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Abstract: This paper investigates the performance of a fully passive flapping foil device for energy
harvesting in a free surface flow. The study uses numerical simulations to examine the effects of
varying submergence depths and the impact of monochromatic waves on the foil’s performance. For
the numerical simulations, a in-house artificial compressibility two-phase solver is employed and
coupled with a rigid body dynamic solver. The results show that the fully passive flapping foil device
can achieve high efficiency for submergence depths between 4 and 9 chords, with an “optimum”
submergence depth where the flapping foil performance is maximised. The effects of regular waves
on the foil’s performance were also investigated, showing that waves with a frequency close to that
of the natural frequency of the flapping foil-aided energy harvesting. Overall, this study provides
insights that could be useful for future design improvements for fully passive flapping foil devices
for energy harvesting operating near the free surface.

Keywords: passive hydrofoil; submergence depth; two-phase flows; artificial compressibility; waves

1. Introduction

The technology for flapping foils was inspired by fish locomotion. Evolution through
hundreds of millions of years has enabled fish to develop highly efficient thrusting me-
chanical systems [1]. Except from thrust production, these devices can also be used to
capture energy from water currents, such as tidal currents or from rivers. When the pitching
amplitude is higher than a threshold value, for a given frequency and heave amplitude,
called the feathering limit, the foil switches from the thrust production mode to the energy
harvesting mode [2]. Their main competitors are horizontal axis turbines and vertical axis
turbines. Compared to these types of turbines, flapping foils have certain benefits. Firstly,
the efficiency of flapping foils remains high even in very large angles of attack with the flow,
due to the phenomenon of dynamic stalling which insures that lift remains temporarily
high [3]. This also means that oscillating hydrofoils can harvest energy from a wider range
of current velocities [4] compared to conventional turbines with a specific design point. The
device is also more robust, as centrifugal stresses are absent, and more environmentally
friendly, as blade tip velocities are lower [5,6]. Finally, their rectangular sweeping profiles
are perfect for shallow and wide fluid channels.

Energy harvesting foils were first proposed by McKinney and DeLaurier in 1981 [7].
It has been shown that flapping foils can offer high performance for both the production
of thrust or energy harvest. Many studies have taken place, either experimental [8,9]
or numerical (a collection can be found here in [4]), showing the applicability of these
devices and highlighting their advantages and disadvantages over conventional devices.
Incorporating chord-wise flexibility also seems promising as increases in performance are
significant, as shown in [10]. Importantly, this device can be simplified by attaching the
heaving degree of freedom (DOF) to a spring and damper, and imposing the motion of
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the pitching DOF, creating the semi-passive flapping foil [11]. The pitching motion creates
a variable lift force that makes the foil oscillate in its heaving DOF. Alternatively, both
heaving and pitching DOFs can be attached to springs and dampers, creating the fully
passive flapping foil, which oscillates without external forcing (not even initially) when
it faces fluid flow. By suitably tuning the structural parameters, a periodical, high-energy
content motion, in the heaving DOF can be sustained. The authors of [12] explored the
modes that are achievable by different choices of structural parameters. These fully passive
flapping foils proved to be a viable alternative to the active or semi-passive flapping foils
that require intricate mechanisms to enforce the movement. These extra mechanisms raise
the risk of failure, the construction cost, and the cost of maintenance. They also have
additional power losses. Most research in the past has shown that the fully passive foil
exhibits a lower performance compared to the active ones. Recent numerical experiments,
however, by [13], aiming to optimize the device by exploring the available domain of the
structural parameters showed that the fully passive flapping foil can perform as well as
active flapping foils while maintaining a much simpler structure. In addition, it was shown
that good performance is available for a wide range of parameters, which is necessary for a
practical application.

While a plethora of research has been conducted for active energy harvesting flapping
foils under more realistic conditions, not so much has been conducted for fully passive
flapping foils. The effects of flow perturbation by other flapping foils upstream in [14].
Additionally, in [15], feedback control was added to the flapping foil system, leading to
operation of the system in the dynamic stall regime.

However, there is a lack of research on the influence of the free surface, which is
important if we want a more realistic assessment of the device as flapping foils will likely
be placed close to it, for example, due to the need to operate in shallow waters, either in
rivers or relatively close to shores. The effects of proximity to the free surface, for instance,
or the effects of waves, have not yet been explored. The effects of the free surface on active
flapping foils were studied by [16,17], whose results were similar, finding that the effect
of the free surface on the performance of the devices was mostly negative, but becomes
quickly irrelevant as submergence depth increases.

With regards to the influence of a wavy free surface on flapping foils, most research
has focused so far on thrust producing flapping foils. In [18], they were the first to propose
that a flapping foil on the bow of a ship could convert wave power into propulsive power
and proved this case. The effect of regular waves on thrust producing flapping foils,
both rigid and flexible, has been studied in [19], where it was found that power output
is significantly increased, especially when the frequency of the waves matches that of the
foil and the phase difference is suitable. Efficiency was higher when a flexible foil was
used, but was not affected that greatly, in general. An investigation into 3D effects and
free surface wave patterns was carried out by [20]. In [21], they studied thrust producing
flapping foils in waves, for constant submergence depth and wave heights using a boundary
element method. It was found that an increase in wave frequency increased the power
output but decreased the efficiency. It is distinctive that the amplitudes of the motion
fluctuated periodically when the frequencies of the foil and waves did not match. When the
frequencies did match there were no fluctuations, as the phase difference of foil and wave
remains constant throughout the periods, but the phase difference played a significant role.
In [22] they studied a semi-active flapping foil operating in waves and currents, in a shear
flow with variable bathymetry (simulating nearshore conditions) using Boundary Element
Method (BEM) analysis. For a specific moderate wave frequency, significant efficiency
can be achieved both when the foil and wave frequency match or do not by operating at
appropriate pitch angles. Peak efficiency was achieved, however, even for small pitching
angles when the foil matched the frequency of the waves or was double that, and the phase
difference was suitable for each case.

This work is a continuation of the work in [23], in which the authors studied how
shear presence in the flow affects the fully passive flapping foil device, and began the
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examination of the influence of the free surface. Particularly, the influence of a calm free
surface is studied in depth, for a broad range of submergence depths and multiple Froude
numbers. An initial step in the examination of the impact of monochromatic waves is also
taken, examining cases when the wave frequency is close to the flapping foil’s or when the
wavelength is comparable to the chord length of the foil.

This paper is structured as follows: In Section 2, the in-house Computational Fluid
Dynamics solver MaPFlow used for the numerical analysis is outlined briefly. Its strong
coupling to a Rigid Body Dynamics solver to simulate the dynamics problem is also detailed.
In Section 3, the physical problem is explained and the numerical setup of the solver is
given. In Section 4, the effect of submergence depth is explored for various Froude numbers.
Finally, the passive foil is investigated operating under monochromatic waves of different
frequencies and their effect on the foil performance is presented.

2. Numerical Methodology

Fluid Structure Interaction (FSI) problems are numerically investigated by combining
two separate computational algorithms. Firstly, a flow solver is utilised to describe the fluid
motion, and secondly a dynamic solver that computes the structure’s response under the
flow excitation. The flapping foil is considered submerged and thus the presence of the free
surface requires the solution of a two-phase problem. This methodology is implemented as
part of the CFD code MaPFlow. The in-house code is developed in NTUA [24,25], and has
proven capable of handling both compressible and purely incompressible flows on arbitrary
polyhedral meshes. The code is able to perform in a multi-processing environment utilising
the Message Parsing Interface (MPI) protocol, while the grid partitioning is performed
using the Metis Library [26]. The numerical methodology is outlined in this section.

2.1. Governing Equations

Two-phase incompressible flows are solved using the artificial compressibility method
(ACM) [27], coupled with the Volume of Fluid (VoF) approach [28]. The ACM solves the
unsteady system of equations by utilizing the dual-time stepping technique [29], where at
each real time iteration a pseudo–steady state problem is solved. This is accomplished by
augmenting the original unsteady system of equations by pseudo–time derivatives of the
unknown variables. Convergence is accomplished once these derivatives approach zero and
thus the original system of equations is obtained. The ACM assumes a relation between
the pressure and the density field during pseudo time. The blending is performed by
introducing a numerical parameter β, that is, ∂ρ

∂p

∣∣
τ
= 1

β . This free parameter for typical free
surface flows takes values between 5 and 10 ([30,31]). The governing system of equations
is described by Equation (1).

Γ
∂

∂τ

∫
Di

~QdD + Γe
∂

∂t

∫
Di

~QdD +
∫

∂Di

(
~Fc − ~Fv

)
dS =

∫
Di

~SqdD (1)

The above system of equations expresses the change of the primitive variables ~Q inside
a control volume Di with boundary ∂Di, in time t. The vector ~Q = [p,~υ, ~αl ]

T includes the
pressure p, the three-dimensional velocity vector~υ, and the volume fraction αl . The volume
fraction αl indicates the presence of either the liquid phase with density ρl , or the presence
of the gaseous phase with density ρg. Using the volume fraction, the density of the mixture
can be found as ρm = αlρl + (1− αl)ρg.

Although the system of equations is casted in primitive form, in order to advance the
solution in time, the conservative form of the equations is used. The variable transformation
between the primitive variables ~Q and the conservative variables U = [0, ρm~υ, αl ]

T , is
performed using the transformation matrix Γe, which is given in Equation (2).

Applying the standard ACM to multi-phase flows, especially when large density ratios
are accounted, the system of equations becomes poorly conditioned [32]. This happens
because the eigenvalues of the system scale with local density of the flow. In order to
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alleviate this behaviour, the preconditioning matrix Γ of Kunz [33] is used to re-scale the
fictitious time derivatives and allow for the efficient time marching of the solution.

Γ =


1

βρm
0 0

0 ρm I3×3 ~υ∆ρ
αl

βρm
0 1

 , Γe =

0 0 0
0 ρm I3×3 ~υ∆ρ
0 0 1

 (2)

In Equation (2), ∆ρ is the difference between the densities of the liquid and the gas,
∆ρ = ρl − ρg, and I3×3 is the three by three identity matrix.

The surface term of the integral equation includes the convective fluxes ~Fc and the
viscous fluxes ~Fv. Both vectors are presented in Equation (3). In this Equation, Vn = ~υ ·~n is
the fluid velocity projected onto the surface normal~n = (nx, ny, nz) and ∆V is the difference
between the velocity Vn and the projected grid velocity Vg = ~υvol ·~n.

~Fc =


Vn

ρmu∆V + pnx
ρmv∆V + pny
ρmw∆V + pnz

αl∆V

 , ~Fv =


0

τxxnx + τxyny + τxznz
τyxnx + τyyny + τyznz
τzxnx + τzyny + τzznz

0

 (3)

The viscous stresses τij, using the Boussinesq approximation are computed as

τij = (µm + µt)

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
ρmδijk (4)

where µm is the viscosity of the mixture, µt is the turbulence viscosity, k is the turbulent
kinetic energy and δij is the Kronecker’s symbol.

For the turbulence closure, the k-ω SST model of Menter is employed [34]. In case
of free surface flows, it has been noted that the turbulence models tend to overproduce
turbulence viscosity in the vicinity of the free surface [35,36]. In order to suppress the
turbulent viscosity near the free surface, Devolder et al. [37] introduced a source term in
the equation of the turbulent kinetic energy. This source term is activated near the free
surface and scales with the local viscosity and the gravity vector.

In order to perform simulations of numerical wave tanks, the lateral boundaries of
the domain are equipped with damping zones that absorb any outgoing perturbation
and make sure that no reflections occur due to the boundary conditions. In MaPFlow,
this is performed by defining forcing zones near the boundaries of the computational
domain. Forcing zone technique drives the numerical field to the desired solution by
adding source terms to the governing equations. In MaPFlow, source terms are added only
to the momentum equations. The form of the source terms is presented in Equation (5).
The damping is performed by eliminating the vertical component of the velocity vector.
That is in a 2D simulation ~υtar = (u, 0), where u is the local velocity in the x-direction.

~Snwt = Cnwtρm(~υ−~υtar) (5)

The coefficient Cnwt is used to smoothly variate the influence of the forcing terms from
the start xs of the forcing zone to its end xe, at the boundary of the computational domain.
The smooth transition is regulated by the factor αnwt and a function fnwt, which is defined
inside the forcing zones–see Equation (6).

Cnwt = αnwt fnwt(xr) , xr =
xs − x
xs − xe

(6)
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In [30,38], the influence of the various parameters of the coefficient is examined. In the
present work, an exponential form of the fnwt is chosen.

fnwt(xr) =
exp(xn

r )− 1
exp(1)− 1

(7)

2.2. Discretization

The discretization of the equations is performed using the finite volume method. Given
a computational mesh at the geometric center of each cell a control volume Di is defined,

with its boundaries being the faces (or the edges in 2D) of the cell, ∂Di = ∑
N f
f=1 ∆S f , with N f

being the total number of the cell’s faces and ∆S f the area of the face f . The surface terms
of the equations are approximated using the midpoint rule, while the volume integrals are
considered constant in each Di. This process leads to the following definition of the spatial
residual ~RDi .

~RDi '
N f

∑
f

(
~Fc − ~Fv

)∣∣∣∣
f
∆S f − Di~Sq (8)

Employing the ACM, the system of equations obtains a hyperbolic form in pseudo-
time. As a result, the convection terms of the incompressible equations can be evaluated by
solving a local Riemann problem at each face. MaPFlow uses the approximate Riemann
solver of Roe [39], where the eigenvalues are scaled using the the preconditioning matrix
of Kunz. The viscous fluxes are approximated with a second order central differentia-
tion scheme, supplemented with a directional derivative to account for the skewness of
the mesh.

In two-phase flows the reconstruction schemes should be adjusted considering the
specific features of the flow. In this work, the surface tension has not been taken into
account, thus the velocity and pressure are continuous functions in space. For the velocity
field, a standard piecewise linear interpolation scheme, without limiter can be used [30].
However, the gradient of the pressure field, under the influence of the gravitation forces, has
a discontinuity at the interface of the two fluids. A standard second order approximation
would lead to the development of the so-called “parasitic currents” [40] near the density
discontinuity. In order to remedy this behaviour, the approach of Queutey et al. [40] is
followed. This approach notes that, although there is a jump in the gradient of the pressure
field, the gradient divided by the density field is continuous, meaning [∇p] 6= 0, but
[∇p

ρ ] = 0. Taking this into consideration, they proposed a density based interpolation
scheme that follows these features of the flow.

Furthermore, special care must be taken in the reconstruction of the volume fraction
field. Due to the free surface discontinuity, the gradient of the interpolation scheme would
become undetermined. One way to prevent this is to use limiter functions, which are
activated in regions of large gradients turning the scheme to a first order accurate, resulting,
however, in excessive smearing of the free surface. Another way to approximate the field
without the use of gradients is by adopting a family of interpolation schemes that are
based on the Normalised Variable Diagram of Leonard [41]. These schemes, depending
on the flow characteristics, can regulate their behaviour accordingly. In order to maintain
stability, they can switch from a second-order accurate scheme to an upwind (first order)
approximation, but under certain conditions they can switch to a downwind approximation,
which would lead to an artificial compression of the discontinuity. In the present work, in
two-phase simulation the BICS scheme [42] is used.

Fluid–Structure Interaction (FSI) simulations require an effective time discretization
process that will accurately march the solution in time and will also ensure that no errors are
introduced from the mesh deformation. Specifically, in MaPFlow, the solution is marched in
time implicitly by employing the dual-time stepping technique. At each real time iteration
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a (pseudo–) steady problem is solved. Equation (1), by introducing the finite volume
technique and the definition of Equation (8), takes the following form

Γ
∂
(
~Q∗Di

)
∂τ

+ ~R∗ = 0 (9)

where ~R∗ is the unsteady residual defined as

~R∗ = ~RDi

(
~Q∗
)
+ Γe

∂
(
~Q∗Di

)
∂t

(10)

Equation (9) defines a steady problem that is solved iteratively at each real timestep.
The iterative procedure is initialized by setting as ~Q∗ = ~Qn and convergence is accom-

plished once
∂·
∂τ
→ 0 or ~R∗ → 0, and thus the variables of the new time iteration are

obtained ~Q∗ = ~Qn+1.
The unsteady term is discretized as a series expansion of successive levels backwards

in time (BDF schemes) [43].

∂
(
~QDi

)
∂t

=
1

∆t

[
ϕn+1

(
Di~Q

)n+1
+ ϕn

(
Di~Q

)n

+ϕn−1

(
Di~Q

)n−1
+ ϕn−2

(
Di~Q

)n−2
+ . . .

] (11)

When a control volume is deformed, the Geometric Conservation Law (GCL) should
be satisfied. GCL is the expression of the mass conservation law applied to a constant
density and velocity field.

d
dt

∫
Di(t)

dD =
∮

∂Di(t)
~uvol ·~ndS (12)

Using a similar discretization strategy as before, the GCL is expressed as

1
∆t

[(
ϕn+1Dn+1

i + ϕnDn
i + ϕn−1Dn−1

i + ϕn−2Dn−2
i

)
+ . . .

]
= ~Rn+1

GCL (13)

where the residual of the GCL is defined as

~Rn+1
GCL =

N f

∑
f

(
Vg∆S

)n+1
f (14)

To ensure that the GCL is satisfied, Equation (13) is applied directly to the discretization
of the unsteady term and thus Equation (11) becomes

∂
(
~QDi

)
∂t

= ~Qn~Rn+1
GCL +

1
∆t

[
ϕn+1

(
~Qn+1 − ~Qn

)
Dn+1

i

+ϕn−1

(
~Qn−1 − ~Qn

)
Dn−1

i + ϕn−2

(
~Qn−2 − ~Qn

)
Dn−2

i + . . .
] (15)

In MaPFlow two successive levels of solutions are retained, yielding a second order
accurate scheme in time. The fictitious time derivative of the equations is discretized using
a first-order backward difference scheme

∂
(
~Q∗Di

)
∂τ

= Dn+1
i

~Q∗,k+1 − ~Q∗,k

∆τ
= Dn+1

i
∆~Q∗,k

∆τ
(16)
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To facilitate convergence the local time stepping technique is used. The local pseudo-
timestep is determined by

∆τ = CFL
Di

Λ̂c,i
(17)

where Λ̂c,i is the convective spectral radii and it is defined by

Λ̂c, f =

N f

∑
f=1

(∣∣Vn −
Vg

2

∣∣+ c
)

f
∆S f (18)

where c is the artificial sound speed and is give by

c =

√
β +

(
Vn −

Vg

2

)2
(19)

The above discretization process results to a linear system of algebraic equations for
each pseudo–time iteration. The system is solved using a Gauss-Seidel iterative method
supplemented with the reverse Cuthill-Mckee reordering scheme.

2.3. Fluid Structure Interaction

This section briefly describes the fluid-structure interaction (FSI) methodology. The
energy harvesting foil is fully passive and thus it’s motion is driven by the forces exerted
on it by the surrounding fluid. The study focuses on 2D approach with heave and pitch
degrees of freedom. The dynamics system is modelled using Equation (20).

M~̈x(t) + C~̇x(t) + K~x(t) = ~Ftot(t) (20)

where ~x is the 1D vector of displacements for the heaving and pitching DOFs, M the
mass matrix, C the damping matrix and K the stiffness matrix. The vector ~Ftot = (F2, M3)
includes the total excitation forces and moments of the system.

The excitation forces and moments of the system are the integrated pressure and
viscous forces over the wall boundary, given in (20), where~r is the respective lever arm
from the device’s center of gravity.

F2 =
∮

∂B
pny + (τ ·~n)nydS

M3 =
∮

∂B
(p~n + τ ·~n)×~rdS

(21)

where p and τ are the pressure and shear stress acting on the body,~n and~ny tangential and
vertical unit vectors and~r the moment lever. In FSI problems, the non-linear Equation (20)
needs to be linearized to be solved iteratively. This linearization is performed during the
pseudo-timesteps, and it allows the system to be solved more efficiently. In this work
after each pseudo-timestep, the flow solver provides the forces and moments to the rigid
dynamics solver (RBD), which then numerically integrates (using the the Newmark-β
method) the equation of motion to compute the new position of the body. This iterative
procedure results in a strong coupling between the fluid solver and the rigid body dynamics
solver. A schematic representation of the algorithm used in FSI simulations is shown in
Figure 1.
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Figure 1. Flow chart of the Fluid Solver-Rigid Body Dynamics (RBD) solver coupling. For each real
time step, multiple internal iterations between the CFD and the Rigid Body Dynamics solver take
place to ensure a strong coupling between the two.

3. Basic Numerical Setup

The schematic of the fully passive flapping foil device is given in Figure 2. In this
work we examine the flapping foil in two dimensions and consequently the foil has three
degrees of freedom (DOFs), namely surge, heave and pitch. The device is comprised of a
foil with chord length c. Fluid flow is horizontal and uniform, with a magnitude of U∞,
rightwards, as shown in the figure, while gravity acts vertically, downwards. The foil is
attached to linear springs and dampers in the heaving and pitching degrees of freedom,
and its movement along the surge DOF is neglected. The corresponding stiffness for each
spring is ky and kθ and the damping coefficients are cy and cθ for the heaving and pitching
DOFs, respectively. The pitching axis is located at the point P which lies on the chord
line of the foil, located at a distance lθ from the leading edge. We also denote the distance
λG from the point P to the center of gravity G (CoG) of the device’s moving parts. A
positive value of λG means that the center of gravity is located downstream of the pitching
axis. The pitching axis generally differs from the CoG, which gives rise to the so called
static imbalance defined in (22). This static imbalance couples the two DOFs and allows
energy transfer between them. The parameter of submergence depth (Sd) is also defined in
Figure 2 as the distance from the foil’s pitching axis to the free surface, when the springs
are not deformed.

Λ = λgmθ (22)

Hydrodynamic and linkage loads (springs and dampers), along with inertial forces act
on the foil. Applying Newton’s second law, two nonlinear coupled differential equations
arise, for the heaving and pitching DOFs, given in (23) and (24) [44].

myÿ + cyẏ + kyy + Λ(θ̇2sinθ − θ̈cosθ) = Fy (23)

Iθ θ̈ + cθ θ̇ + kθθ −Λ(ÿcosθ) = Mθ (24)

where my is the heaving mass, mθ is the pitching mass and Iθ the moment of inertia of
the foil with respect to the pitching axis, which is located at P and is perpendicular to the
x-y plane. my and mθ might differ, since some mechanical components may participate
only in one of the two motions. In the right side of the equations, Fy is the hydrodynamic
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force acting on the heave direction and Mθ is the hydrodynamic moment with respect to
the pitching axis. The non-dimensional form of the structural parameters used is given in
Table 1.

Figure 2. Schematic of the fully passive flapping foil device, operating in uniform current.

Table 1. Definition of non-dimensional parameters used in the present study.

Parameter Definition Parameter Definition

Re U∞c
ν

m∗θ
mθ

ρbc2

m∗y
my

ρbc2
Λ∗ λg mθ

k∗θ
kθ

ρU2
∞bc2

c∗θ
cθ

ρU∞bc3

k∗y
ky

ρU2
∞b

c∗y
cy

ρU∞bc

I∗θ
Iθ

ρbc4
l∗θ

lθ
c

The dampers effectively replicate the load on the foil from an electric generator, and
since the power extracted can be calculated through cθ and cy we proceed to define an
efficiency coefficient to assess the foil performance. The hydraulic efficiency (η) is therefore
defined as the integral of the ratio of power harvested divided by the hydraulic power
available in the flow area S.

η =
1

∆t

∫ t0+∆t

t0

cyẏ2 + cθ θ̇2

1
2 ρU3

∞S
dt (25)

where S is the maximum cross-sectional area swept by the foil, defined by the product of
the foil’s span, b, and the total vertical flow distance scanned by the foil.
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Another useful metric can be defined normalizing the hydraulic power in terms of
the projected surface of the foil (b× c). Consequently, the average power coefficient (Cp) is
defined as:

Cp =
1

∆t

∫ t0+∆t

t0

cyẏ2 + cθ θ̇2

1
2 ρU3

∞bc
dt (26)

Finally, the main parameters chosen for the fully passive flapping foil device, are given
in their non-dimensional form in Table 2 (taken from [45]). In the case studied in this work,
m∗y and m∗θ are both equal to m∗.

Table 2. Parameters used in the present study.

Parameter Value Parameter Value

Re 6× 104

m∗ 0.92 Λ∗ 0.0065

k∗θ 0.071 c∗θ 0.052

k∗y 0.72 c∗y 0.93

I∗θ 0.0563 l∗θ 0.33

Dimensionless force and power coefficients for each DOF are also defined in (27) in
order to aid in the analysis of the results. PFy is the power extracted from the heaving
motion and PMθ

from the pitching motion.

CL =
Fy

1
2 ρU2

∞bc
CM =

Mθ
1
2 ρU2

∞bc2

CPy =
PFy

1
2 ρU3

∞bc
CPθ

=
PMθ

1
2 ρU3

∞bc2

(27)

In [23], the grid and time step requirements are investigated based on the comparison
with measurements. Since in this work the foil operates beneath the free surface, a new grid
independence study is carried out. The grid in the near airfoil region and the wake refine-
ment zones remain approximately the same as the ones presented in the [23]. Consequently,
the focus of this study concerns the mesh resolution near the free-surface region.

For the grid independence study, we consider the case of Sd = 4c and Fr = 1. Three
successively refined grids in the vicinity of the free surface are generated and results are
compared in terms of the passive motion characteristics. The coarse grid has a horizontal
spacing ∆x = 0.24c and vertical spacing of ∆y = 0.04c. The medium fidelity grid has a
spacing ∆x = 0.12c, ∆y = 0.02c while the finest one has a ∆x = 0.04c with ∆y = 0.02c. It is
noted here that the mesh in the free surface region is mostly structured-like.

The relative error with respect to the finest mesh of the heaving and pitching ampli-
tudes are presented in Table 3.

Table 3. Free Surface grid independence study relative errors (%) with respect to the finer grid.

Grid h∗
0 θ∗0

Coarse 4.34% −2.52%
Medium 1.84% −1.87%

Fine - -

A mesh snapshot can be seen in Figure 3. At the right end of the computational
domain a damping zone is employed. On the left end of the computational domain
either a damping region or a wave generation zone is defined, depending on the desired
simulation conditions.
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Figure 3. Mesh overview and refinement zones for two-phase simulations.

Following the grid independence study, the medium fidelity mesh used for the rest
of the work which consists of around 200,000 cells with refinements in the wake region to
capture the vortex shedding. In the near wall region the first cell size is selected so that
y+ ≤ 1 while the time step chosen is ∆t = 0.0002 s. No initial perturbation is required
to initiate the motion. Results are collected after enough periods have elapsed and the
motion has sufficiently converged. The metrics used to evaluate performance are averaged
across many periods, as due to the passive nature of the flapping foil, the motion and the
forces that act on the foil can vary from cycle to cycle. This is especially the case when the
submergence depth is small, and the free surface influences the device, as the state of the
free surface differs from cycle to cycle. For each case, results from 10 cycles were averaged
to obtain values for the performance metrics.

When incoming waves are considered the free surface region discretization is changed
depending on the wave length and the wave heigh. More specifically, it is horizontally
refined to have about 100 points per wavelength and 20 points per wave height (H = 0.2c)
(see [30]).

4. Results and Discussion

In this section the aforementioned numerical setup of the fully passive flapping foil
device is used to examine the influence of the free surface when it is calm (Section 4.1) or
when waves are propagating on it (Section 4.2). A parametric study is initially carried out,
altering the submergence depth of the foil (Sd). This analysis is repeated for various Froude
numbers (Fr), which is defined as:

Fr =
U∞√
g · c (28)

The impact of these parameters to the performance is assessed, and their influence
explained. Subsequently, the influence of monochromatic waves that propagate on the free
surface is examined.

4.1. Effects of Submergence Depth for Various Froude Numbers

The effects of varying the submergence depth (Sd) are examined in this section. Apart
from the submergence depth, the Froude number also affects the performance of this device
when considering the influence of the free surface, as both the dynamics of the flow around
the foil and the disturbance of the free surface are affected. For this reason, this same
analysis is carried out for multiple Fr numbers, Fr = 0.8, 1, 1.25, 1.5. The performance of
the device is assessed using two metrics, efficiency η and average power coefficient Cp,
described in Section 2. In Figure 4a,b, the results for all the cases examined are presented.
Each curve in the η − Sd and Cp − Sd diagrams corresponds to a different Fr number.
The horizontal red line represents the infinite depth case (no free surface influence) as a
comparison to the other cases. As a general trend, we notice that for low submergence
depths, below three chord lengths (c), performance drops rapidly as the foil is very close to
the free surface. For intermediate Sd, a maximum appears for all the Fr numbers, where
η and Cp are as high or even higher than the infinite depth case. Increasing Sd further,
performance drops again until it approaches asymptotically the infinite depth case.
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Results indicate that there exists an optimal Sd where the calm free surface not only
does not decrease performance relative to the infinite case, but also a slight increase
is evident. The exact depth Sd that the maximum occurs depends on the Fr number.
As Figure 4 indicates even though the Fr number can affect performance the efficiency
maximum can be found at intermediate Sds (between 4c–5c). This happens because of
a beneficial mechanism, described in the “Free Surface Flow Constriction” section, that
outweighs the negative effects of the other mechanisms described later in this work.

(a) (b)

Figure 4. (a) Efficiency (η) and (b) Average Power Coefficient (Cp) curves for various Submergence
Depths Sd. Each curve corresponds to a different Fr number. (compared to the infinite case: red
horizontal line).

Effects of Submergence Depth for Fr = 1

To better understand the effect of submergence depth and the underlying fluid me-
chanics phenomena, we focus our study to Fr = 1. The submergence depths examined for
the specific Fr number are Sd = 2, 3, 4, 5, 7 and 9 chord lengths.

The main metrics for each submergence depth, for Fr = 1 are presented in Table 4,
where h∗0 and θ∗0 are heaving and pitching amplitudes (heave is non-dimensional by chord
length c and θ* is in degrees) and T* is non-dimensional period (T∗ = T ·U∞/c).

Table 4. Fr = 1: Main Metrics for various Submergence Depths.

Metrics/Sd 2c 3c 4c 5c 7c 9c Infinite

h∗0 1.26 1.45 1.44 1.40 1.40 1.41 1.32

θ∗0 (deg) 47.7 66.3 71.8 70.7 65.7 67.9 72.2

η% 14.25 29.67 34.10 33.42 30.13 31.83 32.98

T∗ 12.6 9.0 8.3 8.4 8.9 8.6 8.1

Cp 0.42 1.06 1.26 1.19 1.05 1.13 1.13

As Table 4 suggests , the influence of the free surface is not straightforward. Efficiency
and Power Coefficient seem to have a similar behaviour. For high Sd, such as Sd = 7c and
9c the presence of the free surface slightly reduces the performance of the device. The
influence is small as the infinite case is approached for high Sd. For very low Sds close to 2c
performance is largely reduced. The hydrofoil is very close to the free surface and large
amounts of energy are expended to the formation of waves. Other reasons, relating to the
behaviour of the vortices around the foil affect its performance, and are discussed later in
this section.

In Figure 5a,b, the heaving and pitching motions can be found, for Sd = 2c, 4c, 7c. It is
evident that the heaving amplitude (h∗0) is not significantly affected when the foil is at low Sds.
The pitching amplitude, in contrast, is significantly decreased. Figure 5 can reveal a lot about
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the hydrofoil’s performance. It shows how the heaving and pitching motion timeseries of the
fully passive flapping foil device stray away from a pure sinusoidal motion. The influence of
submergence depth on it is compared for different cases, where we see that for intermediate
submergence depths the motion is not significantly altered. Interestingly, compared to the
infinite fluid case, the heaving amplitude is increased during the upstroke but is the same
during the downstroke. Additionally, it shows that for the Sd = 2c case, pitching is greatly
reduced throughout the cycle, indicating that the lifting force acting on the foil is reduced
and in consequence performance is decreased. In addition, in this figure an indication of the
increase in phase difference between the heaving and pitching motion is also visible at t/T = 0,
when the free surface is present and especially for the Sd = 2c case. At this time instant, when
the hydrofoil is at the uppermost position, the pitch angle is not 0◦ but it lags behind. Finally,
comparing the Sd = 4c and 7c cases, the heaving motion is almost identical, but the pitching
angle is slightly reduced for the 7c case, which degrades performance.

Additionally, in Figure 6 the non-dimensional period T∗ is presented as a function of
Sd and compared to the infinite case (horizontal blue line). It is clear, that the period (T∗) is
greatly increased when the foil operates near the free surface (Sd = 2c, 3c). This increased
period, means that foil’s velocity is reduced and thus less energy is harvested from the foil.
For intermediate Sds, such as 4c and 5c, a peak forms, and T∗ is very close to the reference
infinite case.

(a) (b)

Figure 5. (a) h* and (b) θ* for a single period for different Sds.

Figure 6. T* for different Sd relative to the infinite case.

Depletion of energy in waves.
The free surface directly affects the performance of the flapping foil as energy is

transferred from the foil to the creation of gravity waves. As the foil approaches the surface,
larger waves are formed, which means that more energy is lost in wave making. In essence,
the pressure differences that the foil creates lend part of their energy to the creation of waves
leading to the reduction of lift. Additionally, the formed wave system can affect the pressure
distribution on the foil and thus the resulting pitching motion. This can be seen in Figure 7,
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which shows the hydrofoil at the Sd = 2c case where the disturbance is very pronounced,
close to the uppermost position. This figure shows that the formed wave system changes
the pressure distribution in the region and influence the loads on the hydrofoil.

Figure 7. Pressure contour showing the influence of the distribution due to the wave system, which
affects the hydrofoil for the Sd = 2c case 8× 103.

The free surface disturbance for the various Sds can be seen in Figure 8. We chose
to present the free surface when the foil is at its uppermost position. As expected, the
disturbances are larger for low submergence depths, reaching wave amplitudes up to 0.6c.
The free surface is also visualized by the density plot in Figure 9, comparing Sd = 2c with
Sd = 4c when the foil is at its uppermost position, where the disturbance in the low Sd case
is particularly high.

Figure 8. Free surface disturbance for the whole computational domain for various submergence
depths (foil L.E. is at 0).
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(a) (b)

Figure 9. Free surface visualisation near the foil region for Sd = 2c (a) and Sd = 4c (b) (red: water
phase and blue: air phase).

It is notable, however, that even though at Sd = 4c significant waves are formed in the
free surface, the performance of the foil is slightly increased. This signifies that free surface
wave making is not the only factor affecting performance.

Free Surface Flow Construction
The second significant effect that affects performance when the foil operates near

the free surface is caused due to the constriction of the flow above the foil. The pressure
drop due to the constriction results in increased velocities in the region. These increased
velocities along with the influence of the disturbance of the free surface, affect the pressure
on the upper side of the foil.

Constriction of the flow can be beneficial for energy extraction. As the foil heaves
upwards, pressure is decreased further on its upper side compared to the infinite case,
causing the Lift force to increase. This means that more energy is harvested from the device.
As the foil moves downwards, this effect is reversed, which means that lift is decreased
compared to the infinite depth case. This is illustrated in Figure 10 for a single period, where
the infinite depth case Lift Coefficient (Cl) is contrasted to that of the Sd = 4c case. In the
first half-period, the magnitude of lift is slightly less but in the second half it is significantly
greater. It can be seen that the increase in the absolute value of the Cl on the second half
of the period (upstroke) is greater than the decrease on the first half (downstroke). This
explains why there is a net positive effect on the foil’s performance, at the particular Sds.

Figure 10. Lift Coefficient (CL) comparison for a single period.

The increased Cl during the upstroke, increases the amplitude of the heaving motion,
as depicted in Figure 11a (while it is the same at the downstroke). Figure 11b depicts the
heaving power coefficient, where it is evident that power extraction is increased for Sd = 4c,
throughout the period. Energy extraction from the pitching motion is much less than that
of the heaving motion, and it does not differ significantly between these cases.
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(a) (b)

Figure 11. (a) h*(t*) and (b) CPy comparison for Sd = 4c and infinite case.

Motion Synchronisation
Synchronisation of the heaving and pitching motion is very important in the search

for structural parameters in order to achieve good performance. This device is not active,
meaning that the motion is not prescribed, so the motion cannot be explicitly set. In essence,
the pitching motion is responsible for the suitable positioning of the foil, so that the
maximum amount of power can be harvested by the heaving motion. Consequently, when
the motions in the two DOFs are not well synchronised, harvested energy decreases.

As described in [46], a large Leading Edge Vortex (LEV) is formed close to the leading
edge of the foil, as the foil goes through dynamic stall, which is detached when certain con-
ditions are met. The vorticity of the flow during an upstroke for the Sd = 4c case is shown
in Figure 12. It can be seen, that the LEV forms, detaches, and afterwards is convected
downstream along the upper surface of the body. Apart from the structural parameters,
the kinematics of the LEV is a significant factor that drives the passive foil motion.

Figure 13a shows the pressure contour at 9T/10 of the motion cycle. The LEV can be
identified as the low pressure area. Its effect on the foil loading can be seen in Figure 13b
that shows the corresponding pressure coefficient (Cp) plot at the same time instant. It is
clear that the location of the LEV results in a lower pressure region acting on the foil.

At this time instant, the LEV induced pressure drop results in a large counter-clockwise
moment that acts on the hydrofoil. Consequently, the hydrofoil changes orientation so
that the downstroke will begin. This mechanism determines the pitching motion and
affects synchronisation.

The presence of the free surface can have favourable characteristics as well as negative
ones. In the former case, the free surface acts like a solid boundary where the well-known
“wing-in-ground” effect can enhance the foil performance [47]. However, free surface
deforms and waves are generated so a part of the available energy is depleted. The
basic parameter that affects whether the presence of free surface will enhance or degrade
performance is the depth-to-chord ratio (Sd). Depending on Sd and the interaction of the
foil with the free surface the motion of the passive foil can change. A closer look at the
motion dynamics reveals that the LEV has a critical role in the foil’s motion [23].

Understanding the influence of this LEV is important, because, when the hydrofoil is
located close to the free surface, a delay in the pitching motion is noticed which is caused
by a delay of the shedding of the LEV. This is illustrated in Figure 14 where the Sd = 2 and
4c case is compared with the infinite case (no free surface). It is evident that as Sd ratio
becomes smaller a delay in the detachment of the LEV is noticed.Apart from that , it is clear
that the strength of the LEV (evident as pressure drop in the plot) is greatly reduced when
the foil operates very close to the free surface (Sd = 2c). In addition, it is clear that in the later
the maximum angle of attack is reduced due to the energy lost in wave-making leading
to a weaker LEV which in turn changes the foil dynamics and a degrade in performance
is evident.
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(a) 7T/10 (b) 8T/10

(c) 9T/10 (d) 10T/10
Figure 12. Vorticity contours for successive positions of the foil during the upstroke.

(a) (b)

Figure 13. Pressure contour at 9T/10 (a) and the corresponding pressure coefficient Cp plot (b).

Following the previous discussion, when the foil operates under the free surface we
have two mechanisms opposing one another. On one hand the enhancement due to the
“wing-in-ground” effect and on the other hand the wave-making losses. Thus, its expected
that an optimum Sd exists in which the performance gain due to “wing-in-ground” effect
surpass the depleted energy. Indeed, at Sd = 4c a peak in the efficiency is noted. A closer
look at Figure 14, reveals that the LEV evolution is closer to the infinite flow case. The
LEV is only slightly delayed while the magnitude of the vortex is slightly stronger. In other
words, the heaving motion due to the “in-ground” effect is enhanced maintaining, however,
the dynamics of the LEV, that drive the foil motion.

This delayed shedding is also described by [48], where they conducted simulations
of cylinders close to the free surface, that showed a clear delay in the shedding frequency,
caused by the restriction of the fluid flow by the free surface, which restricts the supply of
fluid in the region of the vortex.
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(a) 7T/10 (b) 8T/10 (c) 9T/10 (d) 10T/10

(e) 7T/10 (f) 8T/10 (g) 9T/10 (h) 10T/10

(i) 7T/10 (j) 8T/10 (k) 9T/10 (l) 10T/10
Figure 14. Pressure contours for the the Sd = 2c case (a–d), Sd = 4c case (e–h) and the infinite case (i–l).

To assess the synchronisation of the heaving and pitching motions, as Sd varies,
Fourier analysis was conducted to find their phase difference. These were then compared
to the infinite case. The heaving and pitching motion time series were analysed and their
corresponding phases were subtracted in order to find their phase difference. Results are
presented in Figure 15.

Figure 15. Heave and Pitching Phase difference (−90°) for various depths (Fr = 1).

These results inversely correlate with the results for the performance (η and Cp) of the
foil in Figure 4a,b. For Sds where performance is maximised (Sd = 4c, 5c), phase difference
is close to the infinite case. For Sd = 7c phase difference is larger, and performance drops.
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For lower submergence depths (Sd = 2c, 3c) phase difference becomes much larger as
performance drops rapidly. This shows that when the foil is located very close to the free
surface, the synchronisation is negatively affected, due to the delay in the shedding of the
LEV. In essence, due to the bad synchronisation, the loads applied on the hydrofoil by the
flow are lower, and the harvested energy decreases.

4.2. Effects of Monochromatic Waves

After examining the effects of a calm free surface on the performance of the fully
passive flapping foil device, a parametric study is undertaken to examine the influence
of monochromatic waves. The device is expected to operate near the free surface and
consequently waves can affect its performance.

In particular, a parametric study takes place varying the frequency of these waves.
The waves have frequency (ωw), wavelength (λ) and wavenumber (k). The waves are
generated using stream function theory [49]. They are generated from the left end of the
computational domain using a wave-generation zone and propagate towards the passive
foil. Following Section 4.1 the submergence depth Sd = 4c is selected, since, at this depth
efficiency is maximised. Reynolds number is still 6 · 104 and Fr = 1 was chosen. The device’s
structural parameters and the mesh are also kept the same as in Section 4.1.

Wave frequency close to oscillation frequency
As a first step, waves that have a frequency close to the oscillation frequency of the

flapping foil under a calm free surface were tested. The following ratios (Table 5) of ωw/ω f
are investigated, where ω f is the frequency of the flapping foil under a calm free surface.

Table 5. The investigated wave frequencies and wavelengths (in airfoil chords), and the predicted
non-dimensional heaving amplitudes h* = h/c.

ωw/ ω f λ Heave Amplitude h∗
0

calm – 1.44
0.5 77.3c 1.46
0.8 38.9c 1.50
0.9 32.4c 1.44
1.0 26.1c 1.48
1.1 23.9c 1.48
1.2 21.0c 1.48

The wave height H = 2A (A: amplitude) has to be comparable to the disturbance of
the free surface caused by the foil. For this reason, it was chosen equal to 0.2c (A = 0.1c) for
all cases. The tank has a depth of 18c which is large relative to the wavelengths . This means
that wave propagation happens in deep water conditions. The corresponding wavelengths
can be seen in Table 5. Finally, it is noted that the selected wave height classifies the waves
in the non-linear region.

In Figure 16, the performance of the passive foil operating in waves can be found.
Figure 16a, indicates that the presence of waves does not affect efficiency significantly,
except for the case of ωw/ω f = 1, where a slight increase of about 0.8% is witnessed. This
indicates that resonance of the two motions increases power extraction.

On the contrary, in Figure 16b it is seen that the average power coefficient is increased
for all cases, by about the same amount, 4.5%. This suggests that the harvested power
due to the presence of waves is increased. The presence of waves causes an increase in
heaving amplitude as indicated in Table 5. This also explains the smaller changes in the
efficiency of the device since η is normalized by the swept area, which also increases as
heaving amplitude is increased.

Figure 17 shows the heaving motion timeseries for different cases, where the peaks
and crests are connected with a curve (envelope), in order to show the periodical variability
of the heave amplitude, which differs for each case. This shows that the positioning of the
wave relative to the foil’s motion has an effect on its motion. The variability is especially
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visible in the ωw/ω f = 0.5, where the heaving amplitude is the same at every other cycle,
as is the positioning of the wave. Figure 18 compares the heaving motion for this case to
the surface elevation above it. For a particular cycle, when a wave peak is present above
the foil, heaving amplitude is greater than when a crest is present. In contrast, when the
frequencies of waves and flapping foil match, heaving amplitude remains stable from cycle
to cycle, as in the ωw/ω f = 1 case.

(a) (b)
Figure 16. (a) η and (b) Cp – Encounter Frequency/Wave frequency ωw / ω f .

Figure 17. Heave motion variability for different ratios of ωw / ω f .
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Figure 18. Free Surface Elevation above the L.E. of the foil compared to heave motion ωw / ω f = 0.5.

Wavelength close to flapping foil’s chord length.
Finally, waves with wavelength close to the foil chord are examined. Two cases of

waves with wavelength comparable to the chord length of the foil are investigated, namely
λ = 3c and 5c. The pressure field caused by these waves varies along the chord length of
the foil, in contrast to the previous investigations, where at a time instant, the pressure field
of the wave is uniform along the foil. Their frequency is also much larger than previously.

Results are presented in Figure 19a,b with red markings relative to the calm free surface
case. First a very slight decrease in efficiency of about 0.6% is evident for small wavelengths,
while the gain in Power Coefficient (Cp) from the previous cases with waves is lost, as
power extraction is the same as in the calm free surface case. This shows that waves with
wavelength close to the hydrofoil’s chord length do not aid energy harvesting, as do waves
with frequency close to its frequency. Thus, compared to waves with frequency close to
the flapping foil’s frequency that were examined previously, these small wavelength and
high frequency waves do not aid energy harvesting, but they also do not hinder it, as the
drop in performance is insignificant.

(a) (b)
Figure 19. (a) η and (b) Cp – Encounter Frequency/Wave frequency ωe/ω f .

5. Conclusions

In conclusion, the performance of a fully passive flapping foil device for energy
harvesting was investigated in a free surface flow through a series of numerical simulations.
We used a strongly coupled FSI algorithm to examine the effects of varying submergence
depths and the impact of monochromatic waves on the foil’s performance.

The results showed that the fully passive flapping foil device can achieve high effi-
ciency for submergence depths between 4c and 9c. It is notable that there is an “optimum”
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submergence depth where the flapping foil performance is maximised. The device had
its maximum performance at a submergence depth of 4c with efficiency equal to 34.10 %
and average power coefficient 1.26. Simulations for different Froude numbers showed the
same trends, with the optimum always found between submergence depths of 4c–5c. The
influence of the large leading edge vortex was also found to be important.

Finally, we investigated the effects of regular waves on the foil’s performance. We
found that waves with a frequency close to the oscillation frequency of the flapping foil
aided energy harvesting, increasing the energy extraction. As the passive foil operates in
waves, its swept area increases, resulting in an increase in the power extracted from the
waves. However, the foil’s efficiency remains almost constant. On the other hand, waves
with wavelength close to the chord length of the foil had no influence on its performance.

Overall, this study contributes to a better understanding of the performance of fully
passive flapping foil devices for energy harvesting in free surface flows and provides
insights that could be useful for future design improvements. The next steps involve
examining the performance of the fully passive flapping foil device in more complex and
realistic ocean conditions, which include considering the foil operating in a wave spectrum
and a 3D configuration.
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