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Abstract: In order to establish a sparse and accurate ship motion prediction model, a novel Bayesian
probability prediction model based on relevance vector machine (RVM) was proposed for nonpara-
metric modeling. The sparsity, effectiveness, and generalization of RVM were verified from two
aspects: (1) the processed Sinc function dataset, and (2) the tank test dataset of the KRISO container
ship (KCS) model. The KCS was taken as the main research plant, and the motion prediction models
of KCS were obtained. The ε-support vector regression and υ-support vector regression were taken
as the compared algorithms. The sparsity, effectiveness, and generalization of the three algorithms
were analyzed. According to the trained prediction models of the three algorithms, the number of
relevance vectors was compared with the number of support vectors. From the prediction results of
the Sinc function and tank test datasets, the highest percentage of relevance vectors in the trained
sample was below 17%. The final prediction results indicated that the proposed nonparametric
models had good prediction performance. They could ensure good sparsity while ensuring high
prediction accuracy. Compared with the SVR, the prediction accuracy can be improved by more than
14.04%, and the time consumption was also relatively lower. A training model with good sparsity
can reduce prediction time. This is essential for the online prediction of ship motion.

Keywords: nonparametric identification modeling; ship motion prediction; relevance vector machine;
sparsity analysis; support vector regression

1. Introduction
1.1. Background and Motivation

The research on maritime autonomous surface ships (MASS) is widely discussed [1].
More intelligent ships are being used for motion control and sea transportation. In re-
cent years, with the construction of MASS, the accuracy of the model directly affects the
performance of the motion control. The sparse modeling method can avoid overfitting
to a certain extent and reduce the prediction time [2], which can lay the foundation of
online prediction. Ship motion prediction is of great significance for the design of course-
keeping, path-following, and adaptive controllers, and it can also improve the control
effect [3,4]. Therefore, the development of an efficient and sparse modeling method is of
great importance for identification modeling and overcoming the effect of ship type, etc.

1.2. Related Work

System identification has been widely used in many research fields, which solves the
modeling problem. It includes parameter and nonparametric identification. In the field
of parameter identification of ship motion models, some studies have been conducted
using classical and intelligent algorithms. Classical algorithms, such as least square (LS) [5],
extended Kalman filter (EKF) [6,7], gradient descent (GD) [8], and recursive prediction error
(RPE) [9], were used for the parameter estimation of MMG, coupled with heave-pitching
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motion models. In the parameter estimation results, these algorithms ensured certain
estimation accuracy. As for intelligent algorithms, neural network (NN) [10] and support
vector machine (SVM) [11,12] were frequently applied to the parameter estimation of ship
motion models. For machine learning algorithms, a certain amount of data is required as
support to obtain accurate parameter estimation results. A sensitivity analysis [13,14], as a
way to simplify models, reduced the complexity of parameter identification.

As for nonparametric identification modeling, intelligent identification algorithms
are widely used. With the rapid development of artificial intelligence, NNs with different
structures have been proposed. Recurrent NN [15–17], self-designed fully connected
NN [18], and long short-term memory NN [19] were applied to the maneuvering motion
prediction of KCS, KVLCC2, and DTMB 5415, respectively. Moreover, compared to the
traditional NN, the emerging NN can obtain high prediction accuracy. Based on statistical
learning theory, SVM uses the kernel method to avoid dimension disaster. It includes
ε-SVR and υ-SVR when it is used for regression. When ε-SVR [20] and υ-SVR [21] were
applied to the parameter identification, precise ship motion prediction results were obtained.
However, the setting of hyperparameters greatly affects the regression accuracy of SVR.
Zhang et al. [22] combined the grey wolf optimizer with ε-SVR. Based on the full-scale trial
data, the hyperparameters of ε-SVR were tuned and more accurate prediction models are
obtained. The supervised learning algorithm, fast noisy input Gaussian process (GP) [23],
was used to conduct online motion prediction for container ships and unmanned surface
ships. Local weighted learning (LWL) was widely used in robot control fields and is an
effective identification algorithm for ship motion prediction [24,25]. As a deep learning
algorithm, delayed deep cycle reservoir with regular jumps (DDCRJ) [26] was used to
predict ship heave motion. Table 1 shows a summary of relevant work.

Table 1. Summary of related work.

System
Identification Algorithm Types Algorithms Advantages Disadvantages

Parameter
identification

Classical
algorithms

LS [5] (1) Each step takes less time;
(2) Simple structure;
(3) Mathematical reasoning,

etc.

(1) The influence of the initial
value;

(2) Parameters drift;
(3) Convergence speed.

EKF [6,7]
GD [8]
RPE [9]

Intelligent
algorithms

NN [10]
SVM [11,12]

(1) Generalization of
parameters;

(2) Learning ability;
(3) Convergence speed, etc.

(1) Training time;
(2) The influence of the data

sample;
(3) Complex structure.

Nonparametric
identification

Intelligent
algorithms

NN [15–19] (1) Generalization of
prediction model;

(2) Prediction accuracy;
(3) Wide range of applications.

(1) The influence of the data
sample;

(2) Long training time;
(3) Hyperparameter tuning.

SVM [20–22]
GP [23]

LWL [24,25]
DDCRJ [26]

Most algorithms used in Table 1 were applied to three degrees of freedom (3 DOF)
ship motion, response, and coupled heave-pitching motion models. For the current ship
motion controller design, most scholars used the ship response and 3 DOF motion models.
Therefore, there are many studies on the 3 DOF ship motion model. With the development
of MASS, the prediction of their plane motion is also necessary. SVM has featured in a lot of
research in the fields of both parameter identification and nonparametric identification. It
has led to good research results. However, although SVM is a relatively sparse model, the
computational complexity will increase significantly as the training sample size becomes
larger. RVM has many of the features of SVM and avoids the main limitations of SVM.
In addition, compared to the state-of-the-art ship motion prediction models, there are
relatively few studies on algorithmic sparsity.
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Sparsity encompasses feature sparsity and model sparsity. Feature sparsity refers
to the sparsity of feature vectors. Model sparsity refers to the sparsity of model weights.
This study aims to explore the model sparsity of the three algorithms while ensuring
prediction accuracy. The obtained regression model has a certain sparsity if the weights of
the regression function have more zeros. Sparsity can significantly increase model capacity
and performance without a proportional increase in computation. RVM combines the
kernel method with Bayes’ theorem to obtain a relatively sparse prediction model. Taking
RVM as an example, the number of relevance vectors (RVs) in the prediction model is small
(i.e., the weights of the nonparametric model obtained by RVM have more zeros). RVM
only has one hyperparameter to be tuned. Therefore, it does not require an optimization
algorithm to tune the hyperparameter. It can quickly obtain a suitable hyperparameter by
trial and error, and also guarantee good prediction accuracy. The related work on RVM is
discussed as follows.

Sparse models are more and more widely used in many research fields, which can
avoid overfitting in the modeling process. RVM has been applied in many fields [27–29].
Based on RVM, Tian et al. [30] proposed a diagnosis method for high-pressure hydrogen
leakage. In some specific cases, the proposed model took less time. Moreover, the pro-
posed diagnostic model had an accuracy rate of more than 95%. Chang et al. [31] used
an empirical model to predict the tunnel convergence. The prediction residuals were
modified by RVM. The probability model for tunnel convergence monitoring was obtained.
Compared to the prediction results of BPNN and GP, the proposed algorithm had good
prediction performance.

1.3. Contributions and Structure

Based on the descriptions in Sections 1.1 and 1.2, studies of the sparsity and prediction
performance of RVM and SVR are conducted. This research proposes a sparse ship motion
prediction model based on RVM. The sparse model removes many redundant variables,
simplifying the prediction models while retaining the most significant information in the
dataset. Two different datasets, the Sinc function dataset and tank test dataset of KCS, are
taken as illustrative examples to analyze the sparsity, effectiveness, and generalization of
RVM, ε-SVR, and υ-SVR. The novelty of the research lies in the following three points:

(1) Unlike most existing machine learning algorithms, RVM is a sparse model proposed
under the fast sequential sparse Bayesian framework. This can be used to obtain a
sparse ship motion prediction model.

(2) Based on the Bayesian framework, a regularization parameter is not used in the
derivation of RVM. This reduces the complexity of model learning. Additionally, the
obtained ship motion prediction models can avoid overfitting.

(3) The kernel function of RVM does not need to satisfy the Mercer condition. RVM
can flexibly choose the kernel function to obtain an accurate ship motion prediction
model. For the setting of the hyperparameter, RVM only needs to set the kernel
function parameter.

The structure of the research is organized as follows: Section 2 describes the framework
of a 3 DOF ship maneuvering motion model and gives the framework of a nonparamet-
ric identification model based on RVM. Section 3 introduces Bayesian inference, sparse
Bayesian learning, and the derivation and principle of RVM. In Section 4, the research
introduces two illustrative examples to demonstrate the sparsity, effectiveness, and gener-
alization of the nonparametric identification model. Section 5 summarizes the conclusions
and future research prospects.

2. Ship Maneuvering Motion Model

In order to describe the ship motion, earth-fixed coordinates and body-fixed coordi-
nates are adopted. Figure 1 shows these two coordinate systems.

The main objective is to obtain a 3 DOF nonparametric identification model of KCS.
Therefore, the 3 DOF motion model of KCS is established [32]. The Abkowitz model is
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widely used in identification modeling research. Although its derivation process is rela-
tively complex, it can accurately describe the dynamic maneuvering characteristics of the
ship [33]. Moreover, identification modeling simplifies the calculation of ship hydrody-
namic derivatives, so as to establish an accurate mathematical model of ship motion based
on data samples. Therefore, the Abkowitz model is used in this study. Equation (1) lists the
expression of the 3 DOF motion model for KCS.

m
( .
u− vr− xGr2) = X

m
( .
v + ur + xG

.
r
)
= Y

Iz
.
r + mxG

( .
v + ur

)
= N

.
ψ = r

.
x = ucos(ψ)− vsin(ψ)
.
y = usin(ψ) + vcos(ψ)

(1)

where m is the mass of ship; xG is the gravity center of ship; X, Y, and N are force and
moment; Iz is the added moment of inertia; u, v, r, and ψ are surge velocity, sway velocity,
yaw rate, and yaw angle, respectively; x and y are displacement in X0 and Y0 direction.
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The Equation (1) is expressed by the state space equation to obtain Equation (2).m− X .
u 0 0

0 m−Y .
v mxG −Y.

r
0 mxG − N .

v Izz − N.
r

 .
u(t)
.
v(t)
.
r(t)

 =

 fX(t) + τX(t)
fY(t) + τY(t)
fN(t) + τN(t)

 (2)

where X .
u, Y .

v, Y.
r, N .

v, and N.
r are ship hydrodynamic derivatives; f1, f2, and f3 are the

nonlinear functions related to force and moment; τX, τY, and τN are forces and moment
coming from environmental disturbances.

Nonparametric identification modeling considers the input, output, and dynamic
process of the system, without considering the internal structure of the model. According
to the motion model of KCS established by Equation (2), the mapping relationship between
the ship motion is shown in Equation (3).

.
u(tn+1) = RVM1(u(tn), v(tn), r(tn), δ(tn+1)).
v(tn+1) = RVM2(u(tn), v(tn), r(tn), δ(tn+1)).
r(tn+1) = RVM3(u(tn), v(tn), r(tn), δ(tn+1))

(3)

where δ is the rudder angle and RVM1, RVM2, and RVM3 are mapping function.

3. Methodology
3.1. Bayesian Inference and Sparse Bayesian Learning

Suppose the system observation data set is D. θ is the system parameter. Then, the
likelihood function of the system is p(D|θ), and the prior distribution of parameters is p(θ).
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According to Bayes’ theorem, the posterior distribution p(D|θ) of the system is Equation (4).

p(θ|D) =
p(θ)p(D|θ)

p(D)
(4)

where p(D) is the marginal likelihood function.
Bayesian inference uses probability operations to fit observed data. xp is the new

data to be predicted. According to Bayesian inference, the probability distribution of the
predicted points is calculated as Equation (5).

p
(

xp
∣∣D) = ∫

p
(
xp, θ

∣∣D)dθ =
∫

p
(

xp
∣∣θ, D

)
p(θ|D)dθ (5)

Sparse Bayesian learning combines the prior information of unknown parameters with
sample information to obtain the assumption of the prior probability distribution [34]. Then,
the posterior information is obtained according to Bayes’ theorem. Finally, the obtained
posterior information is used to update the prior distribution and sample information. After
the above multiple iterations, more and more accurate sample information is obtained. In
general, the model of sparse learning can be expressed as Equation (6).

ys(x) = Φs(xs)ws (6)

where ys(x) is the regression value of sparse model, Φs(xs) is the kernel functions matrix,
ws is the weight, and xs is the training sample.

The basic idea of sparsity is to use the weighted idea to represent a test sample after
the training sample is mapped linearly or nonlinearly. Since the test samples are only
related to the training samples with similar information, most of the weighted values are 0
to achieve the purpose of sparsity.

3.2. Relevance Vector Machine

In the 1990s, the rise of SVM led to research into the kernel method. The kernel method
is regarded as the third revolution of pattern analysis method after classical statistical linear
analysis, NN, and decision tree nonlinear analysis [35]. Therefore, the sparsity of SVM
after the introduction of the kernel method has captured the interest of scholars. With the
in-depth study of SVM, the defects of SVM have been gradually revealed.

RVM is a supervised learning algorithm proposed by Tipping [36]. Based on Bayesian
inference and the sparse Bayesian learning idea, it has many features of SVM and avoids its
main limitations. Compared with land vehicles, ships have the characteristics of delayed
response to maneuvering. Therefore, there are complex mapping relationships between
data. The sparse prediction model can reduce this effect and improve the generalization
performance. Given a set of the KCS motion dataset as {xn, tn| n = 0, 1, 2,. . ., N}, N is
the number of data samples. According to probability theory, tn can be expressed as
Equation (7). The regression function f (x) is shown in Equation (8).

tn = y(xn, w)+εn, εn ∼ N
(

0,σ2
)

(7)

f (x) = ∑N
n=1 ωnK(x, xn) + b (8)

where w is a vector of the weight parameters, εn is the random noise, N is the normal
distribution, and b is the bias.

Supposing that tn is a mutually independent distribution, the likelihood estimation
probability of the training dataset is shown in Equation (9).

P
(

t
∣∣∣w,σ2

)
=
(

2πσ2
)− N

2 exp

(
−‖t−Φw‖2

2σ2

)
(9)
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where t = (t1, t2 . . . , tN)
T, Φ is the N×(N + 1) kernel functions matrix, i.e.,

Φ = [ϕ(x1),ϕ(x2), . . . ,ϕ(xn)]
T, ϕ(xi) = [1, K(xi, x1), K(xi, x2) . . . K(xi, xn)].

If the maximum likelihood estimation of weights is directly conducted, overfitting
may occur. To avoid overfitting, it is necessary to constrain w in the RVM regression model.
Suppose that w is mutually independent and it follows N

(
0,σ2). The expression of prior

probability is shown in Equation (10).

P(w|α) = ∏N
i=0N

(
ωi

∣∣∣0, αi
−1
)

(10)

where α is a vector of N + 1 hyperparameters.
According to the prior probability and maximum likelihood estimation, the posterior

probability of w can be obtained. The expression of posterior probability is shown in
Equation (11). Maximize P

(
t
∣∣α,σ2 ) to obtain Equation (12).

P
(

w
∣∣∣t, α,σ2

)
=
P
(
t
∣∣w,σ2 )P(w|α)
P(t|α,σ2 )

= −(2π)−
N+1

2 |Σ|−
1
2 exp

(
−1

2
(w− µ)TΣ−

1
2 (w− µ)

)
(11)

P
(

t
∣∣∣α,σ2

)
= (2π)−

N
2 |Ω|−

1
2 exp

(
−1

2
tTΩt

)
(12)

The expression of posterior mean and covariance is shown in Equation (13).{
µ = σ−2ΣΦTt

Σ =
(
σ2ΦTΦ + A

)−1 (13)

where A = diag(α0, α1 . . . αN), representing the diagonal matrix about α. Ω = σ2I +
ΦA−1ΦT.

The expressions for hyperparameter updating are shown in Equations (14) and (15).

αNew
i =

γi

µ2
i

(14)

σNew
i =

‖t−Φµ‖2

N −∑N
i=0 γi

(15)

where γi = 1− αiΣii. Σii is ith diagonal element of the posterior covariance matrix Σ.
Supposing that the test sample is x*, Equation (16) lists the predicted value y*. The pre-

diction variance σ* is shown in Equation (17). Equation (18) lists the probability distribution
of prediction value t*.

y* = µTΦ
(

x*
)

(16)

σ2
* = σ2

MP + Φ
(

x*
)T

ΣΦ
(

x*
)

(17)

P
(

t*
∣∣∣t, αMP,σ2

MP

)
=
∫
P
(

t*
∣∣∣w,σ2

MP

)
P
(

w
∣∣∣t, αMP,σ2

MP

)
dw = N

(
t*
∣∣∣y*,σ2

*

)
(18)

where αMP and σ2
MP are the optimal parameter estimates of α and σ2.

Remark 1. RVM combines kernel methods and Bayes’ theorem to obtain a sparse probabilistic
prediction model. During the derivation of the algorithm, it does not add regularization coefficients,
but uses the form of a probabilistic description. In addition, as a machine learning algorithm with
strong sparsity and generalization, it has been proven to have certain universality [29–31].
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4. Illustrative Examples and Discussion

Both ε-SVR and υ-SVR show good prediction performance in the field of ship motion
prediction [20,21]. However, SVR needs to determine hyperparameters, such as the penalty
factor (C). RVM is developed based on SVR. It uses Bayes’ theorem to obtain the probability
prediction model without determining C. Because RVM has only one hyperparameter to
be tuned, it does not require an optimization algorithm to tune the hyperparameter, unlike
SVR. The tuning of hyperparameters depends on the published research results and the
swarm intelligence optimization algorithm. This study chooses the former. RVM’s feature
is sparsity, which can improve prediction performance and efficiency. In the aspect of
regression, the prediction model obtained by RVM is generally sparser than that obtained
by SVR. Therefore, the speed can be improved when predicting test datasets. The structure
of this research for RVM identification modeling is shown in Figure 2.
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In order to demonstrate the effectiveness, generalization, and sparsity of the proposed
algorithm, two illustrative examples are used in this research. One is the Sinc function that
is often used in the fields of digital signal processing and Fourier transform theory and
mathematics. The other is the KCS motion datasets published by the SIMMAN workshop
in 2020 [37]. The SIMMAN workshop is used to assess simulation methods for ship
maneuvering. The technical route of this research is shown in Figure 3.

4.1. Prediction Results of the Sinc Function Dataset

To validate the sparsity and prediction accuracy of the RVM, the Sinc function dataset
with added interference is used as the verification sample. The interference is white noise
with a mean of 0 and a variance of 0.02. Equation (19) lists the expression of the Sinc
function. When x = 0, define Sinc(0) = 1. Take the independent variable x as the input data
and the dependent variable y as the output data. The independent variable and dependent
variable are scalars. The value range of x is [−20, 20]. The sampling interval is 0.2. The
number of data samples is 201. A processed data sample is shown in Figure 4.

y = Sinc(x) =
sin(x)

x
(19)
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In order to reasonably divide the training and test datasets, this research takes the odd
numbered data samples as the training dataset and the even numbered samples as the test
dataset. The number of training and test datasets is 101 and 100, respectively. In general, the
training and test sets of the Sinc function dataset are divided in a 70%/30% ratio. Because
three algorithms all have small sample learning ability, this study divides the Sinc function
dataset into training and test datasets in the 50%/50% ratio. The training dataset is different
from the test dataset. Figure 4 shows that the processed data sample has certain noise
interference. For ε-SVR, the number of support vectors (SVs) depends on the setting of the
insensitive factor (ε). In general, the smaller the ε, the higher the prediction performance.
However, a decrease in ε will cause an increase in the number of SVs and low calculation
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efficiency. For υ-SVR, the setting of the parameter υ can adaptively adjust the number of SVs
without adjusting the ε [21]. To compare the experiment results, the three algorithms are
set to different hyperparameter values [20,38]. In addition, compared with SVR, RVM only
needs to set the kernel function parameter (γ). In terms of tuning hyperparameters, RVM
also shows certain advantages. For the three algorithms, this research mainly designed three
different experiments (as shown in Table 2). The experiment results of three algorithms are
shown in Figure 5.

Table 2. Settings for three different experiments.

Algorithms Experiment (1) Experiment (2) Experiment (3)

RVM γ = 0.1 γ = 0.5 γ = 1.0
ε-SVR C = 104, γ = 0.1, ε = 0.01 C = 105, γ = 0.5, ε = 0.1 C = 105, γ = 0.8, ε = 10−5

υ-SVR C = 104, γ = 0.1, υ = 0.5 C = 105, γ = 0.5, υ = 0.3 C = 105, γ = 0.8, υ = 0.2
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Figure 5. Prediction results of three algorithms for Sinc function dataset: (a) is the prediction result of
RVM; (b) is the prediction result of ε-SVR; (c) is the prediction result of υ-SVR.

Figure 5a shows that the prediction results of three experiments are smooth and
fit the Sinc(x) test dataset for RVM well. In contrast, since three hyperparameters need
to be set, the prediction accuracy of SVR is restricted. As can be seen from Figure 5b,c,
when the hyperparameters are set differently, the prediction results of SVR differ greatly.
Table 3 shows the number of RVs and SVs in three experiments. To test the sparsity of the
trained prediction model, the number of RVs and SVs in experiment (2) is compared. The
comparison result is shown in Figure 6.

Figure 6 shows that the number of RVs is less than the number of SVs in experiment
(2). In the trained model, it can be seen from Table 3 that the number of RVs is far less than
the number of SVs for the three experiments. The average percentage of RVs is 11.56%.
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The average percentage of SVs is at least 6.8 times that of RVs. In addition, the highest
percentage of RVs in the training sample is 16.83%. Compared with ε-SVR and υ-SVR,
the results verify the sparsity of RVM, i.e., RVM can attain sparser prediction models. In
terms of time consumption, RVM spends a total of 0.286 s on training and predicting.
However, SVR takes relatively more time, especially υ-SVR. The mean square error (MSE)
is used as the evaluation criteria to verify the prediction performance. Table 4 lists the
MSEs of prediction results for the three experiments. As can be seen from Table 4, the three
algorithms all have good prediction effect in the Sinc function dataset, but the prediction
accuracy obtained by RVM is better compared with SVR.

Table 3. The number of RVs and SVs for Sinc function dataset.

Algorithms Experiment (1) Experiment (2) Experiment (3) Average
Percentage c

RVM a 6 12 17 11.56%
ε-SVR b 99 72 101 89.77%
υ-SVR b 69 80 91 79.21%

a: The proposed algorithm; b: Algorithm for comparison; c: Average percentage of RVs and SVs in training
sample.
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Table 4. MSEs of prediction results for the three experiments.

Algorithms Experiment (1) Experiment (2) Experiment (3)

RVM 0.0338 0.0305 0.0305
ε-SVR 0.0368 0.0431 0.0846
υ-SVR 0.0348 0.0417 0.1000

Percentage error for ε-SVR 8.88% 41.31% 177.38% *
Percentage error for υ-SVR 2.96% 36.72% 227.87% *

* Due to the tuning of three hyperparameters, the settings of the hyperparameters have certain challenges. The
prediction results are overfitting.

Remark 2. In this section, the research utilizes the prediction results of the Sinc function dataset to
verify the performance of RVM. In the setting of the hyperparameters, the research designs different
experiments according to the role of hyperparameters. In the process of experiments, the settings of
C, ε, and υ have a great effect on the prediction accuracy and time consumed. After comparison, the
prediction model obtained by RVM is relatively sparse (the number of training samples is 101). In
Section 4.2, this research increases the number of training samples to further verify the sparsity and
prediction performance.
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4.2. Prediction Results of Tank Test Dataset for KCS

In Section 4.1, using the Sinc function dataset, the sparsity and prediction performance
of RVM are verified by the three experiments. The KCS is taken as the main research plant
to further verify the sparsity and generalization of RVM. By dividing the training dataset
and selecting the hyperparameters reasonably, the 3 DOF motion prediction models of KCS
are obtained. The tank test data for the KCS is from the SIMMAN 2020 workshop [37]. It
has some noise interference, so there is no need to add the noise interference. Table 5 shows
the main particulars of KCS.

Table 5. Main particulars of KCS.

Main Particulars Values

Length between perpendiculars 6.0702 m
Breadth 0.8498 m

Mean draft 0.2850 m
Block coefficient 0.6505

Displacement volume 0.9565 m3

In the SIMMAN 2020 workshop, the tank tests of KCS include the−10◦/−10◦, 20◦/20◦,
−20◦/−20◦ zigzag maneuvers, and the−35◦ turning maneuver. Due to the effect of sensors
and other factors, the test datasets have noise interference [37]. In addition, the training
dataset should reflect more dynamic information of the KCS. Therefore, a small part of
the −10◦/−10◦ and −20◦/−20◦ zigzag maneuver data is used to construct the training
dataset. The 20◦/20◦ zigzag maneuver data and −35◦ turning maneuver data are taken as
test datasets. The number of training and test datasets is shown in Table 6.

Table 6. Training and test datasets.

Data Samples Maneuvers Number of Data Samples

Training dataset −10◦/−10◦ zigzag maneuver 183
−20◦/−20◦ zigzag maneuver 282

Test dataset
20◦/20◦ zigzag maneuver 618
−35◦ turning maneuver 700

As can be seen from Table 6, the number of training datasets is 465. This is about
five times the number of training datasets in the Sinc function dataset. This research
further verifies the sparsity of RVM from the perspective of KCS motion prediction. It is
essential to determine the hyperparameters of the three algorithms to make the motion
prediction results more accurate. These hyperparameters are set according to previous
research [20,21,39]. For the prediction of u, v, and r, the hyperparameters of ε-SVR, υ-SVR,
and RVM are set to different values. The setting values of the hyperparameters are shown
in Table 7.

Table 7. Setting of the hyperparameters for u, v and r.

Algorithms u v r

RVM γ = 0.09 γ = 0.08 γ = 0.01

ε-SVR
C = 103

γ = 10−2

ε = 10−3

C = 4× 103

γ = 10−2

ε = 10−2

C = 150
γ = 10−2

ε = 10−2

υ-SVR
C = 103

γ = 10−2

ν = 0.5

C = 103

γ = 10−4

ν = 0.5

C = 400
γ = 10−3

ν = 0.5
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Remark 3. Compared to ε-SVR and υ-SVR, RVM only has one parameter to tune, and no
optimization algorithm is needed for further optimization. This also reflects the advantages of RVM
from the perspective of hyperparameter tuning. For SVR, the settings of C, ε, and υ have a great
influence on the results of ship motion prediction. Sometimes, the larger the C, the less accurate the
prediction will be.

According to the training datasets and the setting of hyperparameters, the motion
prediction models of KCS are obtained. The test datasets are −35◦ turning maneuver data
and 20◦/20◦ zigzag maneuver data, respectively. The prediction models trained by the
three algorithms are compared to verify the sparsity. For the prediction models of u, v, and
r, the number of RVs and SVs is shown in Table 8. Figure 7 shows the prediction results of
−35◦ turning maneuver data. Table 9 shows the MSEs of motion prediction results for the
−35◦ turning maneuver.

Table 8. The number of RVs and SVs for the tank test dataset.

Algorithms u v r

RVM 3 5 4
ε-SVR 264 37 93
υ-SVR 251 239 239

Table 9. MSEs of prediction results for −35◦ turning maneuver.

Algorithms u v r

RVM 6.40× 10−4 1.53× 10−4 0.2373
ε-SVR 2.72× 10−3 2.48× 10−4 0.3076
υ-SVR 3.54× 10−3 1.87× 10−4 0.3702

RVM constructs a learning machine based on Bayes’ theorem rather than the structural
risk minimization principle. As the number of training samples increases, it can be seen
from Table 8 that the number of RVs is far less than the number of SVs. This further verifies
the sparsity of the proposed algorithm. For the trained model obtained by υ-SVR, υ is set
as 0.5 [21]. However, the sparsity of υ-SVR is worse than that of ε-SVR. In Figure 7, the
length of the absolute residual represents the prediction error. Moreover, only the absolute
residuals of the ship motion prediction are presented. Figure 7a,b show that the prediction
error of the three algorithms is small. As can be seen from Figure 7c, the three algorithms
all have some prediction errors. For the prediction results of RVM, the maximum absolute
residual is 0.52◦. In the later stage of yaw angle prediction, the three algorithms all have
certain deviations from Figure 7d. In the prediction results of the KCS motion trajectory,
the degree of coincidence between the results predicted by the RVM and the tank test data
is higher. For the time required to predict u, v, and r, RVM, ε-SVR, and υ-SVR took the total
of 0.749 s, 4.307 s, and 3.985 s, respectively.

Table 9 shows the MSEs of the prediction results. For the prediction results of r, the
percentage errors for ε-SVR and υ-SVR are 29.62% and 56.01%, respectively. Using the
proposed algorithm, the accuracy of other prediction results can be improved by more
than 22.22%. The generalization of RVM is demonstrated from the data prediction results.
The 20◦/20◦ zigzag maneuver data of the KCS is taken as another data sample to further
validate the generalization of RVM. Although there are some similarities between the
20◦/20◦ zigzag maneuver data and the −20◦/−20◦ zigzag maneuver data, there are some
differences, such as the opposite excitation of the input rudder angle. The hyperparameter
settings of the three algorithms are shown in Table 7. The prediction results of the 20◦/20◦

zigzag maneuver are shown in Figure 8. Table 10 shows the MSEs of the prediction results
for the 20◦/20◦ zigzag maneuver.
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Figure 7. Prediction results of −35◦ turning maneuver: (a) is the prediction of surge velocity; (b) is
the prediction of sway velocity; (c) is the prediction of yaw rate; (d) is the prediction of yaw angle;
(e) is the prediction of ship motion trajectory.

It can be seen from Figure 8 that the three algorithms have high accuracy for motion
prediction of the 20◦/20◦ zigzag maneuver due to certain similarities between the test data
and the training data. In Figure 8c,e, the prediction results of RVM have certain deviations
in the later stage. However, as can be seen from Table 10, the overall prediction results
of the KCS motion based on RVM are better than SVR. For the final prediction result, the
accuracy can be improved by more than 14.04% with the proposed algorithm. For the time
required to predict u, v, and r, RVM, ε-SVR, and υ-SVR took the total of 0.746 s, 4.152 s, and
3.952 s, respectively. In addition, the three algorithms have high accuracy for ψ. The first
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overshoot angle of the KCS is 33.56◦. The first overshoot angle predicted by the proposed
algorithm is 32.28◦.
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Figure 8. Prediction results of 20◦/20◦ zigzag maneuver: (a) is the prediction of surge velocity; (b) is
the prediction of sway velocity; (c) is the prediction of yaw rate; (d) is the prediction of yaw angle;
(e) is the prediction of ship motion trajectory.

RVM is an algorithm that combines kernel methods and Bayes’ theorem. Under the
structure of a priori parameter, the automatic relevance determination is used to remove
the irrelevant sample points to obtain a sparse model. The sparse model simplifies the
model and can avoid overfitting to some extent. The reason is that it retains the explanatory
variable most relevant to the response variable. In the prediction of−35◦ turning maneuver
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data and 20◦/20◦ zigzag maneuver data, the prediction models obtained by RVM have
good sparsity and prediction accuracy.

Table 10. MSEs of prediction results for 20◦/20◦ zigzag maneuver.

Algorithms u v r

RVM 3.27× 10−6 1.78× 10−4 0.0709
ε-SVR 3.55× 10−5 2.03× 10−4 0.0814
υ-SVR 3.70× 10−5 2.06× 10−4 0.0813

Remark 4. In this section, the research utilizes the prediction results of the tank test dataset to
further verify the sparsity, effectiveness, and generalization of RVM. From the perspective of the
trained model, as the number of training samples increases, the RVM can still maintain a certain
degree of sparsity. Although there are certain prediction errors, the overall prediction curve of RVM
fits the tank test data curve well.

5. Conclusions

The main finding of this research is that RVM based on sparse Bayes’ theorem is
proposed to obtain a sparse and efficient ship motion prediction model. The final prediction
results indicate that the proposed RVM can ensure good sparsity while ensuring prediction
accuracy. Good sparsity of the trained model can reduce the prediction time, which is
essential for the online prediction of ship motion. Therefore, the proposed scheme can
provide a reference for online ship motion prediction. The experimental verification is
performed based on the Sinc function dataset and tank test dataset of KCS, and the results
are as follows:

(1) The Sinc function dataset is used as a simulation example to verify the sparsity
and prediction accuracy of RVM. Based on the different hyperparameter settings of
RVM, ε-SVR, and υ-SVR, three experiments are conducted. The MSE of prediction
results is lower than 0.0305 for RVM. The highest percentage of RVs in the training
sample is below 17%. The prediction results of three experiments verify the sparsity,
effectiveness, and generalization of RVM.

(2) Compared with the training dataset for the Sinc function, there are more training
samples. However, although the number of training datasets has increased, the
proposed scheme can still maintain sparsity. After dividing the training dataset and
selecting the hyperparameters reasonably, the maneuvering motion prediction of the
KCS is conducted. The accuracy of prediction results can be improved by more than
14.04%. The prediction performance of RVM is further verified.

(3) The prediction results of RVM are compared with those of ε-SVR and υ-SVR. From
the prediction results of two illustrative examples, all three algorithms have good
prediction results, but the prediction performance of RVM is better than that of SVR.
The overall prediction curve of RVM fits the tank test data curve well. Moreover, less
time is also required. In addition, compared with the prediction models obtained by
SVR, the prediction models obtained by RVM are sparser.

RVM has only one hyperparameter to adjust. Compared with SVR, the structure is
simple. In terms of kernel function selection, RVM is not satisfied by the Mercer condition,
so it has a wider selection of kernel function. It can also achieve a sparse prediction
model and has the ability to predict quickly. However, for some more complex datasets,
the prediction performance of RVM with a single kernel function remains to be studied.
Ship motion prediction is of great significance for the design of course-keeping, path-
following and adaptive controllers. In future, we will further improve the performance
of the proposed algorithm and focus on ships’ autonomous berthing and unberthing and
path-following controllers using the improved algorithm.
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