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Abstract: The safe navigation of unmanned surface vehicles in the marine environment requires
multi-sensor collaborative perception, and multi-sensor data fusion technology is a prerequisite for
realizing the collaborative perception of different sensors. To address the problem of poor fusion
accuracy for existing multi-sensor fusion methods without prior knowledge, a fuzzy evidence theory
multi-sensor data fusion method with belief divergence is proposed in this paper. First of all, an
adjustable distance for measuring discrepancies between measurements is devised to evaluate the
degree of measurement closeness to the true value, which improves the adaptability of the method to
different classes of sensor data. Furthermore, an adaptive multi-sensor measurement fusion strategy
is designed for the case where the sensor accuracy is known in advance. Secondly, the affiliation
function of the fuzzy theory is introduced into the evidence theory approach to assign initial evidence
of measurements in terms of defining the degree of fuzzy support between measurements, which
improves the fusion accuracy of the method. Finally, the belief Jensen–Shannon divergence and the
Rényi divergence are combined for measuring the conflict between the evidence pieces to obtain the
credibility degree as the reliability of the evidence, which solves the problem of high conflict between
evidence pieces. Three examples of multi-sensor data fusion in different domains are employed to
validate the adaptability of the proposed method to different kinds of multi-sensors. The maximum
relative error of the proposed method for multiple sensor experiments is greater than or equal to
0.18%, and its error accuracy is much higher than the best result of 0.46% among other comparative
methods. The experimental results verify that the proposed data fusion method is more accurate than
other existing methods.

Keywords: evidence theory; multi-sensor data fusion; belief Jensen–Shannon divergence; evidence
conflict

1. Introduction

Unmanned surface vehicles (USVs) have received increasing attention as a novel
platform for widespread application in the marine environment [1,2], e.g., depth measure-
ment, water quality detection and environmental monitoring, etc. The application of USVs
in these fields relies on the perception capability of the sensors, and the accuracy of the
measurement information is crucial in determining whether the parameters to be detected
fulfill the detection requirements [3]. The information collected by a single sensor is often
not guaranteed to be comprehensive, reliable and high-performance, so multiple sensors
are required to be involved in the measurement to ensure that more accurate parameter
information is obtained [4]. The measurements collected by multiple sensors can only be
fused to obtain more accurate results, and the multi-sensor data fusion technology is an
essential means of achieving data fusion, which has led to a wide range of applications
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in integrated navigation [5], target tracking [6], fault diagnosis [7], position control [8],
dynamic positioning [9] and path following [10], etc.

To obtain more reliable measurements and higher fusion accuracy, numerous multi-
sensor data fusion methods [11–13] suitable for different situations have been proposed.
The adaptive weighted fusion method is a relatively simple method that assigns an op-
timal weighting factor to each sensor according to the principle of mean square error
minimization [14]. The Bayesian approach computes the posterior probability of the target
based on Bayes’ law and has a high fusion accuracy [15]. The Kalman filter, based on the
statistical properties of the system model, is used for data fusion estimation by recursive
operations [16]. The fuzzy logic inference method can utilize the experience of experts as a
guide for improving the accuracy and anti-interference of the system by adopting an effec-
tive fusion scheme [17]. The artificial neural network data fusion method can effectively
reduce redundant data transmission to increase the real-time efficiency and accuracy of
data fusion and improve the performance of the data fusion method [18]. A multi-sensor
data fusion method based on reinforcement learning has been proposed to obtain the fusion
result, which utilizes the error between the fused value and the actual value to achieve
enhancement of the fusion accuracy [19]. A sparse-grid quadrature filtering distributed
state fusion method has been proposed to address the multi-sensor nonlinear system’s
fusion estimation problem, where the measurements from each sensor are processed by the
sparse-grid orthogonal filtering in a distributed form and fused using the cross-covariance
method [20]. A discrete factor data fusion method has been proposed for multi-sensor
target identification, where the measurements collected by multiple sensors construct
discrete factors corresponding to sensor and target characteristics to assign multi-sensor
weights, which establishes the correlation and relative consistency of multiple sensors [21].
To extract discriminative characteristics from multi-sensor measurements for accurate di-
agnosis, a novel multi-task multi-sensor fusion network has been proposed to enhance
the performance of fault diagnosis [22]. To solve the optimal state estimation problem
that minimizes the noise-induced error, a recursive algorithm that fuses multiple sensor
measurements to calculate the system state prior and posterior beliefs has been proposed
according to the algebraic form of the stochastic Boolean network and Bayes’ law [23]. To
solve the problem of decreasing accuracy and reliability of multi-sensor measurements
due to occasional sensor failures and environmental perturbations, a game-theory-based
data fusion method is proposed, which uses data-driven adaptive weighted fusion and
model-driven discrete Kalman fusion as the game objectives for real-time estimation of the
ship’s heading and position to design a game strategy for the fusion of measurements [24].
However, these methods cannot be used, or have poor fusion performance, without any
prior information.

Related Work

The Dempster–Shafer (D–S) evidence theory has been the subject of a great deal of
extensive and in-depth research as an easy way to solve the problem of uncertainty without
prior information [25,26]. The focus of this research is its application to multi-sensor
data fusion, which produces counter-intuitive results when highly conflicting evidence
is encountered [27]. To solve the counterintuitive problem caused by highly conflicting
evidence, a symmetric fractal-based belief Kullback–Leibler divergence has been proposed
to measure the conflict between evidence pieces, and a new data fusion algorithm has been
devised to apply the belief Kullback–Leibler difference measure to practical problems [28].
To address the problem of highly conflicting evidence leading to a series of counterintuitive
results, a novel D–S evidence theory confidence divergence measure has been proposed,
which integrates the mass function’s confidence measure and likelihood measure, and a
new multi-source data fusion method has been proposed [29]. To solve the problem that
Dempster’s combination rule leads to unreasonable results in fusing highly conflicting
evidence, a novel Tanimoto measure-based evidence similarity measure method has been
proposed to describe the inconsistency between evidence subjects [30]. To address the issue
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that the D–S evidence theory combination method cannot be used when the evidence is
highly conflicting, a reward and trust allocation mechanism has been proposed based on the
principle of mutual trust between basic probability assignments (BPAs), which enhances the
conflicting evidence fusion’s convergence [31]. To deal with the counterintuitive problem
that may occur when handling highly conflicting evidence, a modified evidence theory
method has been proposed to design a new distribution distance measure for measuring
the conflict of evidence pieces with each other and, thus, obtain the credibility of the
evidence [32]. To deal with highly conflicting evidence, a new divergence measure has
been presented for evaluating the distance between evidence pieces, while a multi-source
data fusion method that takes into account the mutual supportiveness and uncertainty of
the evidence was developed [33]. To exploit the essential implicit information behind the
evidence pieces, a new conflict evidence combination method has been proposed, which
considers the similarity of the evidence pieces to define the composite credibility [34].
However, these multi-sensor data fusion methods are generally used in fields such as
fault diagnosis and target identification, and they do not fuse measurements collected by
multiple sensors. To solve the problem of poor accuracy of multi-sensor data fusion, an
improved evidence theory multi-sensor data fusion method has been proposed to realize
the fusion of measurements collected by multi-sensors by assigning weights to each piece
of evidence based on the degree of support between measurements [35]. To further improve
the accuracy of existing multi-sensor data fusion methods and to cope with situations where
the sensor accuracy is known, in this paper, a fuzzy evidence theory multi-sensor data
fusion method with belief divergence is proposed based on [35]. The major contributions
of this paper are as follows:

(1) An adjustable distance for measuring discrepancies between measurements is devised
to evaluate the closeness of the measured values to the true value, which improves
the adaptability of the method to different classes of sensor data. Furthermore, an
adaptive multi-sensor measurement fusion strategy is designed for the case where the
sensor accuracy is known in advance.

(2) The affiliation function of the fuzzy theory that more accurately measures the mutual
support between measurements is introduced into the evidence theory approach for
assigning initial evidence for each measurement, which improves the multi-sensor
data fusion accuracy of the method.

(3) The conflict between evidence pieces is measured by combining the belief Jensen–
Shannon divergence and the Rényi divergence to obtain credibility of the reliability
of the evidence, which mitigates the conflict of evidence to improve the multi-sensor
data fusion accuracy of the method.

The rest of this paper is arranged as follows: Section 2 presents the fundamentals that
will be involved in the follow-up. The main components of the proposed multi-sensor data
fusion method are introduced in Section 3. A description of the testing of other existing
comparative methods and the proposed method by multiple multi-sensor measurement
experiments to verify the effectiveness of these methods and the superiority of the proposed
method is provided in Section 4. In Section 5, the conclusions are provided.

2. Preliminaries

The fundamentals of D–S evidence theory, the Jensen–Shannon divergence, and the
Rényi divergence are briefly introduced in this section.

2.1. D–S Evidence Theory

D–S evidence theory, an uncertain reasoning method and belief function theory that
can effectively express and process uncertain information, has been widely used in many
fields [36,37]. The concept of D–S evidence theory is introduced below.
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Definition 1. Frame of discernment.
Let Ω be a finite number of collective non-empty and mutually exclusive events, called the

discernment frame, which can be defined as

Ω = {E1, E2, ..., Ei..., EN} (1)

The power set of Ω denoted by 2Ω is given as follows

2Ω = {∅, {E1}, {E2}, ..., {EN}, {E1, E2}, ..., {E1, E2, ..., Ei}, ..., Ω} (2)

where ∅ represents the empty set [38].

Definition 2. Mass function.
Given a discernment frame Ω, the mass function is defined as the mapping of 2Ω to [0, 1]

as follows
m : 2Ω → [0, 1] (3)

which is constrained as {
∑

A∈2
m(A) = 1

m(∅) = 0
(4)

where A represents the subset of 2Ω.

Definition 3. Dempster’s combination rule.
Suppose there are two BPAs, m1 and m2, in Ω, whose combination rule can use the orthogonal

product form, i.e., m = m1 ⊕m2 [39]. Its particular format is described as

m(A) =


1

1−K ∑
A1∩A2=A

m1(A1) + m2(A2), A 6= ∅

0, A = ∅
(5)

where A1 and A2 denote the focal elements of m1 and m2. K represents the conflict measure
parameter for m1 and m2 and is written as

K = ∑
A1∩A2=∅

m1(A1)m2(A2) (6)

The larger the value of K, the greater the conflict between two BPAs, and the smaller the value
of K, the smaller the conflict between two BPAs [40]. It is essential to point out that Dempster’s
combination rule is feasible when K < 1.

2.2. Belief Jensen–Shannon Divergence

D–S evidence theory is characterized by the treatment of uncertain information, and
the measure of conflict between evidence pieces is the key for it to possess its properties.
Divergence, as an effective mathematical tool in measuring discrepancies between evidence
pieces, has been widely used in many fields [41]. Numerous divergence measures have
emerged in recent years, e.g., J-divergence [42], Jensen–Shannon (JS) divergence, and BRE
divergence [43], etc. It differs from other divergence measures in that JS divergence does
not require the condition that the associated probability distribution has absolute continuity.
Based on the JS divergence, a new belief JS divergence (BJS) [44] is proposed, which may
be defined below.
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Definition 4. Belief Jensen–Shannon Divergence.
Given two independent BPAs, m1 and m2, in the same discernment frame Ω, let Ai be a focal

element in m, which includes N mutually exclusive hypotheses. The BJS divergence for measuring
the difference between m1 and m2 is expressed as

BJS(m1, m2) =
1
2

[
H
(

m1,
m1 + m2

2

)
+ H

(
m2,

m1 + m2

2

)]
(7)

where H(m1, m2) = ∑ m1(Ai) log m1(Ai)
m2(Ai)

[45]. Its main properties are

(1) Symmetry: BJS(m1, m2) = BJS(m2, m1).
(2) Boundary: 0 ≤ BJS(m1, m2) ≤ 1.
(3) Triangle inequality:

√
BJS(m1, m2)+

√
BJS(m1, m3) ≥

√
BJS(m2, m3).

The BJS divergence expands the JS divergence, and the BJS divergence degenerates to
the JS divergence when all the subset’s BPAs are zero.

2.3. Rényi Divergence

In the field of multi-sensor data fusion, the Rényi divergence has a significant effect on
either parametric or non-parametric models in the convergence of the minimum description
length and proof of Bayesian estimation [46]. Rényi divergence can be described as:

Definition 5. Rényi divergence.
Let any sequence be α, the Rényi divergence of α from the probability distribution

P = (p1, ..., pη) to Q = (q1, ..., qη) is written as

Dα(P||Q) =
1

α− 1
ln

η

∑
i=1

pα
i q1−α

i (8)

where α ∈ (0, 1)∪ (1, ∞). If α > 1, the rule will be adopted, i.e., 0/0 = 0 and x/0 = ∞ (x > 0) [47].

3. The Proposed Method

N sensors in the system are used to measure the parameter to be measured, and the
real-time data of the single measurement of the kth sensor are Zk(k = 1, 2, ..., N). Based
on the core idea of evidence theory, the measurements {Z1, Z2, ..., ZN} of all sensors can
be considered as a discriminative frame Ω. The evidence theory describes discrepancies
between elements by defining basic belief assignment, converting each measurement into
evidence on the discriminative frame Ω, respectively. Subsequently, the generated evidence
pieces are combined, and the basic belief assignment of each measurement in the synthetic
evidence is considered as the fusion weighting factor. Finally, these measurements are
weighted and summed to obtain the fusion result of this data set.

The proposed method mainly comprises four components: selection of the affiliation
function, basic belief assignment for measurements based on sensor credibility, conflicting
measure and evidence synthesis, and evidence combination. The affiliation function of
fuzzy theory can be used to yield initial evidence pieces that may indicate the degree of
mutual support of measurements. The basic belief assignment can adjust initial evidence
pieces based on discrepancies between measurements for assigning relatively reasonable
weights to each measurement. The conflicting measure and evidence synthesis can be used
to measure conflict and differences between evidence pieces to synthesize the weighted
average evidence. The weighted average evidence and the corrected evidence pieces are
combined to achieve multi-sensor data fusion via the evidence combination rule.

3.1. Selection of the Affiliation Function

These sensors may be a variety of active or passive detectors that measure different
characteristic parameters, such as the USV state, surrounding environment information,
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target state, equipment wear and tear, and control system parameters, respectively. Since
the measurements are subject to measurement error, environmental noise and human
interference and other factors, the measurements collected by each sensor comprise different
results, but the measurements can be regarded as the superposition of the true value of
the parameters and the noise. From a qualitative perspective, all measurements within the
normal deviation range should fall in the neighborhood of the true value. The affiliation
function of the measurements obtained by the kth sensor is expressed as

ϕij = 1−
2 arctan

(∣∣Zi − Zj
∣∣)

π
(9)

where Zi and Zj denote the ith and jth sensor’s measurements, respectively.
ϕij indicates the extent to which the measured value of the ith sensor deviates from

that of the jth sensor. Intuitively, if ϕij is large, i.e., the measurement Zi deviates signifi-
cantly from the true value of the parameter to be measured, then the probability that the
measurement of the ith sensor belongs to the true value is considered to be low. Conversely,
if ϕij is very small, i.e., the measurement Zi is very close to the true value of the parameter,
then the probability that the measurement of the ith sensor belongs to the true value is
considered to be high.

For the discernment frame Ω, the affiliation matrix of each sensor for the parameters
to be measured is

Uij =


ϕ11 ϕ12 · · · ϕ1N
ϕ21 ϕ22 · · · ϕ2N

...
...

. . .
...

ϕN1 ϕN2 · · · ϕNN

 (10)

If the accuracy information σj(j = 1, 2, ..., N) of each sensor is known in advance, the
affiliation matrix needs to be further adjusted. Considering the relationship between the
prior accuracy information of each sensor and the affiliation matrix, the initial evidence
pieces can be adjusted as follows

Uij = (1/σ2
j )Uij, i, j = 1, 2, ..., N (11)

The affiliation matrix reflects the degree to which all sensor measurements support each
other, which corresponds to the probability that the measurement is close to the true value.
It can be considered as the initial evidence of the measurements to provide initial values
for subsequent corrections of the evidence.

3.2. Basic Belief Assignment for Measurements Based on Sensor Credibility

In the practical environment, the measurement of each sensor may be unreliable due
to various disturbances. Large deviations or even wrong information may appear in the
measurements, which can affect the accuracy of data fusion or even lead to wrong fusion
results. To improve the fusion accuracy, it is necessary to check the consistency of the
multi-sensor measurements and to fuse the confidence of the sensor measurements into
the evidence assignment. To reflect the magnitude of the deviation between different
sensor measurements, it can be determined by the measurements themselves. The distance
between the measurements of N sensors is written as

dij =
∣∣Zi − Zj

∣∣λ (12)

where i, j = 1, 2, ..., N, λ is a factor that moderates the degree of variation between mea-
surements. The introduction of λ enables the method to select different λ for different
types of multi-sensor measurements to reflect more effectively in terms of the degree of



J. Mar. Sci. Eng. 2023, 11, 1596 7 of 19

support between measurements, which facilitates the reasonable generation of evidence.
The average distance di from measurement Zi to each measurement is given as follows:

di =
N

∑
j=1,i 6=j

dij

N − 1
(13)

The magnitude of di indicates the degree of difference between sensor i and the
remaining sensors. The smaller di is, the smaller the difference between sensor i and the
remaining sensors, which is considered as a high degree of mutual support and credibility
between them. Conversely, it indicates that the sensor singularity is serious and the
credibility of the sensor is low. The average distance between the entire measurements can
be given by

d̄ =

N
∑

i=1
di

N
(14)

where zj1 and zj2 denote any two valid measurements, and α is a threshold that satisfies
α ≥ 1 [48].

Based on the evaluation of the credibility of each sensor, a basic belief assignment
method is used to convert the measurements into evidence. Its core idea is to consider
the obtained affiliation matrix as the initial evidence of the measurements and to correct
the initial evidence by using the distance between the measurements as the measure of
the probability that the measurements are close to the true value. If di > d̄, the sensor’s
measurement has a large deviation and is rejected. Conversely, the measurement is valid.
The correction formula is described as{

mi(Zj) = 0, dj > τd̄
mi(Zj1)

mi(Zj2)
=

dj2
dj1

, dj ≤ τd̄
(15)

where Zj1 and Zj2 are two arbitrary valid measurements, and τ ≥ 1 represents the thresh-
old.

In the actual operation, a group of credibility correction factors for the initial evidence
can be produced from (15), and the correction factors are utilized for normalizing and
weighting the initial evidence, i.e.,

m′i(Zj) =
ωjmi(Zj)

N
∑

p=1
ωpmi(Zp)

(16)

If the accuracy information of each sensor is known in advance, the fusion weights
need to be further adjusted. To improve the robustness of the fusion method, the prior accu-
racy information of each sensor and the weight assignment strategy need to be considered
comprehensively [49]. The additional correction factors can be obtained as

vi =
1

σ2
i

N
∑

k=1

1
σ2

i

(17)

The additional correction factors are utilized for normalizing and weighting the evi-
dence, i.e.,

m′i(Zj) =
vjmi(Zj)

N
∑

s=1
vsmi(Zs)

(18)
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3.3. Conflicting Measure and Evidence Synthesis

This section mainly considers the BJS divergence and the Rényi divergence. Firstly,
the BJS divergence is used for measuring the degree of conflict and discrepancy between
evidence pieces and the credibility, i.e., the reliability of the evidence is obtained through
the BJS divergence measure [44]. Secondly, the Rényi divergence is also used for measur-
ing the degree of conflict between the evidence pieces to obtain credibility. Finally, two
kinds of divergence can be combined and normalized to form the final evidence, which is
synthesized with the existing evidence as the latest piece of evidence to participate in the
final evidence synthesis. A flowchart for the conflicting measure and evidence synthesis is
shown in Figure 1, which involves the following steps:

The evidences of measurements

Step 1: Construct the BJS divergence measure matrix        .

Step 2: Compute the mean divergence            of the evidence.

Step 3: Calculate the similarity degree           of evidence.

Step 4: Compute the credibility degree            of evidence. 

DM

iBJS

iSim

iCrd

Step 5: Construct the Rényi divergence measure matrix     .

Step 6: Compute the mean divergence        of the evidence.

Step 7: Calculate the similarity degree           of evidence.

Step 8: Compute the credibility degree           of evidence. 

M

iDi  

iSup

iCdy

Step 9: Obtain the modified credibility degree            by combining          and         .

Step 10: Normalise the modified credibility degree of the evidence.

Step 11: Calculate the weighted average evidence         .

iCrdy iCrd iCdy

WAE

Figure 1. Flowchart of the conflicting measure and evidence synthesis.

Step 1: In accordance with (7), the BJS divergence between any two pieces of evidence
mi and mj is calculated and described as BJSij. The divergence measure matrix DM can be
given by [33]:

DM =



0 · · · BJS1i · · · BJS1N
... · · ·

...
...

...
BJSi1 · · · 0 · · · BJSiN

... · · ·
...

...
...

BJSN1 · · · BJSNi · · · 0

 (19)

Step 2: The mean divergence distance of the evidence mi based on the DM is obtained
as follows

B̄JSi =
∑N

j=1,j 6=i BJSij

N − 1
(20)

Step 3: The similarity degree for the evidence mi can be given by

Simi =
1

B̄JSi
(21)

Step 4: The degree of credibility for the evidence mi can be written as

Crdi =
Sim(mi)

∑N
j=1 Sim(mj)

(22)
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Step 5: In accordance with (8), the Rényi divergence between any two pieces of
evidence mi and mj is calculated and described as Dij. The divergence measure matrix M
can be given by

M =



0 · · · D1i · · · D1N
... · · ·

...
...

...
Di1 · · · 0 · · · DiN

... · · ·
...

...
...

DN1 · · · DNi · · · 0

 (23)

Step 6: The mean divergence distance of the evidence mi based on the M is obtained
as follows

D̃i =
∑N

j=1,j 6=i Dij

N − 1
(24)

Step 7: The support degree for the evidence mi can be given by

Supi =
1

D̃i
(25)

Step 8: The degree of credibility for the evidence mi can be written as

Cdyi =
Sup(mi)

∑N
j=1 Sup(mj)

(26)

Step 9: Crdi and Cdyi are combined to take advantage of both and are described as
follows

Crdyi = Crdi × Cryi (27)

Step 10: The modified credibility degree is normalized as the final weight of each piece
of evidence mi, which is expressed as

C̃rdyi =
Crdyi

∑N
j=1 Crdyj

(28)

Step 11: According to C̃rdyi, the weighted average evidence WAE is given as a new
piece of evidence as follows

WAEi =
N

∑
i=1

(C̃rdyi ×mi) (29)

3.4. Evidence Combination

There may be a high degree of conflict between the N pieces of evidence generated by
(10) to (18), so Dempster’s combination rule may yield unreasonable combination results,
leading to unreasonable weight assignments of the measurements. Since the evidence
combination rule of [39] can effectively alleviate the above problems and assign a more
reasonable weight to the measurement, we adopt this rule.

The probability of support for the conflict between evidence pieces is proportionally
allocated to each measurement, and its combined form is expressed as follows

m(Zj) =
N

∏
i=1

m′ i(Zj) + em̄′i(Zj) (30)
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where m̄′i(Zj) represents the average basic belief assignment of Zj across evidence pieces.
The conflict factor e can be given by

e = 1−
N

∑
j=1

N

∏
i=1

m′ i(Zj) (31)

m̄′i(Zj) can be written as

m̄′i(Zj) =
1
N

N

∑
i=1

m′ i(Zj) (32)

The m(Zj) of Zj among the synthetic evidence pieces are the weights obtained by Zj.
Then the fusion result is given by

Z0 =
N

∑
j=1

Zjm(Zj) (33)

The pseudo-code of the proposed method is shown in Algorithm 1. From Algorithm 1, it
can be seen that the maximum number of loops of the pseudo-code is two loops and the
number of executions of each loop is N. So, the time complexity of the proposed method is
O(N2).

Algorithm 1 The proposed method

Inputs: Zk, k = 1, 2, ..., N
for i = 1 : N
for j = 1 : N

1: Uij = 1− 2 arctan(|Zi−Zj|)
π

end for
end for
if σj > 0
2: Uij = (1/σ2

j )Uij
end if
for i = 1 : N
for j = 1 : N

3: dij =
∣∣Zi − Zj

∣∣λ
end for

4: di =
N
∑

j=1,i 6=j

dij
N−1

end for

5: d̄ =
N
∑

i=1
di

/
N

6: ωi = 1
/

di
if dj > τd̄
7: mi(Zj) = Uj =0
8: ωj = 0

end if

9: ωj = ωj

/
N
∑

i=1
ωi

10: mi(Zj) =
ωjmi(Zj)

N
∑

p=1
ωpmi(Zp)

if σi > 0
11: vi =

1

σ2
i

N
∑

k=1

1
σ2

i
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Algorithm 1 Cont.

12: mi(Zj) =
vjmi(Zj)

N
∑

s=1
vsmi(Zs)

end if
for i = 1 : N
for j = 1 : N

13: BJSij =
1
2

[
∑
i

mi(zi) log
(

2mi(zi)
mi(zi)+mj(zi)

)
+∑

i
mj(zi) log

(
2mj(zi)

mi(zi)+mj(zi)

)]
end for
end for

14: B̄JSi =
∑N

j=1,j 6=i BJSij
N−1

15: Simi =
1

B̄JSi

16: Crdi =
Sim(mi)

∑N
j=1 Sim(mj)

for i = 1 : N
for j = 1 : N

17: Dij =
1

α−1 ln
η

∑
i=1

pα
i q1−α

i

end for
end for

18: D̃i =
∑N

j=1,j 6=i Dij
N−1

19: Supi =
1

D̃i

20: Cdyi =
Sup(mi)

∑N
j=1 Sup(mj)

21: Crdyi = Crdi × Cryi

22: C̃rdyi =
Crdyi

∑N
j=1 Crdyj

23: WAEi =
N
∑

i=1
(C̃rdyi ×mi)

24: m̄i(Zj) = 1
N

N
∑

i=1
mi(Zj)

25: e = 1−
N
∑

j=1

N
∏
i=1

mi(Zj)

26: m(Zj) =
N
∏
i=1

mi(Zj) + em̄i(Zj)

27: Z0 =
N
∑

j=1
Zjm(Zj)

Outputs: Z0

4. Experiments and Results

Since the proposed method can be used for multi-sensor data fusion estimation of
multiple parameters, data from various fields can validate the performance of the proposed
method. There are a variety of sensors that can be used for data acquisition from unmanned
surface vehicles, such as equipment wear and tear detection, equipment parameter detec-
tion and control parameter detection, etc. In this paper, the proposed method is validated
using the equipment metallization layer thickness data from [48] and the equipment and
control addedparameter data from [49], which demonstrate the advantages compared to
other methods.

4.1. Experiment 1

The metallization layer thickness of a device often requires the average of several mea-
surements to achieve relatively precise results, which can consume considerable resources
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and time. To reduce the waste of resources, the proposed method uses less data to achieve
the same effect.

We sample 8 measurements from 50 measurements of multiple sensors for data fusion,
and use the mean 65.57 µm of the 50 measurements as the assumed true value. Table 1 lists
the sampled measurements.

Table 1. Thickness measurements of the sample.

Number Measurement (µm) Number Measurement (µm)

1 65.41 5 66.45
2 65.76 6 65.73
3 65.31 7 65.81
4 65.35 8 65.51

From (10), the initial evidence for the generation of the affiliation matrix can be
given by

mij(Zj) =


1 0.7857 · · · 0.9365

0.7857 1 · · · 0.8440
...

...
. . .

...
0.9365 0.8440 · · · 1


The average distance di of measurement Zi can be obtained according to (12) and (13)

as follows
d1 = 0.3163, d2 = 0.2923, d3 = 0.3858, d4 = 0.3519, d5 = 0.8882, d6 = 0.2835,

d7 = 0.3192, d8 = 0.2843.
The average d̄ of di is obtained as d̄ = 0.3902. The modification factors for the initial

evidence according to (15) are given as
ω1 = 0.1425, ω2 = 0.1541, ω3 = 0.1168, ω4 = 0.1280, ω5 = 0, ω6 = 0.1589,

ω7 = 0.1412, ω8 = 0.1585.
Table 2 lists the modified evidence pieces. From Table 2, it can be observed that

multiple evidence pieces are allocated to the measurements collected by multiple sensors
through the proposed method. The weights of outliers are assigned 0, which indicates that
the proposed method eliminates the outliers and can improve the accuracy of the fusion
method. The divergence measure matrix DM can be calculated as

DM =


0 0.0080 · · · 0.0008

0.0080 0 · · · 0.0046
...

...
. . .

...
0.0008 0.0046 · · · 0


Table 2. Mass function for each evidence piece.

Basic Belief Assignment
Measurements

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8

m1(Z1) 0.1621 0.1378 0.1244 0.1401 0 0.1451 0.1217 0.1689
m2(Z2) 0.1281 0.1763 0.0976 0.1102 0 0.1783 0.1564 0.1531
m3(Z3) 0.1575 0.1361 0.1344 0.1458 0 0.1430 0.1194 0.1639
m4(Z4) 0.1590 0.1345 0.1320 0.1485 0 0.1418 0.1188 0.1653
m5(Z5) 0.1272 0.1737 0.0980 0.1101 0 0.1754 0.1648 0.1508
m6(Z6) 0.1299 0.1717 0.0990 0.1117 0 0.1804 0.1521 0.1552
m7(Z7) 0.1265 0.1748 0.0964 0.1088 0 0.1767 0.1654 0.1513
m8(Z8) 0.1497 0.1460 0.1146 0.1291 0 0.1537 0.1290 0.1779

The mean divergence distance of the evidence mi based on the DM is obtained as
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B̄JS1 = 0.0049, B̄JS2 = 0.0048, B̄JS3 = 0.0065, B̄JS4 = 0.0060, B̄JS5 = 0.0050,
B̄JS6 = 0.0043, B̄JS7 = 0.0054, B̄JS8 = 0.0033.

The similarity degree for the evidence mi can be given by
Sim1 = 206, Sim2 = 209, Sim3 = 154, Sim4 = 167, Sim5 = 198, Sim6 = 235,

Sim7 = 187, Sim8 = 303.
The degree of credibility for the evidence mi can be counted as
Crd1 = 0.1240, Crd2 = 0.1263, Crd3 = 0.0927, Crd4 = 0.1008, Crd5 = 0.1194,

Crd6 = 0.1414, Crd7 = 0.1126, Crd8 = 0.1827.
The synthetic average weight evidence is calculated as
mw(z1) = 0.1433, mw(z2) = 0.1552, mw(z3) = 0.1140, mw(z4) = 0.1271, mw(z5) = 0,

mw(z6) = 0.1603, mw(z7) = 0.1401, mw(z8) = 0.1600.
The divergence measure matrix M can be given by

M =


0 0.0687 · · · 0.0069

0.0701 0 · · · 0.0409
...

...
. . .

...
0.0067 0.0394 · · · 0


The mean divergence distance of the evidence mi based on the M is obtained as
D̃1 = 0.0414, D̃2 = 0.0412, D̃3 = 0.0564, D̃4 = 0.0515, D̃5 = 0.0441, D̃6 = 0.0368,

D̃7 = 0.0464, D̃8 = 0.0282.
The support degree for the evidence mi can be given by
Sup1 = 24, Sup2 = 24, Sup3 = 18, Sup4 = 19, Sup5 = 23, Sup6 = 27, Sup7 = 22,

Sup8 = 35.
The degree of credibility for the evidence mi can be calculated as
Cry1 = 0.1254, Cry2 = 0.1263, Cry3 = 0.0921, Cry4 = 0.1010, Cry5 = 0.1179,

Cry6 = 0.1413, Cry7 = 0.1120, Cry8 = 0.1840.
Crdyi can be calculated as
Crdy1 = 0.0156, Crdy2 = 0.0159, Crdy3 = 0.0085, Crdy4 = 0.0102, Crdy5 = 0.0141,

Crdy6 = 0.0200, Crdy7 = 0.0126, Crdy8 = 0.0336.
C̃rdyi can be computed as
C̃rdy1 = 0.1192, C̃rdy2 = 0.1222, C̃rdy3 = 0.0654, C̃rdy4 = 0.0780, C̃rdy5 = 0.1079,

C̃rdy6 = 0.1531, C̃rdy7 = 0.0966, C̃rdy8 = 0.2576.
The weighted average evidence WAE is computed as
WAE1 = 0.1421, WAE2 = 0.1567, WAE3 = 0.1107, WAE4 = 0.1242, WAE5 = 0,

WAE6 = 0.1626, WAE7 = 0.1409, WAE8 = 0.1629.
Based on the evidence combination rule, the synthesized evidence is obtained as
m1(Z1) = 0.1425, m2(Z2) = 0.1561, m3(Z3) = 0.1123, m4(Z4) = 0.1256, m5(Z5) = 0,

m6(Z6) = 0.1616, m7(Z7) = 0.1408, m8(Z8) = 0.1610.
The fusion result of the measurements by (33) can be obtained as Z0 = 65.56999. The

fusion results from the other fusion methods and the proposed method for the measure-
ments acquired by multiple sensors are presented in Table 3. As can be observed from
Table 3, the proposed method has higher fusion accuracy than other fusion methods, and
the proposed method has a negligible difference from the reference true value, which
indicates that the proposed method can achieve almost an identical fusion effect as many
measurements with fewer measurements. The reason why the proposed method can
achieve such accuracy is closely related to the fact that the distance between measurements
is adjusted to its size according to the experimental data collected by different types of
sensors, a reasonable affiliation function is chosen, and two kinds of divergence can be
combined to measure the conflict.
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Table 3. Fusion results of the proposed method with other methods.

Methods Fusion Results (µm) Absolute Error (µm) Relative Error (%)

Arithmetic averaging 65.66625 0.09625 0.14678
Xiong et al. [48] 65.56009 0.00991 0.01511
Qiao et al. [35] 65.56785 0.00215 0.00328

Proposed method 65.56999 0.00001 0.00002

4.2. Experiment 2

To verify the feasibility of the proposed method, the measurements of a device pa-
rameter collected by multiple sensors are used for testing. The acquired measurements are
listed in Table 4 and the reference true value is selected as 100.

From (10), the initial evidence for the generation of the affiliation matrix can be
given by

mij(Zj) =


1 0.1689 · · · 0.0863

0.1689 1 · · · 0.1702
...

...
. . .

...
0.0863 0.1702 · · · 1


The average distance di of measurement Zi can be obtained according to (12) and (13)

as follows
d1 = 6.6539, d2 = 3.1628, d3 = 2.9060, d4 = 3.6404, d5 = 4.1796.

Table 4. Multi-sensor measurements of device parameter.

Number 1 2 3 4 5

Measurements 95.03 98.71 99.58 101.79 102.36

The average d̄ of di is obtained as d̄ = 4.1085. The modification factors for the initial
evidence according to (15) can be given as
ω1 = 0, ω2 = 0.3382, ω3 = 0.3680, ω4 = 0.2938, ω5 = 0.

Table 5 lists the modified evidence pieces. From Table 5, it can be observed that
multiple pieces of evidence are allocated to each measurement. Multiple evidence pieces
for outliers are assigned a value of 0, which indicates that the proposed method is effective
in eliminating the interference of outliers. The divergence measure matrix DM can be
calculated as

DM =


0 0.0202 · · · 0.1121

0.0202 0 · · · 0.2129
...

...
. . .

...
0.1121 0.2129 · · · 0


The mean divergence distance of the evidence mi based on the DM is obtained as
B̄JS1 = 0.0757, B̄JS2 = 0.1342, B̄JS3 = 0.1140, B̄JS4 = 0.1490, B̄JS5 = 0.1242.
The similarity degree for the evidence mi can be given by
Sim1 = 13, Sim2 = 7, Sim3 = 9, Sim4 = 7, Sim5 = 8.
The degree of credibility for the evidence mi can be counted as
Crd1 = 0.2990, Crd2 = 0.1686, Crd3 = 0.1984, Crd4 = 0.1519, Crd5 = 0.1822.
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Table 5. The evidence mass function.

Basic Belief
Assignment

Measurements

Z1 Z2 Z3 Z4 Z5

m1(Z1) 0.1482 0.1484 0.1444 0.1397 0
m2(Z2) 0.1474 0.1478 0.1454 0.1407 0
m3(Z3) 0.1469 0.1476 0.1468 0.1420 0
m4(Z4) 0.1466 0.1477 0.1465 0.1436 0
m5(Z5) 0.1466 0.1477 0.1467 0.1439 0

The divergence measure matrix M can be given by

M =


0 0.2250 · · · 0.6240

0.1351 0 · · · 0.9595
...

...
. . .

...
0.8084 1.5240 · · · 0


The mean divergence distance of the evidence mi based on the DM is obtained as
D̃1 = 0.4608, D̃2 = 0.6565, D̃3 = 0.5393, D̃4 = 0.9965, D̃5 = 0.9068.
The support degree for the evidence mi can be given by
Sup1 = 2.2, Sup2 = 1.5, Sup3 = 1.9, Sup4 = 1.0, Sup5 = 1.1.
The degree of credibility for the evidence mi can be calculated as
Cry1 = 0.2835, Cry2 = 0.1990, Cry3 = 0.2423, Cry4 = 0.1311, Cry5 = 0.1441.
Crdyi can be calculated as
Crdy1 = 0.0848, Crdy2 = 0.0335, Crdy3 = 0.0481, Crdy4 = 0.0200, Crdy5 = 0.0263.
C̃rdyi can be computed as
C̃rdy1 = 0.3989, C̃rdy2 = 0.1578, C̃rdy3 = 0.2261, C̃rdy4 = 0.0937, C̃rdy5 = 0.1235.
The weighted average evidence WAE is computed as
WAE1 = 0, WAE2 = 0.3586, WAE3 = 0.3842, WAE4 = 0.2572, WAE5 = 0.
Based on the evidence combination rule, the synthesized evidence is obtained as
m1(Z1) = 0, m2(Z2) = 0.3260, m3(Z3) = 0.3564, m4(Z4) = 0.3176, m5(Z5) = 0.
Table 6 lists the measurement fusion results for the proposed and comparative methods.

As can be seen from Table 6, the fusion result of the proposed method is very close to
the true value and shows a great improvement in accuracy compared with the other
methods, which indicates that the proposed method is also able to obtain high accuracy for
measurements with different multi-sensor acquisitions. The experimental measurements
are obtained from five sensors, the number of sensors is reduced by almost half compared
to the previous experiment, but the fusion result of the proposed algorithm is still able to
achieve a high level of accuracy, which further demonstrates that the proposed algorithm
is capable of obtaining more accurate results with less data. In addition, it can be seen
from another perspective that the proposed method still yields superior performance with
different data quality and sensor noise.

Table 6. Fusion results for the proposed and comparative methods.

Methods Fusion Results Absolute Error Relative Error (%)

Arithmetic averaging 99.494 0.506 0.506
Xiong et al. [48] 99.982 0.018 0.018
Qiao et al. [35] 100.033 0.033 0.033

Proposed method 99.998 0.002 0.002

4.3. Experiment 3

To further validate the advantages of the proposed method, multiple sensors with
multiple samples are used for testing. Table 7 lists the measurements of the six sensors at
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seven sampling moments and the measurement accuracy of each sensor with a reference
true value of 50.

Table 7. Measurements and accuracy for each sensor.

Sensors σi
Sampling Moments

t1 t2 t3 t4 t5 t6 t7

Z1 0.41 50.14 49.28 49.95 49.94 49.63 49.97 50.09
Z2 0.57 49.56 49.91 49.75 49.95 50.37 49.65 49.63
Z3 0.59 49.35 50.05 49.82 49.71 50.27 50.15 49.53
Z4 0.72 50.66 50.04 49.20 50.35 50.69 49.80 50.62
Z5 0.81 49.56 50.56 50.21 49.88 49.53 51.43 49.79
Z6 0.89 51.03 49.76 50.54 49.14 51.15 50.89 50.64

Since the accuracy information for each sensor is given in Table 7, the measurements
need to be additionally fused using (11), (17), and (18). After a series of calculations,
Figure 2 illustrates the measurement fusion results of the arithmetic averaging method,
Xiong et al. [48], the least squares method, Qiao et al. [35], and the proposed method and
the true value. From Figure 2, it can be observed that the proposed method is closer to the
true value than the other methods, and the fluctuation in the fusion results of the other
methods near the true value at different moments is larger with the proposed method,
which is not conducive to the real-time fusion estimation of multiple sensors. It is further
shown that the proposed method is not only adaptable to the measurements of different
types of sensors, but also is adaptable to changes in the environment.

1 2 3 4 5 6 7
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Xiong et al. 2011
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Qiao et al. 2023

The proposed method

Figure 2. Fusion results for all methods [35,48].

Figures 3 and 4 exhibit the absolute and relative errors of measurement fusion for
all methods. As shown in Figures 3 and 4, the fusion result of the proposed method
outperforms those of the other methods at any moment, except that it is poorer than the
measurement fusion results of Qiao et al. [35] at the moment t3. At the moment t5, when
the errors of the measurement fusion results of the other methods are relatively large, the
proposed method still obtains a small measurement fusion error. Table 8 lists the average
absolute and relative errors for multi-sensor multiple measurement fusion for all methods.
From Table 8, we see that the average absolute and relative errors of the measurement
fusion results of the proposed method are much smaller than those of the other methods,
which indicates that the proposed method is more suitable for multi-sensor data fusion of
control parameters compared to the other methods. The data collected by the multi-sensors
at different moments also correspond to changes in the environmental conditions, which
further demonstrates that the proposed method can still obtain higher quality fusion results
under different environmental conditions.
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Figure 3. Absolute errors of measurement fusion for all methods [35,48].
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Figure 4. Relative errors of measurement fusion for all methods [35,48].

Table 8. Average errors for all methods.

Methods Average Absolute Error Average Relative Error (%)

Arithmetic averaging 0.1443 0.29
Xiong et al. [48] 0.1429 0.29

Least squares method 0.1100 0.22
Qiao et al. [35] 0.0757 0.15

Proposed method 0.0357 0.07

5. Conclusions

In this paper, a fuzzy evidence theory multi-sensor data fusion method with belief
divergence is developed to improve the fusion accuracy of the original existing evidence
theory method. The method realizes the basic belief assignment in evidence theory by
introducing the affiliation function and mutual support between sensor measurements.
Then, the divergence measure is employed to measure the conflict between evidence pieces
to minimize erroneous fusion results. In addition, the idea of evidence combination is
utilized to achieve multi-sensor data fusion. Practical applications show that the proposed
method is characterized by high fusion accuracy and robustness, which can avoid the
limitation of a single sensor and reduce the effect of sensor uncertainty error and has
theoretical significance and high engineering practical value. Converting the degree of data
discrepancy into evidence more rationally to further improve the fusion performance of
the proposed method will be the focus of future research.
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