth, respectively. The actual servicing time
and allocated servicing time are denoted by the solid red arrow line and the black one. For
ferry visit 1, its actual servicing time (i.e., 25 min) far exceeds the allocated servicing time
(i.e., 15 min). Then, ferry visit 2 cannot moor at berth 1 at its designed berthing time and
serve passengers on time, thereby affecting the implementation of the ferry visit plan and
reducing the servicing quality. For ferry visit 3, its actual servicing time (i.e., 20 min) is less
than the allocated servicing time (i.e., 25 min), which will not affect the performance of
the ferry servicing system. Therefore, the uncertain servicing time is an essential factor to
consider at the planning stage since considering the servicing time uncertainty can make
the ferry visit plan more applicable in practical operations.

Figure 1. An illustration of actual and allocated servicing time.

In addition, the ferry passenger demand varies throughout the day. The ferry pas-
senger demand during the peak hours tends to be higher than that during the flat hours.
Correspondingly, the ferry visits operating during the peak hour typically serve more
passengers and therefore bring higher revenue to the ferry servicing company. This varying
revenue incurred by the time-dependent passenger demand is referred to as the time-
dependent revenue in this study.

However, the existing literature does not cover the visit plan optimization problem at
ferry terminals with stochastic servicing time and additional visits. To fill the research gap,
this paper designs the ferry visit plan from the perspective of the ferry servicing company.
Specifically, based on the current plan, we consider redesigning the ferry visit plan to
accommodate the newly added ferry visits. The deviation of the redesigned ferry visit plan
from the current one is constrained to reduce the impacts on the travel plans of passengers.
In addition, this paper also introduces the uncertain servicing time and the time-dependent
revenue caused by the characteristics of passenger demand. The berthing time, berthing
location, and servicing time for each ferry visit are jointly optimized to maximize the profit
of the ferry servicing company. The model originally proposed in this paper will yield
the visit plan that maximizes the total profit. Hopefully, this study can provide help ferry
companies in optimizing ferry visits at the terminal while facing the increasing transport
demand. The main contributions of this paper are as follows:

(1) This paper studies a ferry visit planning problem to optimize the berthing time,
berthing locations, and servicing time for ferry visits simultaneously. In particular,
deviation from the current plan, uncertain servicing time, and time-dependent rev-
enue are taken into account. To the best of our knowledge, this is the first time the
proposed problem has been studied.
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(2) A mixed-integer nonlinear programming (MINLP) model is proposed to formulate
the investigated problem. To solve the model, we apply a linearization method
to reformulate the MINLP model to a solvable mixed-integer linear programming
(MILP) model. An inserting algorithm is developed to demonstrate the superiority of
our model.

(3) Numerical experiments are conducted using the Hong Kong ferry terminal as an
example to validate the applicability of the proposed model. The experimental results
demonstrate that our model is effective under various scenarios.

The remainder of this study is organized as follows. Section 2 presents a review of the
literature related to this paper. Section 3 provides a description of the investigated problem
and the nonlinear mixed-integer programming model. Section 4 shows the solution method,
in which we convert the mixed-integer nonlinear programming model to a mixed-integer
linear programming model. In Section 5, we summarize the computational experiments,
including the basic instance and sensitivity analysis. Finally, Section 6 concludes the paper.

2. Literature Review

Currently, there is only a fraction of papers focusing on the management problems
regarding the ferry servicing. Among these works, the ferry network design problem
(FNDP), which optimizes the ferry servicing network and passenger flow, is extensively
studied. The FNDP was first proposed by [3]. They focused on a multiple origin–destination
network flow problem with ferry capacity constraint. In [4], they extended [3] by intro-
ducing different ferry servicing types and passenger preferences with arrival time win-
dows. Later, Ref. [5] studied a stochastic FNDP under uncertain demand and formulated
a two-stage stochastic model. As an extension of the earlier works, Ref. [6] involved
user equilibrium flows and hard capacity constraints. In [7], they proposed two robust
optimization models for their FNDP. Recently, Ref. [8] utilized the maximum passenger
utility spanning tree approach to optimize the connection between all pairs of ferry stations
and the locations of hubs. In [9], they considered FNDP by introducing autonomous ferries.
A two-step optimization approach was proposed to identify the optimal autonomous ferry
servicing schedules. In their later study, Ref. [10], they focused on planning the ferry ser-
vicing schedule, which combined the dial-a-ride on-demand servicing and fixed schedule
servicings simultaneously.

Although there has been some ferry-servicing-related research, the ferry visit planning
problem that determines the berthing time, berthing location, and servicing time has rarely
been studied. Our ferry visit planning problem relates closely to the berth allocation prob-
lem (BAP), which allocates the berthing time and locations to the arriving vessels. In the
past two decades, many researchers and practitioners have made great efforts to solve the
BAP arising in the container port terminal. An early study was proposed by [11], and they
focused on the objective of minimizing the overall staying time of vessels and dissatisfac-
tion with vessel berthing order in the BAP. Later, some researchers studied the deterministic
BAP by incorporating practical characteristics. For example, Ref. [12] investigated the inte-
gration of BAP, quay crane assignment problem, and yard allocation problem. In [13], they
also studied an integrated problem that combined BAP with the quay crane allocation and
scheduling problems. In practice, it is generally impossible for all the parameters to be fixed
and known in advance. Uncertainties often arise in practical operations due to weather
conditions and mechanical failures. A comprehensive review of the BAP under uncertain-
ties was given by [14]. According to the review, uncertain factors regarding the arrival
time [15–18], handling time [19–22], quay crane breakdown [23–25], and unscheduled vessel
calling [26,27] were commonly considered in BAP problems. Arrival time and handling
time are the most common uncertain parameters to be considered in the BAP. For the uncer-
tain arrival time, Ref. [28] introduced a time buffer to handle the uncertain arrival time in
the robust BAP. In [29], they proposed a robust model to optimize the berth allocation and
quay crane assignment considering arrival time uncertainty. In [30], they addressed a berth
allocation and assignment problem under uncertain vessel arrival time and port servicing
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time, where the cooperation among the liner carriers and that between port operator and
liner shipping carriers were involved. For the uncertain handling time, Refs. [31,32] used
the robust optimization method and distributionally robust optimization method to solve
BAP, respectively. There are also many scholars who considered the uncertainties of arrival
time and handling time simultaneously. In [22], they focused on the weekly berth and quay
crane planning, where the berth position, berthing time, and quay crane assignment were
optimized. In [33], they integrated BAP with yard space allocation, where the uncertain
handling time was incurred by the uncertain number of loading and unloading containers.
In [34], they optimized the berth allocation, assignment of tugboats, and the vessel sequence
at the seaport.

To sum up, most of the existing literature has focused on either FNDP regarding
the ferry servicing or BAP targeting the vessels transferring cargoes in the container port
terminal. There is no paper studying the ferry visit planning problem that considers the
deviation between the redesigned ferry visit plan and the current one, uncertain servicing
time, and time-dependent revenue simultaneously. Firstly, the ferry passengers typically
prefer the current ferry visit plan. If the redesigned ferry visit plan deviates from the
current one, passengers’ travel plans will be affected. Hence, the deviation between
the redesigned ferry visit plan and the current one should be considered. Secondly, the
passenger demand is uncertain, resulting in an uncertain servicing time. Considering
the servicing time uncertainty will make the ferry visit plan more applicable in practical
operations. Thirdly, the passenger demand varies throughout the day, which introduces
time-dependent revenue. With the consideration of these three practical aspects, our paper
can provide the ferry operation company with a more reasonable ferry visits plan, helping
it realize the maximum profit.

3. Model Formulation
3.1. Problem Description

At a ferry terminal with multiple identical berths, denoted by P , a group of ferry
visits, denoted by VE, is scheduled according to a daily ferry visit plan, which gives
the berthing time, berth location, and servicing time for each visit. With the increasing
passenger demand, the ferry servicing company plans to add more voyages. The new set of
visits V includes VE and the visits brought by the added voyages that are denoted by VA.
Consequently, the ferry visit plan needs to be redesigned. For management convenience,
the operating hours of the ferry terminal are evenly divided into a set of time slots, denoted
by S , by time points uniformly distributed, denoted by T . Each time slot s ∈ S starts with
the time point t = s and ends with time point t = s + 1. The berth allocation decisions are
mainly represented by a series of binary decision variables, namely, πij indicating whether
visit i is allocated to berth j, ξB

it/ξE
it indicating whether the allocated berthing time of visit i

starts/ends at time point t, and ξO
is indicating whether time slot s is occupied by visit i,

i ∈ V , j ∈ P , t ∈ T , s ∈ S . In light of the traveling time preference of ferry passengers, the
benefit of a visit is related to the start berthing time point, denoted by rt, t ∈ T . Due to the
stochastic number of passengers, the real berthing time of visit i ∈ V is uncertain, denoted
by d̃i, and we assume that it obeys the normal distribution with the expectation µi and the
standard deviation σi. To handle the servicing time uncertainty, we set the upper limit of
the probability that the actual servicing time of a visit exceeds the time slots allocated to it,
denoted by Pro. Meanwhile, a penalty of PenEX will be incurred when such a case happens
(EX means time required for the disembarking and boarding of a visit exceeds the allocated
time slot). In addition, given that the customers are used to the original visit plan, changes
in the berth plan of existing visits i ∈ V , including the berthing time and berth location,
lead to penalties, denoted by PenST (ST means changing the berthing start time of a ferry
visit) and PenBA (BA means changing the berth allocation of a ferry visit), respectively.
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3.2. Mathematical Model

Given the above notations, the ferry visit plan optimization problem can be formulated
as follows.

[M1] max ∑
i∈V

∑
t∈T

rtξ
B
it − ∑

i=1,...,VE
∑
j∈P

PenBAπ̄ij(π̄ij − πij)− ∑
i=1,...,VE

∑
t∈T

PenSTξ̄B
it(ξ̄

B
it − ξB

it)

−∑
i∈V

PenEXP(d̃i ≥ ∑
s∈S

cξO
is )

(1)

subject to

∑
j∈P

πij = 1, ∀i ∈ V (2)

∑
t∈T

ξB
it = 1, ∀i ∈ V (3)

∑
t∈T

ξE
it = 1, ∀i ∈ V (4)

∑
i∈V

πijξ
O
is ≤ 1, ∀j ∈ P , ∀s ∈ S (5)

ξO
is = ∑

t=1,...,s
ξB

it − ∑
t=1,...,s+1

ξE
it, ∀s ∈ S , ∀i ∈ V (6)

P(d̃i ≥ ∑
s∈S

cξO
is ) ≤ Pro, ∀i ∈ V (7)

πij, ξB
it, ξE

it, ξO
is = 0, 1, ∀i ∈ V , ∀j ∈ P , ∀t ∈ T , ∀s ∈ S . (8)

The objective function (1) maximizes the total profit, which equals the benefit of all
visits, minus the penalty incurred for changing berth allocation and berthing time, minus
the penalty incurred for exceeding the allocated time slots. Constraints (2) ensure that each
visit can be assigned to exactly one berth. Constraints (3) and (4) indicate the uniqueness of
each visit’s start and end time points. Combined together, constraints (2)–(4) ensure that all
visits will be accepted and avoid the waste of berth space by preventing allocating more
than one berth to a single visit. Constraints (5) guarantee that each berth can be occupied
by at most one visit at any time slot. Constraints (6) indicate that the corresponding visit
occupies all time slots between the start and end time points. Constraints (5) and (6) ensure
that all visits can stay at the allocated berth from the start of berthing time to the end
of berthing time. Constraints (7) restrict that, for each visit, the probability that the real
servicing time required exceeds the allocated time slots is no higher than the predetermined
upper bound, which guarantees the lower bound of the service level. Constraints (8) are
the domains of decision variables.

4. Solution Algorithm

The original model [M1] contains multiple nonlinear elements, including the stochastic
parameter and products of decision variables. In this section, we show how to handle them.
First, we linearize the products of binary decision variables in (5). To perform this, we
introduce a new auxiliary variable.

Then, constraints (5) can be replaced by the following constraints:

∑
i∈V

φijs ≤ 1, ∀j ∈ P , ∀s ∈ S (9)

φijs ≤ πij, ∀i ∈ V , ∀j ∈ P , ∀s ∈ S (10)

φijs ≤ ξO
is , ∀i ∈ V , ∀j ∈ P , ∀s ∈ S (11)

φijs ≥ πij + ξO
is − 1, ∀i ∈ V , ∀j ∈ P , ∀s ∈ S . (12)
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Constraints (9) are the rewritten constraints (5), and constraints (10)–(12) guarantee
that the relationship between the variables πij and ξO

is remains unchanged.
Next, we tackle the nonlinear element due to the stochastic servicing time d̃i. Since the

operating hours are discretized into time slots, and the cumulative distribution functions of
d̃i ∼ N (µi, σ2

i ) can be easily obtained, denoted as Fi(x), we can enumerate all the possible
values of ∑s∈S cξO

is that satisfy P(d̃i ≥ ∑s∈S cξO
is ) ≤ Pro, i ∈ V and rewrite the objective

function (1). Therefore, the stochastic elements in [M1] can be handled with new parameters
and variables.

The parameters Proiu and q
i

are obtained on the characteristics of the cumulative
distribution functions Fi(x) of d̃i ∼ N (µi, σ2

i ), and the time slot length c.
Then, constraints (7) can be replaced by

∑
s∈S

ξO
is ≥ q

i
, ∀i ∈ V , (13)

which is a linear constraint that can be directly programmed in a commercial solver.
Meanwhile, the objective function (1) can be rewritten as

[M2] max ∑
i∈V

∑
t∈T

rtξ
B
it − ∑

i=1,...,VE
∑
j∈P

PenBAπ̄ij(π̄ij − πij)− ∑
i=1,...,VE

∑
t∈T

PenSTξ̄B
it(ξ̄

B
it − ξB

it)

−∑
i∈V

PenEX ∑
u=1,...,|S|

Proiuτiu
(14)

with constraints (2)–(4), constraint (6), constraint (8), constraints (9)–(13), and the following
constraints added:

∑
u=1,...,|S|

uτiu = ∑
s∈S

ξO
is , ∀i ∈ V (15)

∑
u=1,...,|S|

τiu = 1, ∀i ∈ V . (16)

The probability of the real servicing time exceeding the allocated time slot,
P(d̃i ≥ ∑s∈S cξO

is ) can be rewritten as the probability of real servicing time exceeding
the total length of the allocated time slots. Constraints (15) and (16) calculate the total
number of time slots allocated to each visit. As a result, the original model [M1] is linearized
as [M2], which can be solved by an off-the-shelf commercial solver Gurobi 10.0 by Gurobi
Optimization, Beaverton, OR, USA.

5. Numerical Examples

The solution method was programmed in Pycharm with Python interpreter 3.9 by
JetBrains, Prague, Czech Republic, and Gurobi 10.0 by Gurobi Optimization, Beaverton,
OR, USA was used to solve the linearized model [M2].

5.1. Basic Instance

In this study, we conducted numerical experiments based on practical data. Ferry
visit information at the Hong Kong Macau Ferry Terminal in Hong Kong is adopted to
generate the details of existing visits and visits to be added. Specifically, the terminal has
three identical berths that open from 7:00 to 17:00 on a working day. The 10 h planning
period is evenly divided into 60 time slots with a length of 10 min; namely, we have
c = 10. The number of time points is 61. The revenue from different berthing times is
generated based on the price of the ferry tickets and the number of passengers. According
to the official website of TurboJET, the price of the ferry ticket is approximately HKD
160 (approximately USD 20.47) [35]. The capacity of the ferry ships is 243 passengers [36].
Therefore, the revenues at different berthing time points are randomly generated based on
the number of passengers and ticket price, with a unimodal pattern reaching the peak value
at t = 31. On the basis of the revenue, the penalty for berthing location deviation PenBA, the
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penalty for berthing time deviation PenST, and the penalty for required real servicing time
exceeding the allocated time slots PenEX, are set at HKD 5000 (approximately USD 639.72),
HKD 7500 (approximately USD 959.58), and HKD 15,000 (approximately USD 1919.16),
respectively. For the detailed revenue for each time point, please see Table A1 and Figure A1
in Appendix A.

In the current ferry visit plan, 15 existing ferry visits are handled throughout a working
day. The service times of the 15 existing ferry visits are randomly generated from 30 min to
90 min (i.e., three to nine time slots). The berths for 15 existing ferry visits are allocated
based on their service time. The current ferry visit plan, including the berth location and
berth time, is illustrated by Table 1 and Figure 2. In Table 1, “Ferry Visit No.” and “Berth
No.” represent the serial number of 15 existing ferry visits and their corresponding serial
number of berth to dwell. The “Berthing Start Time” and “Berthing End Time” represent
when the ferry visits arrive at the berth and when they depart, which are measured in
time point number. The “Servicing Time” represents the number of time slots that ferry
visits dwell at the berth, which is equal to the value of berthing end time minus berthing
start time. For example, ferry visit 1 dwells at berth 1 from time point 2 to time point
8, with a servicing time of six time slots. In Figure 2, the red and blue are just used to
distinguish different ferries that arrive in adjacent order and moor at the same berth. As
shown in Figure 2, there are five ferry visits dwelling at berth 1, berth 2, and berth 3,
respectively. With the current ferry visit plan, the total profit obtained by operating the
15 existing ferry visits during the planning horizon is USD 62,374.27, which is calculated
by ∑i=1,...,VE ∑t∈T rtξ

B
it. In Section 5.2.1, we also perform the sensitivity analysis on the

different distribution patterns of 15 existing ferry visits.

Table 1. Details of the current ferry visit plan.

Ferry Visit No. Berth No. Berthing Start Time Berthing End Time Servicing Time

1 1 2 8 6
2 1 13 20 7
3 1 23 27 4
4 1 27 33 6
5 1 53 59 6
6 2 7 14 7
7 2 20 24 4
8 2 25 29 4
9 2 29 35 6

10 2 36 41 5
11 2 47 53 6
12 3 2 8 6
13 3 14 20 6
14 3 27 33 6
15 3 48 55 7

Figure 2. Berth utilization of the current plan.

To fulfill the increasing traveling demand, five ferry visits are going to be added.
The expectations of the real servicing time of all ferry visits range from 30 to 60 min and
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the standard deviations of all ferry visits σi are all set as 10. The probability that the real
servicing time of visit i exceeds u slots, i.e., Proiu, and the lower bound of allocated slots
assigned to each ferry visit, i.e., q

i
, are then calculated based on the values of expectation

and standard deviation. The detailed values about the lower bound of allocated slots
assigned to each ferry visit are listed in Table A2 in Appendix A.

With the above parameter setting, we conducted the numerical experiment based
on our model. Then, we obtained a total profit of USD 84,336.14, which equals a total
revenue of USD 85,519.06 minus a penalty for berthing time deviation of USD 0, a penalty
for berthing location deviation of USD 0, and a penalty for the realized servicing time
exceeding the allocated time slots of USD 1182.90. The redesigned ferry visit plan is
displayed in Table 2 and Figure 3. In Table 2, the columns “Ferry Visit No.”, “Berth No.”,
“Berthing Start Time”, “Berthing End Time”, and “Servicing Time” have the same meanings
as those in Table 1. As shown in Table 2, the berth number and the berthing start time
of the 15 existing ferry visits are the same as those in the current ferry visit plan, shown
in Table 1. However, the berthing end times of the 15 existing ferry visits change, which
leads to different servicing times. in addition, for the five added ferry visits, three of them
dwell at berth 3, and the others dwell at berth 1. Figure 2 shows the distribution of the
total of 20 ferry visits in detail. Similar to Figure 2, the red and blue in Figure 3 are used to
distinguish different ferry visits that arrive in adjacent order and moor at the same berth.

Table 2. Ferry visit plan of basic instance.

Ferry Visit No. Berth No. Berthing Start Time Berthing End Time Servicing Time

1 1 2 13 11
2 1 13 23 10
3 1 23 27 4
4 1 27 34 7
5 1 53 61 8
6 2 7 20 13
7 2 20 25 5
8 2 25 29 4
9 2 29 36 7

10 2 36 47 11
11 2 47 59 12
12 3 2 14 12
13 3 14 22 8
14 3 27 33 6
15 3 48 61 13
16 3 22 27 5
17 1 43 53 10
18 3 40 48 8
19 1 34 43 9
20 3 33 40 7

Figure 3. Berth utilization of the redesigned ferry visit plan.

For comparison, we proposed an inserting method to add the visits one by one into
the current visit plan. For the detailed steps of the inserting method, please see Appendix B.
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With the inserting algorithm, a total profit of USD 76,136.74 was obtained, which equals a
total revenue of USD 82,224.35 and a total penalty for realized servicing time exceeding the
allocated time slots of USD 6087.60. Detailed results yielded by the inserting method are listed
in Table 3 and Figure 4. In Table 3, the berth number, berthing start time, berthing ending time,
and servicing time of the 15 existing ferry visits are the same as those in the current ferry visit
plan, shown in Table 1. The berth numbers of the five added ferry visits are different from
those obtained by our model (shown in Table 2). Figure 4 illustrates the distribution of the
redesigned ferry visits generated by the inserting algorithm. Similar to Figure 2, the red and
blue in Figure 4 are used to distinguish different ferry visits that arrive in adjacent order and
moor at the same berth. By comparing the total profit obtained by our model (USD 84,336.15)
and that obtained by the inserting algorithm (USD 76,152.41), it can be easily found that our
model can find a better solution with a larger profit. In detail, the total profit yielded by our
model is USD 8183.74 higher than that obtained by the inserting algorithm.

Figure 4. Berth utilization of visit plan in the generated instance.

Table 3. Ferry visit plan generated by the inserting algorithm.

Ferry Visit No. Berth No. Berthing Start Time Berthing End Time Servicing Time

1 1 2 8 6
2 1 13 20 7
3 1 23 27 4
4 1 27 33 6
5 1 53 59 6
6 2 7 14 7
7 2 20 24 4
8 2 25 29 4
9 2 29 35 6

10 2 36 41 5
11 2 47 53 6
12 3 2 8 6
13 3 14 20 6
14 3 27 33 6
15 3 48 55 7
16 1 9 13 4
17 1 34 41 7
18 1 41 48 7
19 2 54 61 7
20 2 1 7 6

5.2. Sensitivity Analysis
5.2.1. Different Distribution Patterns of Existing Ferry Visits

Numerical experiments with different distribution patterns of the existing ferry visits
are conducted in this subsection. In this paper, we consider five different distribution
patterns. In detail, distribution pattern 1 is our current ferry visit plan in Figure 2. The
remaining four distribution patterns are shown in Figure 5. In distribution pattern 2, shown
in Figure 5a, all the 15 existing ferry visits are equally distributed during the operational
period. In distribution pattern 3, shown in Figure 5b, all the 15 existing ferry visits are
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arranged to serve the ferry passengers during the early time periods of the operational
period. In distribution pattern 4, shown in Figure 5c, 15 existing ferry visits serve the ferry
passengers in the middle time periods of the operational period. In distribution pattern
4, shown in Figure 5d, 15 existing ferry visits serve the ferry passengers at the late time
periods of the operational period. Similar to Figure 2, the red and blue in Figure 5a–d
are used to distinguish different ferry visits that arrive in adjacent order and moor at the
same berth.

(a) (b)

(c) (d)

Figure 5. Different distribution patterns of existing ferry visits. (a) Distribution pattern 2. (b) Distri-
bution pattern 3. (c) Distribution pattern 4. (d) Distribution pattern 5.

Detailed results of our model and the inserting algorithm under different distribution
patterns of existing ferry visits are listed in Tables 4 and 5. In Tables 4 and 5, TP, TR, TPBL,
TPBT, TPST, and CPU represent the total profit, the total revenue, the total penalty for
berthing location deviation, the total penalty for berthing time deviation, the total penalty
for servicing time deviation, and computational time. From Tables 4 and 5, we can find
that distribution pattern 4 has the largest total profit (i.e., USD 91,118.18 using our model
and USD 85,754.83 using the inserting algorithm). This is mainly because the revenue at
the middle time points is generally much higher than that at the early or late time points.
Table 6 shows the comparison between our model and the inserting algorithm. In Table 6,
A1 represents our model and A2 represents the inserting algorithm. D represents the
difference of the total profit obtained by our mode and that obtained by the inserting
algorithm, which is calculated by (A1− A2)× 100%/A1. From Table 6, we can find that the
total profits obtained by our model are always higher than those obtained by the inserting
algorithm. In addition, under distribution patterns 1 and 2, the differences (D(%)) between
the total profit obtained by our model and that obtained by the inserting algorithm are
much larger. This is mainly because our model is more flexible in adjusting the current visit
plan to obtain the optimal solution when the existing ferry visits are scatteredly distributed.
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Table 4. Detailed results of our model under different distribution patterns of existing ferry visits.

Distribution TP TR TPBL TPBT TPST CPU (s)

1 84,336.15 85,519.06 0.00 0.00 −1182.91 374.71
2 89,363.13 92,006.14 −639.50 0.00 −2003.52 7201.69
3 86,259.97 92,497.28 0.00 −3837.00 −2400.31 7201.86
4 91,118.18 94,912.04 0.00 0.00 −3793.86 361.77
5 88,977.05 94,073.01 0.00 −959.25 −4136.71 143.41

Table 5. Detailed results of the inserting algorithm under different distribution patterns of existing
ferry visits.

Distribution TP TR TPBL TPBT TPST CPU (s)

1 76,136.75 82,224.35 0.00 0.00 −6087.60 0.64
2 82,009.92 88,097.52 0.00 0.00 −6087.60 0.63
3 81,129.97 87,217.57 0.00 0.00 −6087.60 0.65
4 85,754.83 91,842.43 0.00 0.00 −6087.60 0.66
5 84,281.42 90,369.02 0.00 0.00 −6087.60 0.66

Table 6. The comparison between our model and the inserting algorithm under different distribution
patterns of existing ferry visits.

Distribution
TP

D (%)
CPU (s)

A1 A2 A1 A2

1 84,336.15 76,136.75 9.72 374.71 0.64
2 89,363.13 82,009.92 8.23 7201.69 0.63
3 86,259.97 81,129.97 5.95 7201.86 0.65
4 91,118.18 85,754.83 5.89 361.77 0.66
5 88,977.05 84,281.42 5.28 143.41 0.66

5.2.2. Different Numbers of Existing Ferry Visits and Added Ferry Visits

The numbers of existing visits and added visits are crucial parameters that influence
the visit plan optimization. Therefore, a series of instances with different numbers of
existing visits and added visits were conducted to show the superiority of the proposed
model and solution method. The detailed numbers of existing ferry visits and added ferry
visits of each instance are listed as follows.

In Instance 1, there are 10 existing ferry visits and 5 added ferry visits. In Instance 2,
the number of the existing ferry visits and added ferry visits are both 10. In Instance 3,
the numbers of existing ferry visits and added ferry visits are 10 and 15, respectively. In
Instance 4, i.e., basic instance in Section 5.1, there are 15 existing ferry visits and 5 added
ferry visits. In Instance 5, the numbers of existing ferry visits and added ferry visits are 15
and 10, respectively. In Instance 6, there are 20 existing ferry visits and 5 added ferry visits.
In Instance 7, the numbers of the existing ferry visits and added ferry visits are 20 and
10, respectively. In particular, the occupancy rate of the berth among the seven instances
during the operational period ranges from 48.33% to 91.67%.

Detailed results of our model under different numbers of existing and added ferry
visits are listed in Table 7, in which TP represents the total profit, TR denotes the total
revenue, TPBL means the total penalty for berthing location deviation, TPBT represents the
total penalty for berthing time deviation, and TPST denotes the total penalty for servicing
time deviation. From Table 7, we can find that the total profit obtained by Instance 7 is the
largest (USD 111,475.01) among these seven instances. This is mainly because Instance 7
has the maximum number of ferry visits, with a total of 30 ferry visits. In addition, we
can find that the instance with more ferry visits generally has higher total profits. For
example, the total profit of Instance 3 (i.e., 25 ferry visits) is higher than that of Instance 1
(i.e., 15 ferry visits).

Detailed results of the inserting algorithm under different numbers of existing and
added ferry visits are listed in Table 8. In Table 8, the total profit of Instance 3 is the largest:
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USD 96,531.79. In addition, the instance with more ferry visits has higher total profits. Note
that the inserting algorithm cannot find the optimal solution for Instance 7 within 7200 s.

Table 7. Detailed results of our model under different numbers of existing and added ferry visits.

Instance TP TR TPBL TPBT TPST CPU (s)

1 64,775.23 67,572.13 0.00 −1918.50 −878.41 649.12
2 85,445.62 86,542.26 0.00 0.00 −1096.64 7202.06
3 103,752.34 105,717.03 0.00 0.00 −1964.68 7201.80
4 84,336.15 85,519.06 0.00 0.00 −1182.91 374.71
5 102,497.43 106,023.99 0.00 0.00 −3526.56 7201.53
6 101,366.75 104,243.62 0.00 0.00 −2876.86 665.04
7 111,475.01 124,359.73 −1918.50 −2877.75 −8088.47 7201.64

Table 8. Detailed results of the inserting algorithm under different numbers of existing and added
ferry visits.

Instance TP TR TPBL TPBT TPST CPU (s)

1 59,179.66 63,745.36 0.00 0.00 −4565.70 0.71
2 75,788.86 81,876.46 0.00 0.00 −6087.60 0.73
3 96,531.79 104,141.30 0.00 0.00 −7609.50 0.75
4 76,136.75 82,224.35 0.00 0.00 −6087.60 0.64
5 96,409.01 104,018.51 0.00 0.00 −7609.50 0.65
6 96,409.01 104,018.51 0.00 0.00 −7609.50 0.71
7 - - - - - -

The comparison between our model and the inserting algorithm under different
numbers of existing and added ferry visits is shown in Table 9. From the Table 9, it is
obvious that the total profit obtained by our model is always higher than that obtained
by the inserting algorithm among all the seven instances. This demonstrates that the
performance of our model is superior to that of the inserting algorithm. Note that for
Instance 2, the difference between our model and the inserting algorithm is as high as 11.3%.

Table 9. The comparison between our model and the inserting algorithm under different numbers of
existing and added ferry visits.

Instance
TP

D (%)
CPU (s)

A1 A2 A1 A2

1 64,775.23 59,179.66 8.64 649.12 0.71
2 85,445.62 75,788.86 11.30 7202.06 0.73
3 103,752.34 96,531.79 6.96 7201.80 0.75
4 84,336.15 76,136.75 9.72 374.71 0.64
5 102,497.43 96,409.01 5.94 7201.53 0.65
6 101,366.75 96,409.01 4.89 665.04 0.71
7 111,475.01 - - 7201.64 -

5.2.3. Range of Expectation of the Real Time Taken by All the Ferry Visits

The expectation of the real servicing time reveals the number of ferry passengers.
When the passenger demand is higher, the servicing time for boarding and disembarking
passengers is generally longer. In our study, the expectations of servicing time also impact
the difficulty in arranging the visit plan. Thus, in this subsection, we conduct numerical
experiments with different expectation ranges of servicing time, namely, 20 to 50 min
(i.e., maximum value, 50 min; minimum value, 20 min), 30 to 60 min (the basic instance)
(i.e., maximum value, 60 min; minimum value, 30 min), and 40 to 70 min (i.e., maximum
value, 70 min; minimum value, 40 min), to show the influence of the number of ferry
passengers on the total profit.

In comparison to Instance 1, the expectation of real servicing time ranges from 20 min
to 50 min. Since the real servicing time becomes shorter than the basic instance, we then
adjust the revenue at the different time points. Specifically, we first reduce the number
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of ferry passengers by 10% except for time point 31. Time point 31 still has the highest
ferry passenger demand, in accordance with the setting in Section 5.1. The revenue at
different time points changes. Comparison Instance 2 is the basic instance in Section 5.1.
Hence, the revenue at different time points keeps unchanged. In Comparison Instance 3,
the expectation of real servicing time ranges from 40 min to 70 min. Similar to Comparison
Instance 1, we also adjust the number of passengers. In detail, the number of passengers
at different time points increases by 10%. However, due to the capacity constraint of the
ferry ship, the number of passengers at time point 31 is also 243. Meanwhile, if the number
of passengers at some time points (excluding time point t = 31) exceeds 243, the number
of passengers will be equal to 243 minus a random number between 1 and 4. Then, the
revenue at different time points changes.

Detailed results of our model and the inserting algorithm under different ranges
of expectation of the real servicing time of all ferry visits are listed in Tables 10 and 11,
respectively. “TP”, “TR”, “TPBL”, “TPBT”, and “TPST” in Tables 10 and 11 represent the
same meanings as those in Table 7. In Table 10, when the expectation of the real servicing
time increases, the total profit (TP) and the total revenue (TR) increase, which is mainly
due to the increased revenue at different time points. In addition, the computation time
(CPU (s)) increases with the increase in expectations of real servicing time. In Table 11,
the total profit and total revenue also increase with the expectations of real servicing time,
which is similar to the results obtained by our model. In addition, the comparison between
our model and the inserting algorithm is shown in Table 12. “A1”, “A2”, and “D” have the
same meanings as those in Table 9. From Table 12, it is obvious that our model shows a
better performance in obtaining the total profit than the inserting algorithm. In addition,
the difference (D) between our model and the inserting algorithm becomes smaller when
the expectation of the real servicing time increases. This may be because the number of
feasible solutions decreases.

Table 10. Detailed results of our model under different ranges of expectation of the real time of all
ferry visits.

Expectation TP TR TPBL TPBT TPST CPU (s)

(20,50) 77,669.89 80,157.49 0.00 959.25 1528.34 47.16
(30,60) 84,336.15 85,519.06 0.00 0.00 −1182.91 374.71
(40,70) 88,562.05 90,962.48 0.00 0.00 −2400.43 7201.65

Table 11. Detailed results of the inserting algorithm under different ranges of expectation of the real
time of all ferry visits.

Expectation TP TR TPBL TPBT TPST CPU (s)

(20,50) 69,138.06 75,225.66 0.00 0.00 6087.60 0.72
(30,60) 76,136.75 82,224.35 0.00 0.00 −6087.60 0.64
(40,70) 83,074.05 83,074.05 0.00 0.00 −6087.60 0.73

Table 12. The comparison between our model and the inserting algorithm under different ranges of
expectation of the real time of all ferry visits.

Expectation
TP

D (%)
CPU (s)

A1 A2 A1 A2

(20,50) 77,669.89 69,138.06 9.72 47.16 0.72
(30,60) 84,336.15 76,136.75 9.72 374.71 0.64
(40,70) 88,562.05 83,074.05 6.20 7201.65 0.73

6. Conclusions

In this study, we investigated the ferry visit planning problem, considering adding new
visits on the basis of the current ferry visit plan. Compared to the existing research related
to ferry transportation, this is the first paper that considers the three practical aspects
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of ferry visits during the operational period, which are uncertain servicing time, time-
dependent revenue, and deviation between the redesigned ferry visit plan and the current
one, respectively. By considering these practical aspects, our model can help the ferry
company devise a more scientific and reasonable ferry visit plan to obtain the maximum
profit. To model our investigated problem, a mixed-integer nonlinear programming model
with stochastic servicing time of each visit is formulated. By adding new variables and
constraints, the stochastic servicing time was converted into constraints on the minimum
berthing time slots allocated to each visit and the penalty of the real servicing exceeding
the allocated time in the objective function. Other nonlinear elements were handled in the
traditional way.

Numerical experiments based on real data collected from the official website of the
Hong Kong Macau Ferry Terminal in Hong Kong were conducted to validate the proposed
model and solution method. After adding five ferry visits (redesigned ferry visit plan
with 20 ferry visits), a total profit of USD 84,336.14 is obtained, which is larger than
the total profit obtained by performing the current ferry visit plan with 15 ferry visits
(i.e., USD 62,374.27). Then, an inserting algorithm was also developed to solve the problem
and represent the manual decision process. Compared to our model, the inserting algorithm
only realized a total profit of USD 76,136.74, which is much lower than the profit obtained by
our model. Sensitive analyses on visit number, expectation of the servicing time, and visits
distribution pattern validate the superiority of the model and solution method originally
proposed. There were several findings: (1) Under different numbers of existing ferry visits
and added ferry visits, our model and solution method can further improve the total
profit compared to the inserting algorithm. (2) When the expectation of real servicing time
becomes larger, the difference between the optimal objective values of our model and the
inserting algorithm decreases. (3) When the existing ferry visits are scattered, our model
has an obvious advantage in obtaining higher profits compared to the inserting algorithm.

This study has its own limitations. First, in this paper, identical ports and ferry ships
were considered. However, ships and berths with various capacities are deployed and
provided in practice. Second, the deployment details of ferry ships were not taken into
account in this study. For short ferry routes, the deployment of ships will also influence
the berth allocation plan. Third, we only consider one ferry terminal in this paper. Based
on these limitations, there are elements that could be integrated into future research:
heterogeneous ships and berths, deployment of ferry vessels, and multiple terminals in the
same ferry shipping network.
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Notations
Here are the notations used to formulate the model:

Sets

V The set of ferry visits, including existing visits and newly added ones, indexed by i,
and we assume that the first VE visits are existing ones.

P The set of berths at the ferry terminal, indexed by j.
S The set of time slots, indexed by s.
T The set of time points, indexed by t.
Deterministic parameters
VE The number of existing visits.
VA The number of newly added visits.

π̄ij
Binary, equal to 1 if visit i used to be allocated to berth j, 0 otherwise,
∀i = 1, ..., VE, ∀j ∈ P .

ξ̄B
it

Binary, equal to 1 if visit i used to start berthing at time point t, 0 otherwise,
∀i = 1, ..., VE, ∀t ∈ T .

µi
The expectation of the time required for the disembarking and boarding of visit i,
(i.e., the expectation of d̃i), ∀i ∈ V .

σi
The standard deviation of the time required for the disembarking and boarding of
visit i, (i.e., the standard deviation of d̃i), ∀i ∈ V .

PenBA The penalty for changing the berth allocation of a ferry visit (USD).
PenST The penalty for changing the berthing time of a ferry visit (USD).

PenEX The penalty if time required for the disembarking and boarding of a visit exceeds the
allocated time slots (USD).

Pro
The upper limit of the probability that a visit needs longer berth time than the time
slots allocated; set to be 15.9%, the probability that d̃i ≥ µi + σi in the normal
distribution.

rt The benefit of a visit with the berthing time t (USD), ∀t ∈ T .
c The duration of a time slot (min).
Stochastic parameter
d̃i The time required for the disembarking and boarding of visit i, d̃i ∼ N (µi, σ2

i ), ∀i ∈ V .
Decision variables
π̃ij Binary variable, equal to 1 if visit i is allocated to berth j, 0 otherwise, ∀i ∈ V , ∀j ∈ P .

ξB
it

Binary variable, equal to 1 if the allocated time slots of visit i starts at time point t, 0
otherwise, ∀i ∈ V , ∀t ∈ T .

ξE
it

Binary variable, equal to 1 if the allocated time slots of visit i ends at time point t, 0
otherwise, ∀i ∈ V , ∀t ∈ T .

ξO
is

Binary variable, equal to 1 if time slot s is occupied by visit i, 0 otherwise,
∀i ∈ V , ∀s ∈ S .

P(d̃i ≥ X) The probability of the real berthing time required for visit i, d̃i, exceeds X, ∀i ∈ V .
Auxiliary variables
φijs Binary variable, we have φijs = πijξ

O
is , ∀i ∈ V , ∀j ∈ P , ∀s ∈ S .

Parameters

Proiu
Proiu = 1− Fi(c · u), probability that the real servicing time of visit i exceeds u slots,
namely, d̃i > c · u, ∀i ∈ V , u = 1, ..., |S|.

q
i

The lower bound of number of allocated slots that satisfies 1− Fi(c · qi
) ≤ Pro,

∀i ∈ V , q
i
= min{q|c · q ≥ µi + σi}.

Auxiliary variables

τiu
Binary variable, equal to 1 when u slots in total are allocated to visit i, 0 otherwise,
∀i ∈ V , u = 1, ..., |S|.

Appendix A. Detailed Data of the Numerical Experiments

The revenue at different time points is shown in Table A1 and Figure A1. In Table A1,
the “Time Point No.” represents the series number of the time point. From Table A1, we
can find the detailed values of revenue at 61 different time points. Figure A1 shows the
trends of the revenue variations at different time points. Note that the revenue at time
point 31 is the largest, with a value of USD 4972.75.
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Table A2 shows the lower bound of the allocated time slots for the total of 20 ferry
visits, including 15 existing ferry visits and 5 added ferry visits.

Table A1. Revenue at different time points.

Time Point No. Revenue Time Point No. Revenue Time Point No. Revenue

1 3130.99 22 4481.62 43 4379.30
2 3192.38 23 4543.01 44 4317.90
3 3212.85 24 4604.40 45 4256.51
4 3315.17 25 4665.79 46 4215.58
5 3376.56 26 4727.18 47 4113.26
6 3397.02 27 4747.65 48 4092.80
7 3519.81 28 4809.04 49 4010.94
8 3519.81 29 4890.90 50 3949.55
9 3642.59 30 4931.82 51 3949.55
10 3683.52 31 4972.75 52 3867.70
11 3765.38 32 4931.82 53 3826.77
12 3826.77 33 4931.82 54 3765.38
13 3867.70 34 4849.97 55 3703.98
14 3970.02 35 4788.58 56 3622.13
15 3990.48 36 4727.18 57 3560.74
16 4051.87 37 4665.79 58 3540.27
17 4092.80 38 4665.79 59 3458.42
18 4174.66 39 4583.94 60 3417.49
19 4215.58 40 4502.08 61 3376.56
20 4276.98 41 4461.15
21 4379.30 42 4399.76

Table A2. Lower bound of allocated time slot number.

Ferry Visit No. q
i

Ferry Visit No. q
i

1 6 11 6
2 7 12 6
3 4 13 6
4 6 14 6
5 6 15 7
6 7 16 4
7 4 17 7
8 4 18 7
9 6 19 7
10 5 20 6

Figure A1. Time-dependent revenue.

Appendix B. Inserting Algorithm

Steps to obtain the ferry visit plan by inserting new visits one by one:

Step 1: Based on the current ferry visit plan, find the appropriate berths and time points to
insert the five added ferry visits. Note that the servicing times of the five added
ferry visits are set as the lower bound of the allocated time slot number.

Step 2: For all the berths, find the appropriate berthing time to insert the added ferry visits.
If there exist the berth and berthing time for the added ferry visits, update the
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berth number, berthing start time, berthing end time, and servicing time of the
added ferry visit. If there exist any added ferry visits which cannot be inserted, the
inserting algorithm will not obtain the feasible solution.

Step 3: If all added ferry visits are inserted, update the berth number, berthing start time,
berthing end time, and servicing time of all added ferry visits. Otherwise, there is
no feasible solution.
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