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Abstract: The intensity of tropical cyclones is highly dependent on air–sea enthalpy and momentum
exchange. At extreme wind speeds, the values of the enthalpy, CK, and momentum, CD, exchange
coefficients are characterized by high uncertainty. The present study aims to expand the previously
used algorithm for CD retrieval to obtain the values of CK from wind speed measurements and the
enthalpy profiles obtained from NOAA GPS dropsondes in hurricane conditions. This algorithm
uses concepts from technical hydrodynamics, describing turbulent boundary layers on flat plates
and pipes. According to this approach, the velocity (and enthalpy) defect profiles are self-similar
in the entire boundary layer, including the layer of constant fluxes and the “wake” part, where the
airflow adapts to the undisturbed flow region. By using the self-similarity property, the parameters
of the constant flow layer (the roughness parameter, friction velocity, and the enthalpy and exchange
coefficients CD and CK) could be obtained from measurements in the “wake” part for wind speeds
from 20 m/s to 72 m/s. The estimates of the CK/CD ratio revealed values of 0.7 and 0.96 (depending
on the self-similar approximation limits), and the results suggest that there are slight variations with
the wind speed.

Keywords: enthalpy exchange; momentum exchange; tropical cyclone; wind speed; hurricane; wind
profile; GPS dropsonde

1. Introduction

Tropical cyclones (TCs) are low-pressure weather systems that develop due to the ab-
sorption of energy from the warm surface of the ocean, while the reverse process associated
with energy losses on the ocean surface is determined by the surface drag and momentum
exchange processes at the air–sea boundary. It was shown in previous studies that both the
deficit of pressure in the center of the tropical cyclone and maximum azimuthal velocity
strongly depend on the ratio of the surface enthalpy exchange coefficient, CK, to the momen-
tum exchange coefficient (or aerodynamic surface drag coefficient), CD (see [1]). In recent
decades, a number of research campaigns have been carried out to study the exchange
processes occurring in air–sea boundary layers: adverse weather experiment (AWE) [2];
FETCH in the Mediterranean Sea [3]; GASEX [4]; HEXOS [5,6]; RASEX in the Baltic Sea [7];
SWADE in the coastal Atlantic [8], and WAVES in Lake Ontario [9]. As a result, the idea of
the linear behavior of the drag coefficient, depending on the wind speed (in the region of
moderate speeds from 4 m/s to 20 m/s), was generally accepted. Some studies reported
nonlinear parameterizations for the momentum exchange coefficient (for example, see
COARE [10–12] for low and moderate winds). The results from [10,11] suggest a decrease
for winds lower than 1 m/s and an increase in CD with wind speeds close to linear for
winds of up to 15 m/s and a slower growth for winds from 15 m/s. Nevertheless, there are
still significant uncertainties concerned with the value of these coefficients for the extreme
wind conditions observed within tropical cyclones (see, for example, [13,14]). In particular,
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some studies report a saturation of the drag coefficient [15,16] and even its non-monotonic
behavior, correspondingly demonstrating a plateau or a peak with increasing 10 m wind
speeds for wind speeds larger than 20–30 m/s, as observed in [17] and confirmed in later
laboratory experiments [15,18] and field measurements [19–22]. At the same time, the
question regarding the location of the peak value within these dependencies characterized
by a large scatter [23] and the physical background that determines the phenomenon of CD
saturation (or its reduction) remains unanswered.

At the same time, fewer pieces of work have been devoted to the measurements and
estimates of the heat and moisture exchange coefficients because the response of hygrome-
ters is not fast enough to register the marine environment. The exchange coefficients of heat
and water vapor for wind speeds up to 18 m/s were measured using an eddy covariance
method in the framework of the HEXOS program [6,24] for wind speeds up to 20 m/s in
the Southern Ocean waves experiment SOWEX [25] and SWADE [26], demonstrating quite
a significant scatter and no noticeable dependency of these coefficients on wind speed. The
attempts to measure these exchange coefficients in the hurricane environment for wind
speeds of up to 30 m/s were made in the framework of the CBLAST hurricane component
campaign for tropical cyclones Isabel and Fabian [27]. The first direct field measurements
of sensible heat and enthalpy flux from the CBLAST experiment were presented in [28,29].
The results demonstrate that the enthalpy exchange coefficient and the exchange coefficient
of sensible heat showed no significant dependence on wind speed up to hurricane wind
speeds, showing, however, a greater scatter than for HEXOS data. In addition to field
studies, studies on the enthalpy exchange coefficient were also carried out under laboratory
conditions (see [30,31]) in the wind speed range of 13–40 m/s. The results suggested, once
again, that the value of the enthalpy exchange coefficient is relatively constant. At the
same time, the question remains open regarding the correspondence between laboratory
conditions and what is observed in natural conditions since such experiments are carried
out in a limited volume, and the wave age may not correspond to what is observed in the
open ocean, where intense breaking is formed, accompanied by the occurrence of foam
and spray.

Obviously, in the area of hurricane wind speeds, the direct measurement of heat and
moisture fluxes (in particular, based on the use of the eddy covariance method) becomes
impossible, and therefore it is necessary to develop alternative methods to retrieve these
coefficients based on the use of other measuring tools or calculations through the energy
and angular momentum budgets. The last approach is described in [13], in which the
calculations for the momentum and enthalpy exchange coefficients were made for the first
time for extreme wind values (from 50 m/s up to 72 m/s) on the basis of complex CBLAST
data, including measurements made using the eddy covariance method and radar and
microwave radiometer data for hurricanes Fabian and Isabel. GPS dropsondes are often
used as instruments for field observations in the region of tropical cyclones; they measure
wind speed, humidity, and pressure during their fall. An approach based on the flow
method applied to the profiles measured by NOAA GPS dropsondes has been proposed in
order to obtain the magnitude of the drag coefficients and the enthalpy exchange coefficient
for wind speeds of up to 60 m/s [14]. However, at high wind speeds, this method does
not work well as the data close to the surface are characterized by a high level of errors.
The authors report a large amount of variability for the enthalpy exchange coefficient,
which gives a prediction accuracy of up to 200% due to the uncertainties in sea surface
temperature (SST), which was obtained from the interpolation of the 0.25◦ re-analysis data.

One of the main results of the studies reported in [32] was the assertion that the
development of intense hurricanes (Category 3 and above on the Saffir-Simpson scale) and
the associated central pressure deficit and maximum azimuthal velocity are sensitive to
the ratio of the enthalpy exchange coefficient to the aerodynamic drag coefficient, which
has a value of 0.75–1.5, and this implies the presence threshold, below which tropical de-
pressions will not develop into major hurricanes. At the same time, existing measurements
(see [27,28]) suggest that the ratio of the exchange coefficients is lower than the predicted
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value and lies in the range between 0.6 and 0.7 or has an even lower value of 0.4, as reported
in [13]. So, as can be seen, the obtained data are characterized by large measurement errors
and do not provide accurate information about this ratio for high wind speeds. Thus, the
quantitative value of this ratio at high wind speeds still needs to be refined.

The current paper presents the results of research based on processing the field mea-
surements of wind speed and the enthalpy profiles obtained from falling NOAA GPS
dropsondes in a wide range of weather conditions for wind speeds lying in the range of
20–72 m/s. The general problem with processing the profiles measured by falling GPS
dropsondes is the large measurement errors near the surface that are associated with tech-
nical failures in the operation of the equipment and atmospheric boundary layer profile
deformation due to wave flux. In addition, the profiles measured by GPS dropsondes are
characterized by a high level of fluctuations and need ensemble averaging, as the boundary
layer in mature tropical cyclones is turbulent. So, there is the problem of correctly compiling
the statistical ensemble over which profile averaging is performed [14]. In order to reduce
the large source of uncertainties mentioned above, the authors of the present study propose
an approach based on concepts that are successfully used in technical hydrodynamics to
describe turbulent boundary layers on flat plates and in pipes [33]. It is based on the use of
the self-similarity property of the velocity defect in the entire boundary layer, including the
layer of constant fluxes, demonstrating a logarithmic profile and the “wake” part, where
the flow adapts to the undisturbed airflow region [33]. In this case, using the self-similarity
property, it is possible to retrieve the parameters of the layer of constant fluxes (the rough-
ness parameter and the dynamic velocity) from measurements in the “wake” part. This
technique was already used previously by the authors of the current study in order to
obtain the value of the aerodynamic drag coefficient [34]. In the present study, we made an
attempt to use a similar approach when processing enthalpy profiles to obtain the value of
the enthalpy flux coefficient and mean enthalpy profile slope.

2. Methodology, Instruments, and Datasets

In the present study, we used the datasets obtained from NOAA GPS dropsondes that
were launched from NOAA aircraft and contain the vertical profiles of horizontal wind
speed, temperature, humidity, and pressure from the NOAA hurricane research mission
website: http://www.aoml.noaa.gov/hrd/data_sub/hurr.html (accessed on 12 February
2022). The GPS dropsondes fall at a mean velocity of 10 m/s, transmitting the signal with a
frequency of 2 Hz. As a result, the average vertical resolution of the profiles is equal to 5 m.

A total of 26 Category 4 and 5 hurricanes that were registered in the Atlantic Basin
within the period of 2002–2017 were selected for analysis, including the additional data
from the CBLAST campaign for Hurricane Isabel (see Table 1). For each hurricane, the
position of the selected GPS dropsonde was considered relative to the current position of
the hurricane center, which was obtained from track data also obtained from the NOAA
hurricane research mission website: http://www.aoml.noaa.gov/hrd/data_sub/hurr.html
(accessed on 19 February 2022).

Table 1. List of selected TCs, GPS dropsondes, and SFMR acquisition time.

TC Name Category GPS Dropsonde Acquisition Time (UTC) SFMR Acquisition Time

Lily 4
2002/10/02 2002/10/02 01:58:12–11:23:55 UTC
2002/10/03 2002/10/03 12:58:12–20:24:50 UTC

Frances 4

2004/08/30
2004/08/31 2004/08/31 14:53:12–21:41:55 UTC
2004/09/01
2004/09/02 2004/09/02 14:10:12–23:05:55 UTC

Dennis 4
2005/07/08
2005/07/09
2005/07/10

http://www.aoml.noaa.gov/hrd/data_sub/hurr.html
http://www.aoml.noaa.gov/hrd/data_sub/hurr.html
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Table 1. Cont.

TC Name Category GPS Dropsonde Acquisition Time (UTC) SFMR Acquisition Time

Ike 4
2008/09/06 2008/09/06 03:18:53–23:59:59 UTC
2008/09/07 2008/09/07 00:00:00–21:27:59 UTC

Omar 4 2008/11/08
Paloma 4 2008/11/08 2008/11/08 12:09:06–21:27:22 UTC

Bill 4
2009/08/19 2009/08/19 00:00:00–23:59:59 UTC
2009/08/20 2009/08/20 00:00:00–23:59:59 UTC

Fabian 4

2003/09/01
2003/09/02
2003/09/03
2003/09/04
2003/09/05

Gustav 4
2008/08/30 2008/08/30 03:02:38–23:59:59 UTC
2008/08/31 2008/08/31 00:00:00–23:59:59 UTC

Earl 4

2010/08/30 2010/08/30 00:00:00–23:59:59 UTC
2010/08/31 2010/08/31 00:00:00–23:59:59 UTC
2010/09/01 2010/09/01 00:00:00–09:40:03 UTC
2010/09/02 2010/09/02 02:13:31–23:59:59 UTC

Katia 4 2011/09/06

Gonzalo 4
2014/10/16 2014/10/16 00:00:00–23:59:59 UTC

2014/10/16 07:45:10–17:26:48 UTC

2014/10/17 2014/10/17 00:00:00–09:59:59 UTC
2014/10/17 07:44:29–18:31:50 UTC

Joaquin 4
2015/10/01
2015/10/02 2015/10/02 00:00:00–23:59:59 UTC

Harvey 4 2017/08/26

Florence 4

2018/09/09
2018/09/10
2018/09/11
2018/09/12

Isabel 5

2003/09/12 2003/09/12 15:03:12–22:10:55 UTC
2003/09/13 2003/09/13 14:52:12–21:25:55 UTC
2003/09/14 2003/09/12 14:52:12–22:18:50 UTC
2003/09/15
2003/09/16
2003/09/17
2003/09/18

Dean 5

2007/08/17
2007/08/19
2007/08/20
2007/08/21
2007/08/22

Katrina 5
2005/08/27 2005/08/27 13:21:31–21:20:40 UTC
2005/08/28 2005/08/28 16:08:51–23:59:59 UTC

Maria 5

2017/09/20 2017/09/23 01:12:01–15:32:11 UTC

2017/09/22 2017/09/22 08:04:19–23:59:59 UTC
2017/09/22 18:06:30–23:59:59 UTC

2017/09/23 2017/09/23 00:20:00–05:54:37 UTC
2017/09/23 00:00:00–23:59:59 UTC

2017/09/24 2017/09/24 09:02:11–17:46:19 UTC
2017/09/24 00:00:00–23:59:59 UTC

2017/09/25 2017/09/25 09:12:13–23:59:59 UTC
2017/09/25 00:00:00–23:59:59 UTC

2017/09/26 2017/09/26 00:00:00–05:18:14 UTC
2017/09/26 00:00:00–23:59:59 UTC

Matthew 5
2016/10/01 2016/10/01 11:35:12–14:46:15 UTC
2016/10/04 2016/10/04 22:48:38–23:59:59 UTC
2016/10/06 2016/09/06 00:00:00–14:42:46 UTC
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Table 1. Cont.

TC Name Category GPS Dropsonde Acquisition Time (UTC) SFMR Acquisition Time

Matthew 5
2016/10/07
2016/10/08
2016/09/29 2016/09/29 00:00:00–23:59:59 UTC

Patricia 5 2015/10/23 2015/10/23 00:00:00–10:00:41 UTC

Rita 5
2005/09/21 2005/09/21 13:50:01–21:16:30 UTC
2005/09/22 2005/09/22 15:30:11–22:31:20 UTC

2005/09/23 2005/09/23 14:39:31–23:59:59 UTC
2005/09/23 15:20:41–23:14:05 UTC

Wilma 5

2005/10/20
2005/10/21
2005/10/22 2005/10/22 15:33:21–23:59:59 UTC
2005/10/23 2005/10/22 00:00:00–22:29:40 UTC

Irma 5

2017/09/04
2017/09/05
2017/09/06
2017/09/07
2017/09/08
2017/09/09

Ivan 5
2004/09/13 2004/09/13 19:57:12–23:59:59 UTC
2004/09/14 2004/09/14 00:00:00–23:59:59 UTC
2004/09/15 2004/09/15 00:00:00–23:59:59 UTC

Jose 5
2017/09/18
2017/09/19 2017/09/19 19:20:26–23:59:59 UTC
2017/09/20 2017/09/20 00:00:00–23:59:59 UTC

Because the data arrays received from NOAA GPS dropsondes carry information
on wind speed, specific air humidity, temperature, and pressure, it becomes possible to
calculate the vertical profiles of specific enthalpy using the following formula:

k =
(
(1− q)Cp + qCliq

)
θ + qLv (1)

where q is the specific air humidity, Cp and Cliq are the heat capacity of air and water, Lv
is the vaporization temperature, and θ is the potential air temperature calculated by the

formula θ = T
(

p0
p

) R
Cp .

Since the data collected from the GPS dropsondes are characterized by a high level
of fluctuations, for the individual profiles, a smoothening using height averaging with a
bin of 10 m was made at the first step, and then the processed profiles were averaged over
statistical ensembles for further analysis. To construct a statistical ensemble for averaging,
we considered the profiles obtained during the day that were located at the same distance
from the center of the hurricane, assuming that the hurricane is radially symmetrical and
quasi-stationary during the observation time. At the same time, the profile shape similarity
for profiles combined within a separate statistical ensemble was also taken into account (the
procedure for the statistical ensemble construction is described in more detail in Section 3).
This approach differs from the approach proposed in [14], where profiles with velocities
lying in a given range of values were combined. According to this approach, profiles with
the same velocities are not always located in the same part of the tropical cyclone and may
have different behavior.

To form statistical ensembles, the velocity profiles obtained during each day of mea-
surements were plotted in the form of three-dimensional curves, with the axes corre-
sponding to the distance from the center of the hurricane (obtained by comparing the
measurements of the GPS dropsonde co-ordinates at the moment when they reached the
surface and the corresponding co-ordinates of hurricane track), the magnitude of the sur-
face wind speed, and the height above sea level, as measured by the GPS dropsonde sensor.
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An example of such a set of curves is shown in Figure 1a. It is noticeable that the wind
speed profiles are naturally combined into groups according to the distance from the center
of the hurricane, which is clearly seen from such a 3D graphical representation. Obviously,
the first group contains the GPS dropsondes that fell into the “eye” of the hurricane, and
these were excluded from consideration (marked in violet, see Figure 1a). To construct
the statistical ensembles, only the groups of profiles with a wind speed exceeding 20 m/s
were selected (for example, profiles marked in purple correspond to the hurricane eyewall,
see Figure 1a). In general, when constructing a statistical ensemble, a radial grouping of
profiles was used—see examples of some of the selected groups in Figure 1b; here, the
GPS dropsondes entered into different groups are marked with different colors, and the
concentric circles of the corresponding colors indicate the boundaries of the areas within
which the dropsondes were combined into the groups. The grouping was carried out not
only by taking into account the distance from the center and the wind speed but also by
taking into account the profile behavior. It can be seen that the profiles represented by
the blue, aquamarine, and light-blue colors are approximately the same distance from the
center of the hurricane, but they have different shapes, so they were combined into separate
subgroups. The velocity profiles measured at a considerable distance from the center of the
hurricane with velocities of less than 20 m/s were also not taken into consideration (this
group of profiles is marked in green, see Figure 1a).
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Figure 1. (a) Three-dimensional illustrations representing the velocity profiles plotted vs. the distance
from the center of the hurricane, the wind speed, and the height above sea level measured by the
GPS dropsonde sensor. Violet profiles correspond to the hurricane eye, purple profiles correspond
to the hurricane eyewall, green profiles were launched in the outer vortex far from the hurricane
center and the group of blue profiles correspond to the hurricane part near the eyewall. (b) Location
of the selected arrays of the GPS dropsondes (plotted in different colors) relative to the center of the
hurricane (marked with a black cross). Dataset for Hurricane Irma, 7 September 2017.

For the next step, we made an attempt to retrieve the momentum and enthalpy
exchange coefficients from the velocity and enthalpy profiles averaged over the selected
ensembles using the modified profiling method [18]. The main idea of this method lies in
the fact that the wind speed and enthalpy profiles are assumed to be self-similar and can
be described within the same laws that are applicable for flows on flat plates and in the
aerodynamic channels used in technical hydrodynamics [33] (see Section 4).

It should be mentioned that the self-similar laws are applicable to the average profiles
of the enthalpy difference relative to the enthalpy at the ocean surface. So, there is a need
to obtain an enthalpy value on the ocean surface or the associated sea surface temperature
(SST). GPS dropsondes only provide information about the atmospheric parameters. Thus,
it is necessary to use additional tools to obtain information about the SST. In most cases,
the surface temperature data are accumulated from the re-analysis [14], which causes
large uncertainties in the sea surface temperature and enthalpy values retrieved. In the
present study, we used the SST data from a NOAA/Hurricane Research Division stepped-
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frequency microwave radiometer (SFMR) on board NOAA aircraft performing synchronous
measurements with the launch of GPS dropsondes. It provides the values of sea surface
temperature within TCs in real time, with a spatial resolution of 1.5 km for a typical
aircraft speed of 150 m/s (see Figure 2). The acquisition time of the data from the SFMR
measurements is listed in Table 1.
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3. Drag Coefficient and Dynamic Speed Retrieval

Presumably, the marine atmospheric boundary layer in a tropical cyclone considered in
the present study is similar to a near-wall flow that has a well-studied structure, as observed
in the laboratory modeling of the atmospheric boundary layer. It is characterized by three
areas: a viscous sublayer, a layer of constant fluxes, and a wake part, where the transition
to the geostrophic current region occurs. The overall thickness of a displacement layer is
denoted further by δ. A viscous sublayer adjoins the water surface and has a thickness of
about 20–30 ν/u∗ (where ν is the kinematic viscosity, and u∗ is the dynamic velocity); inside
this layer, the effects associated with viscosity play the main role. Obviously, its thickness
is several orders of magnitude smaller than the thickness of the other two layers, so we did
not consider it further. The layer of constant fluxes, in which the total momentum flux is
kept constant, is located above the upper boundary of the viscous sublayer and extends
to a thickness of approximately 0.3δ [35]. Above the layer of constant fluxes is where the
wake part is located, which is characterized by the presence of a maximum velocity. This
structure is typical for a boundary layer on a flat plate and in a pipe [33]. The traditional
profiling method is designed to determine the dynamic wind speed and the roughness
parameter from the approximation of the velocity profile by a logarithmic function in the
layer of constant fluxes, i.e., for a height interval of less than ~0.3δ. At the same time, the
applicability of this approach to the airflow velocity profiles measured by GPS dropsondes
has limitations. Indeed, the thickness of the displacement layer, as will be shown below,
is usually less than 1000 m. This means that the layer of constant fluxes is located below
300 m. At the same time, despite the fact that the sum of turbulent and wave momentum
fluxes remains constant [36], the turbulent momentum flux changes with altitude. It was
shown in [37] that the wave momentum flux decreases with distance from the boundary
on a scale of λ/10, where λ is the peak wavelength of surface waves. In Category 4 and
5 hurricanes, these wavelengths are hundreds of meters, which means that the scale of the
decrease in the wave-induced momentum flux is tens of meters. Thus, the airflow velocity
profile is logarithmic only within a narrow range of altitudes, and the use of a logarithmic
function to approximate the wind speed profile over a wider range of altitudes leads to
large errors in determining the parameters of the atmospheric boundary layer.

In this paper, we propose the application of a modified profiling method based on the
use of data not from the region of constant fluxes but from the wake part. We applied this
method (in earlier work) to the results of laboratory modeling [18,38], and the method was
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used further to retrieve dynamic parameters in tropical cyclones [34]. In the present study,
we have expanded the dataset (including the consideration of the data from CBLAST), and,
in addition, we modified the profiling method to retrieve the thermodynamic parameters
(Section 4). Figure 3a shows the averaged profile obtained as a result of statistical data
processing using GPS dropsondes (see Section 2). Figure 3b shows the laboratory experi-
ment results in terms of the physical and self-similar variables [18]. It can be seen that the
profiles obtained from field data have a form that is similar to the profiles obtained in the
laboratory experiments [36]; namely, they all have a maximum at some height. This result
allows us to make an assumption that the shape of the velocity profiles observed in tropical
cyclones can be described by self-similar laws, similar to those proposed in [33] for a flow
on a flat rigid plate: Umax−U(z)

u∗ = f
( z

δ

)
; here, Umax is the maximum velocity in the turbulent

boundary layer, u∗ is the dynamic velocity, and δ is the thickness of a displacement layer.
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Figure 3. Individual wind speed profiles for Hurricane Irma 2017/09/07 (see red, yellow, green, and
orange colors) and ensemble-averaged wind speed profiles (black color) (a); wind velocity profiles in
the aerodynamic flume at different wind speeds for physical variables, dashed curves are logarithmic
approximations (b); self-similar variables (c) (reproduced from [18], with permission from John Wiley
& Sons, 2012). The solid line represents a logarithmic approximation [18].

In order to describe the various parts of the boundary layer, the use of a piece-wise
function was proposed in [33], which includes a logarithmic part to describe a layer of
constant fluxes and a parabolic part to describe the wake part of the profile:

Umax −U(z)
βu∗

=

{
1
β

(
− 1

κ ln z
δ + γ

)
; z

δ < 0.3(
1− z

δ

)2; z
δ > 0.3

(2)

where κ is the von Karman constant, γ and β are constants, which are determined further
by profile approximation. As a first step, we checked whether self-similarity was satisfied
for the velocity profiles in the selected hurricanes. In order to do this, the airflow velocity
profiles averaged over the selected ensembles in the boundary layer were approximated by
using a parabolic function U(z) = a3 + a2z + a1z2, where a1, a2, and a3 are constants that
can be determined via a comparison with Formula (2):

δ = − a2

2a1
; Umax = a3 + βu∗; βu∗ = −

a2
2

4a1
; (3)

Figure 4, which illustrates the velocity profiles in the boundary layer, expressed in
physical variables and in self-similar variables, shows that the velocity profiles, expressed
in self-similar variables, have a much smaller scatter than in the physical ones and are
grouped around one curve.
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Figure 4. Ensemble of all considered wind velocity profiles for physical (a) and dimensionless
variables (b). Pink curve corresponds to the logarithmic approximation and green curve corresponds
to the parabolic approximation (wake part).

An approximation of the experimental data by using Formula (2) gives−1/(κβ) = 0.3358,
with a 95% confidence interval from 0.3529 to 0.3186 and a coefficient γ/β = −0.0949, with
a 95% confidence interval from 0.0621 to 0.1278. By taking into account the self-similarity
of the airflow velocity profile, it is possible to obtain the parameters of the logarithmic
boundary layer from the measurements from the wake part of the turbulent boundary layer.
At first, the parameters of the turbulent boundary layer (Umax, βu∗ and δ) are determined
from the approximation of the experimental data by using Formula (2) at z/δ > 0.3. Then,
the parameters of the logarithmic boundary layer are calculated using Formula (3) for
z/δ > 0.3, as follows:

U(z) =
u∗
κ

ln
z
z0

, z0 = δ exp(−κUmax/u∗ + ακ) (4)

Cd =
κ2

(κUmax/u∗ − γκ + ln(H10/δ))2 (5)

where z0 is the roughness height, Cd is the aerodynamic drag coefficient, and H10 is the
height above sea level equal to 10 m.

The dependence of the drag coefficient and dynamic wind speed on the 10 m wind
speed are shown in Figure 5.

It can be seen that the binned values for the aerodynamic drag coefficient, which were
obtained by using window averaging, including ten CD values, decrease with increasing
wind speed at U10 > 32 m/s, which is consistent with the known effect reported in [17,19,20].
In addition, the value of the wind speed corresponding to the drag coefficient peak value is
in good agreement with the peak value reported in [20]. It should be noted that the values
of CD are consistent (in the region of moderate and hurricane wind speeds) with the data
from [14,17], which were obtained using the traditional profiling method. At the same
time, the results from [13] provide significant overestimations in the region of extreme
wind speeds when compared to our data and the data from [17,19]. The dependence
of the dynamic speed on the wind speed at 10 m (height) also agrees well with the data
from [14,17,19,20] and demonstrates an underestimation in comparison to the data reported
in [13]. The dependence of u∗(U10) shows a slight variation in the values for wind speeds
exceeding 40 m/s. However, a further increase in the amount of data is required to verify
this dynamic speed saturation effect.
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Figure 5. Dependences of the aerodynamic drag coefficient (a) and dynamic wind speed (b) on 10 m
wind speed. The small black open circles correspond to the obtained ensemble averaged values, the
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yellow diamonds [13], red triangles [14], and yellow crosses [20].

4. Enthalpy Parameters Retrieval

Further, we will make an assumption that the modified profiling method used above
to retrieve the aerodynamic drag coefficient and dynamic velocity values is also suitable for
calculating the enthalpy exchange coefficient. This assumption is partly based on the results
obtained in laboratory conditions [39], related to the fact that the temperature profiles, as
well as the velocity profiles, are self-similar and are described by the same law, whereas
the self-similar coefficients are constants and do not depend on wind speed. By taking the
self-similar behavior of the dynamic and thermodynamic parameters in the atmospheric
boundary layer into account, it can be assumed that enthalpy dependence might also be
self-similar, which, however, requires verification since enthalpy contains humidity in
addition to temperature, for which self-similarity has not been established. The enthalpy
profiles, as well as the velocity profiles, observed inside tropical cyclones, demonstrate
the presence of a pronounced maximum at a height that is, on average, about 2000 m (see
Figure 6), which, nevertheless, differs from the height corresponding to the wind speed
peak (having a value below 1000 m).
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Below, we will find out whether the dependences of a difference in enthalpy, k(z) − k(0),
relative to the ocean surface enthalpy, k(0), for height are self-similar. Thus, we used the
data on the vertical dependence of enthalpy along with its value on the ocean surface,
calculated by using Formula (1). The SST value for the k(0) estimations is obtained from a
NOAA/Hurricane Research Division stepped-frequency microwave radiometer (SFMR)
collocated in time and space with GPS dropsonde measurements (see Table 1).

In order to describe the self-similar dependence for the enthalpy defect profile, an
expression similar to (2) was used:

kmax − k(z) =

 k∗
(
− 1

κ Pr ln z
δk
+ α
)

; z
δk

< 0.15 or 0.3

βkk∗
(

1− z
δk

)2
; z

δk
> 0.15 or 0.3

(6)

where Pr is the Prandtl number. It should be noted that, in the case of the velocity profiles,
we used a logarithmic approximation limit equal to z

δ = 0.3 (according to the result obtained
in [35]), but in the case of the enthalpy profiles, it is not entirely clear which value should
be used, so we compared the results using two different values: the traditionally used
0.15 and 0.3 values proposed for the velocity profiles. An important role in the proposed
profiling method is played by the correct choice of the Prandtl number, which is a criterion
for the similarity of thermal processes in liquids and gases. This coefficient has a constant
value only within the logarithmic part of the boundary layer, according to [40,41]. Below,
we will assume that the value of the Prandtl number is 0.85 in the logarithmic part of
the profiles. For the first step, the self-similarity property of the enthalpy profiles was
checked. The profiles averaged over the selected ensembles in the boundary layer were
approximated by a polynomial of the second degree, similar to the principle described in
the previous Section:

k(z) = b3 + b2z + b1z2 (7)

The data obtained below 40 m from the sea surface were excluded from consideration
in order to remove the influence of the wave momentum flux, which is significant near
the water surface. It should also be noted that the thickness of the displacement layer, in
this case, is about 2000 m or more (see Figure 6). From the parabolic approximation, the
following enthalpy profile parameters are calculated:

βkk∗ = −
b2

2
4b1

; δk = −
b2

2b1
; kmax = b3 + βkk∗ (8)

By using estimated parameters, the profiles in physical variables were expressed in
dimensionless co-ordinates and are displayed on one graph (see Figure 7). It can be seen
that similar to the result obtained for the wind velocity profiles, the enthalpy profiles
expressed in the dimensionless variables collapse to one curve (see Figure 7b,c) described
by the following expression:

kmax − k(z)
βkk∗

=


1
βk

(
− 1

κ Pr ln z
δk
+ α
)

; z
δk

< 0.15 or 0.3(
1− z

δk

)2
; z

δk
> 0.15 or 0.3

(9)

This result indicates that the assumption of the self-similarity of the enthalpy pro-
files is correct. The approximation of the logarithmic part of the profile gives the values
for the slope coefficient of 1/(κβk) = 0.124 with a 95% confidence interval from 0.133 to
0.114 and a constant component value of α/βk = 0.467 with a 95% confidence interval
from 0.442 to 0.492 for the case of the 0.15 approximation limit; a slope coefficient of
1/(κβk) = 0.177 with a 95% confidence interval from 0.182 to 0.172 and a constant compo-
nent of α/βk = 0.309 with a 95% confidence interval from 0.297 to 0.320 was found for the
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case of the 0.3 approximation limit. These values allow for calculating the coefficient k∗ for
each ensemble. In the next step, we used the following formula for the enthalpy difference:

k(z)− k(0) =
k∗
κ

Pr ln
z
z0

(10)

where z0 is the enthalpy roughness parameter, retrieved by using the formula

z0 = δk exp
(
−κkmax

Prk∗
+ ακ

)
(11)
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We calculated the enthalpy exchange coefficient, which is responsible for the increase
in the intensity of the hurricane due to the heat and moisture supply from the ocean surface:

Ck =
k∗
√

Cd
k(10)− k(0)

(12)

Figure 8 shows the dependence of Ck and k∗ on the wind speed at the meteorological
height compared with the data of earlier studies [13,14,28,31].

The array of large red and black circles corresponds to the binned values obtained by
window averaging, containing approximately 10 points (marked with small open red and
black circles, respectively).

It can be seen that both of the obtained binned values lie inside the confidence intervals
of the existing data from [13,14,28,31], even though various methods have been used to
retrieve the values of CK (in the observations from [14,28], a flux profile method was used,
and the authors from [13] used the absolute angular momentum and total energy budgets).
It should be mentioned that, as reported in [14], CK estimates in the range of extreme winds
demonstrate a large uncertainty, with an accuracy of up to 200% [14], which is due to the
high sensitivity of the flux profile method to the parameters of the logarithmic layer and
the uncertainties in SST. The use of a modified profile method together with instantaneous
measurements of SST provide an opportunity to reduce these errors down to 30% in the case
of using an approximation limit of z

δ = 0.15. The values of the enthalpy exchange coefficient
obtained from the absolute angular momentum and total energy budgets reported in [13]
demonstrate no significant variations in major hurricane conditions; at the same time,
our results also show low variance, showing a possible slight increase in the region of
wind speeds exceeding 60 m/s; the authors of [13] report a mean value of CK of equal
to 1 × 10−3 with a 40% standard deviation, while the average value of CK for our data
turned out to be 0.7 × 10−3 and is consistent with the data [13,14] within the confidence
intervals. The slight variations in CK are ensured by the decrease in CD accompanied by
the increasing dependence of enthalpy roughness k∗/(k(10)−k(0)) for the extreme wind
speeds (see Figure 9a). Nevertheless, the observed effect requires further investigation. The
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fact that CK does not demonstrate significant changes in major hurricane conditions may be
due to an increase in the number of wave-breaking events and the associated whitecapping;
both of these phenomena lead to opposing effects—the effect of reducing aerodynamic
drag due to the sea surface whitecap masking and the growth in temperature roughness
due to sea-surface-area increase and the intensification of mixing, causing water surface
renewal due to whitecapping (see [38]).
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It should also be emphasized that the growth in the dependence of the enthalpy
exchange coefficient on wind speed is significantly weaker than that observed in the
laboratory experiments reported in [38,42]. This result needs further study and may be
associated with the different features of laboratory and field conditions. In particular, it may
be related to the decreasing dependence of the exchange coefficients on the wave fetch (or
the wave age parameter), which differs dramatically in laboratory and field conditions [38].

As for the value of k∗, it falls within the range of the existing measurements
from [13,14,28,31] and does not show significant variations, even in the region of high
wind speeds (see Figure 8b).

The retrieved CK/CD ratios from the current study are shown in Figure 9 and suggest
a slight increase in magnitude for extreme wind conditions. The results indicate that the
mean value of CK/CD is equal to 0.7 for the approximation limit z

δ = 0.15 and is 0.96 for
the approximation limit z

δ = 0.3, which exceeds the value of 0.4 reported in [13]. At the
same time, our data are consistent and are within the confidence intervals for the value of
0.85 proposed in [1], an SST equal to 30 ◦C, and the previous results reported in [13,14,28,31],
which, in general, speaks in favor of the approach used.

As a result of comparing various approximation limits, it can be seen that in the case
of z

δ = 0.3, the errors for almost all the values of the enthalpy exchange coefficient turn out
to be larger, as the data is characterized by a larger scatter, which increases significantly in
the region of moderate wind speeds. The data for z

δ = 0.3 show overestimated values in
the region of low and moderate wind speeds when compared to [14], and this is in contrast
to the data obtained for the approximation limit equal to 0.15. This also leads to an increase
in the errors and overestimated values for the Ck/CD ratio in the region of moderate wind
speeds. Based on the results obtained, it can be assumed that the use of an approximation
threshold of 0.15 is preferable.

5. Conclusions

In the current study, the dynamic and thermodynamic parameters of the atmospheric
boundary layer were estimated for 26 Category 4 and 5 tropical cyclones based on the
application of a modified profiling method (proposed in [18]) that was applied to NOAA
GPS dropsonde measurements. This method was developed by taking into account the
self-similarity property of the wind speed and enthalpy profiles and is based on the retrieval
of the exchange coefficients from the data in the wake part of the profiles. The method has
a number of advantages over the standard flux profile method. By using data collected
far from the surface, we obtained a significantly larger data set since the measurements in
the logarithmic boundary layer region are often characterized by large errors or, in some
cases, a partial lack of data due to technical failures in the operation of GPS dropsondes
near the ocean surface. In addition, the application of this method makes it possible to
exclude the influence of the wave momentum flux, which is noticeable in the region of
the logarithmic layer but decreases with height and disappears in the wake part. As a
result of the application of the modified profiling method to the wind speed and enthalpy
profiles obtained from GPS dropsondes data, together with the sea surface temperature
from the NOAA SFMR radiometer, we obtained values for the drag coefficient and enthalpy
exchange coefficient and their dependencies on a 10 m wind speed. The use of the modified
profiling method made it possible to reduce the standard deviation when compared to
those reported previously in [13,14], especially in the range of extreme wind speeds. It
was shown that the dependencies of the drag coefficient show peaking behavior with
a decrease in the area of extreme wind speeds, which is in accordance with the results
presented in [17,19,20], whereas the enthalpy exchange coefficient and the ratio of CK/CD
show little variation at high wind speeds, which agrees with the previous results reported
in [13,14]. We speculate that slight variations in the enthalpy exchange coefficient value
for the extreme wind speed range (wind speeds of more than 50 m/s) may be due to the
compensation in the growth of enthalpy roughness by a decrease in the aerodynamic drag
coefficient. At the same time, the effect of the aerodynamic drag coefficient decreasing at a
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constant value of enthalpy roughness in the range of wind speeds from 30 to 50 m/s causes
a decrease in the enthalpy coefficient with increasing wind speed in this wind speed range.
Both of these effects are likely due to the increasing role of breaking and the associated
whitecapping on the sea surface with growing wind speed. Due to an increase in the foam
coverage area, a wind-dependent effect of masking the surface roughness occurs, leading to
a decrease in aerodynamic drag. At the same time, wave breaking leads to the generation
of a number of competing phenomena, which can lead to both an increase in enthalpy
exchange (sea spray and the renewal of the water’s surface, leading to an intensification
of mixing and, as a result, enthalpy transfer), and to a weakening of heat exchange (foam
coverage). It is likely that the competition of these processes for different ranges of wind
speeds can lead to differences in the behavior of the dependence of the enthalpy exchange
coefficient on wind speed. In any case, the question of the effect of each phenomenon on the
enthalpy exchange coefficient for open ocean conditions is the subject of further research.

It should also be mentioned that the dependencies of the enthalpy exchange coefficient
on wind speed and its absolute value are very different in laboratory and field conditions;
they demonstrate significantly stronger growth under laboratory experiments [38,42]. This
discrepancy, apparently, can be attributed to the different behavior of the aerodynamic drag
coefficient, which decreases with increasing wind speed in field conditions [14,17,20], while
it saturates in laboratory experiments [38,42]. In addition, wave fetches (and wave age)
differ dramatically under laboratory and natural conditions, while it was shown in [38] that
the enthalpy exchange coefficient drops significantly with an increase in wave age. This fact
indicates that, probably, the values of the enthalpy exchange coefficient should be less for
the data obtained from field measurements than those observed in laboratory conditions.
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