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Abstract: High-precision positioning capability is a crucial technology for achieving accurate navi-
gation in autonomous underwater vehicles (AUVs). However, due to severe electromagnetic wave
attenuation underwater and the unavailability of the global positioning system (GPS), inertial-
navigation-based dead reckoning is considered the primary method for underwater positioning.
Unfortunately, errors accumulated during the navigation process lead to unbounded drift, and
filtering-based methods have been used to mitigate the errors, but with limited success. In this paper,
we propose a precise underwater dead-reckoning mathematical model that recursively calculates the
ground truth and corresponding errors based on an AUV’s motion model, and we derive empirical
formulas. Compared to related methods, this approach not only models the cumulative errors of
relative noise measurements, but also provides recursive expressions with corresponding statistical
moments. The experimental results demonstrate that this formula significantly reduces positioning
errors in underwater navigation tasks.

Keywords: autonomous underwater vehicle; dead reckoning; cumulative error; localization; motion model

1. Introduction

Over the last few decades, underwater positioning has been considered a challenging
research topic in autonomous navigation for underwater robots. This is because the un-
derwater penetration capability of electromagnetic wave signals significantly decreases [1].
However, this issue has received limited attention so far. Researchers have explored
solutions (such as pipeline inspection [2], under-ice exploration [3,4], and underwater
hull inspection [5,6]) and have concluded that using more sensors can lead to better
performance [7,8].

Currently, underwater positioning technologies can be broadly categorized into two
types: external positioning systems and internal positioning systems [9]. The former relies
solely on additional acoustic sensors, such as ultra-short baseline (USBL) positioning and
simultaneous localization and mapping (SLAM) based on underwater perception, making
it highly accurate but potentially costly. High-precision positioning algorithms improve
accuracy through filtering or optimization, but the limited precision and range of perception
sensors pose challenges for the positioning capabilities.

Research on this subject has been limited to either external sensors or closed-loop
scenarios, which have deficiencies in navigation trajectories’ degrees of freedom and
potential costs. Conversely, the latter (also known as dead reckoning) is considered a
bundled method but suffers from unbounded cumulative error issues arising from relative
noise measurements, such as in Inertial Measurement Units (IMUs) [10]. Hence, self-
contained Doppler velocity logs (DVLs), depth sensors, and electronic compasses are used
as supplements to enhance navigation precision.
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Underwater dead reckoning heavily relies on the dynamic motion model of a AUV, and
even under the same trajectory, accumulated errors may result in different values [11,12].
Therefore, utilizing a dynamic motion model is crucial for eliminating uncertainties caused
by measurement noise and temporal variations between independent trajectories. To the
best of the authors’ knowledge, a rigorous analysis of the growth rate related to the dynamic
motion model is still lacking, especially in complex underwater environments.

Existing research has developed several strategies to address this issue. For instance,
Silveira et al. developed a general dataset with DVL and IMU measurements and used
an extended Kalman filter to estimate displacement. However, their proposed model
did not observe the entire state, leaving nonlinear problems regarding global uncertainty
unresolved [13]. In contrast to direct analytical solutions, there are calibration-based
methods, such as the long baseline (LBL) and ultra-short baseline (USBL) [14–16]. However,
each of them requires a unique infrastructure to transmit signals to the AUV through
acoustic grouping.

Meanwhile, artificial intelligence (AI) technology has undergone significant devel-
opment, and deep-learning-based methods have also been considered to enhance posi-
tioning accuracy [17]. For example, Brossard et al. developed an AI-based odometry
estimation model that utilized convolutional neural networks to represent nonlinear er-
rors [18]. Cheng et al. designed a reinforcement-learning-based underwater navigation
approach that addressed the localization problem by minimizing the sum of all errors [19].
However, this method still faced non-convex optimization issues in scenarios with local
optima. Additionally, AI-based techniques heavily rely on neural networks, which are
limited by poor interpretability and sparse samples. Moreover, due to the incomplete-
ness and parameter dependency of AI-based technologies, different scenarios may impact
localization performance.

In light of this, some researchers have improved inertial navigation algorithms to
enhance accuracy. For example, Hailiang Tang used an inertial navigation system for
precise initialization and achieved absolute positioning in large-scale environments [20].
Asaf Tal’s navigation system was based on inertial navigation supplemented with Doppler
velocity logging, a magnetometer, and pressure sensors [21]. This approach combined the
advantages of strong inertial autonomy, high short-term accuracy, continuous output, and
high precision in localization and velocity measurements among other intermittent sensor
outputs, which is the trend in high-precision underwater navigation [22].

So far, a perfect dead-reckoning method is still missing, especially in ocean current
scenarios, where the cumulative error increases exponentially. Our previous work proposed
an empirical formula for approximating dead-reckoning error. However, this formula
was only tested with the Ackerman model in autonomous driving scenarios, which are
completely different from underwater navigation [23].

This paper introduces an effective empirical formula for approximating the first two-
order moments of the cumulative error during underwater dead reckoning. The proposed
methodology was also verified through Monte Carlo experiments by considering both
noise and motion models. In conclusion, the proposed method can estimate the cumulative
error without relying on environmental information. Compared with the most advanced
methods available, it has great potential for further applications.

The main contributions of this article can be summarized as follows:

• The horizontal plane motion model of an AUV is presented, and the relationship be-
tween relative position attitude and position is determined according to the horizontal
plane kinematics model.

• The qualitative and quantitative expressions for path planning are derived through
statistical analysis of the cumulative error of range positioning, providing a complete
framework for path planning.

• The statistical characteristics of cumulative errors were verified by Montecoro simula-
tion method.
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This article is organized as follows: Section 1 briefly gives the localization background.
Section 2 analyzes the mathematical representation and statistical characteristics of the
cumulative error. Section 3 uses the Monte Carlo simulation method to verify and analyze
the results. Finally, Section 4 concludes the entire article and discusses possible directions
for future study.

2. Mathematical Model and Estimation

Autonomous underwater vehicles (AUVs) rely on measurements from devices such
as Doppler velocity logs (DVLs), inertial measurement units (IMUs), magnetometers,
and depth sensors for self-localization based on dead reckoning or acoustic signals from
underwater infrastructure. However, in many cases, acoustic communication is unavailable
due to high deployment costs, and measurement noise leads to unbounded errors in dead
reckoning. Therefore, AUVs must perform self-localization calibration by ascending to
receive GPS or USBL signals to counteract drift caused by relative noise measurements.

2.1. Problem Statement

This study aims to quantitatively analyze the growth of errors over time or distance
through numerical error analysis. To simplify the problem description, an AUV is assumed
to move at a fixed depth in a Cartesian coordinate system, which aligns with its actual
navigation mode. A typical 3-DOF motion model is utilized to accurately present the
AUV’s dynamic characteristics and precisely calculate the ego-motion vector.

Figure 1a shows the proposed motion model. The relationship between relative
attitude measurements and the position, as established with the AUV model, is depicted in
Figure 1b. The figure illustrates the relationship between relative attitude measurements
and the position of the AUV model, where n and m represent the frame number and
measurement value, respectively. In the case of consecutive frames, θ represents the
heading angle, and u and v represent two speeds: the forward velocity and transverse
velocity. The specific parameter definitions are shown in Table 1. We define the pose
measurements θn, un, and vn as true values. θ̃n, ũn, and ṽn are noise errors. Assuming that
they are independent, the mean and standard deviation of δθ , δu, and δv are zero. Therefore,
the measured values of each step are shown as follows when the measured values of the
relative attitude, true values, and errors are determined:

θm
n = θn + θ̃n; um

n = un + ũn; vm
n = vn + ṽn. (1)

where corresponding errors are I.I.D. The position is calculated with

xm
n =

n

∑
i=1

(um
i cos(

i

∑
j=1

θm
j )− vm

i sin(
i

∑
j=1

θm
j )),

ym
n =

n

∑
i=1

(um
i sin(

i

∑
j=1

θm
j ) + vm

i cos(
i

∑
j=1

θm
j )).

(2)

The accumulation of drift in noise measurements is unbounded. While the Cramer–
Rao theory can be used to estimate lower bounds, traditional methods fail to estimate
upper bounds, especially in the absence of fundamental assumptions. However, statistical
estimation of errors can be accomplished by analyzing the error distribution characteristics
of multiple statistics.
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Table 1. Definition of the notations.

Notation Definition Notation Definition

θ heading angle θn true value
u forward velocity θ̃n error

v transverse
velocity θm

n
noisy

measurements
E(xm

n ) expectation var(xm
n ) variance

Y

X



u

v

x

yO Y

X

1

2

3

4
m

1u

2u

3u

4u

mu

1v

2v

4v

mv
3v

(a) (b)

Figure 1. (a) AUV motion model based on three degrees of freedom; (b) AUV position estimation
using angle and distance measurements.

2.2. True Error Statistics

Based on the aforementioned assumptions, a specific kinematic model can be em-
ployed to simulate AUV positioning and dead-reckoning errors in continuous frames. This
kinematic model correlates the AUV’s position and velocity with time, enabling us to
predict the position and orientation in each frame. By comparing the predicted results from
consecutive frames with actual measurements, we can estimate dead-reckoning errors and
further analyze their cumulative trend over time. This extended approach provides an effec-
tive means of understanding a AUV’s localization performance in autonomous underwater
navigation and its response to different motion patterns and measurement conditions.

xm
n = xn + x̃n =

n

∑
i=1

[(ui + ũi) cos(
i

∑
j=1

(θ j + θ̃j))− (vi + ṽi) sin(
i

∑
j=1

(θ j + θ̃j))]

= [
n

∑
i=1

ui +
n

∑
i=1

ũi] · [cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

− [
n

∑
i=1

vi +
n

∑
i=1

ṽi] · [sin(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j) + cos(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

(3)

ym
n = yn + ỹn =

n

∑
i=1

[(ui + ũi) sin(
i

∑
j=1

(θ j + θ̃j)) + (vi + ṽi) cos(
i

∑
j=1

(θ j + θ̃j))]

= [
n

∑
i=1

ui +
n

∑
i=1

ũi] · [sin(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j) + cos(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

+ [
n

∑
i=1

vi +
n

∑
i=1

ṽi] · [cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)].

(4)
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where xn and yn represent the true value, and x̃n and ỹn represent the error value. xn =

∑n
i=1[ui cos(∑i

j=1 θ j)− vi sin(∑i
j=1 θ j)] and yn = ∑n

i=1[ui sin(∑i
j=1 θ j) + vi cos(∑i

j=1 θ j)] are
the ground-truth positions.

After obtaining the extended formulation for the actual vehicle position, we can derive
the expression for the error values.

x̃n =
n

∑
i=1

ui[cos(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− 1)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

+
n

∑
i=1

ũi[cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

−
n

∑
i=1

vi[sin(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− 1) + cos(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

−
n

∑
i=1

ṽi[cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)].

(5)

ỹn =
n

∑
i=1

ui[sin(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− 1) + cos(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

+
n

∑
i=1

ũi[cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

+
n

∑
i=1

vi[cos(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− 1)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

+
n

∑
i=1

ṽi[cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)].

(6)

By utilizing the aforementioned formulas, we can calculate the expected value and
variance of the cumulative error. It is important to note that each stepwise error is correlated
with the actual attitude measurements. For analytical purposes, we make the assumption
that the errors follow a zero-mean Gaussian distribution with a certain variance. This
facilitates further analysis of the behavior of the cumulative error, as it is related to the
motion and measurement uncertainties of the AUV.

Assuming that θ̃ v N(0, δ2
θ ), ũ v N(0, δ2

u) and ṽ v N(0, δ2
v), we can obtain mathemati-

cal statistics for the following expressions:
n

∑
i=1

θ̃ v N(0, iδ2
θ );

n

∑
i=1

ũ v N(0, iδ2
u);

n

∑
i=1

ṽ v N(0, iδ2
v), (7)

Once the above formula has been obtained, the expected value of the sine and cosine
can be calculated to simplify the subsequent formula’s calculation:
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E(cos(
i

∑
j=1

θ̃j)) = e−iδ2
θ /2,

E(sin(
i

∑
j=1

θ̃j)) = 0,

E(cos2(
i

∑
j=1

θ̃j)) =
1
2
(e−2iδ2

θ + 1),

E(sin2(
i

∑
j=1

θ̃j)) =
1
2
(−e−2iδ2

θ + 1),

E(cos(
i

∑
j=1

θ̃j) sin(
i

∑
j=1

θ̃j)) = 0.

(8)

Then, we need to separately take the expectations of x̃n and ỹn. By substituting
Equation (8) into the expression for x̃n and ỹn and simplifying, their respective expected
values can be obtained:

µt(θ, u, v) =
[

E[x̃n]
E[ỹn]

]
=

∑n
i=1 u[cos(∑i

j=1 θ̃j)(e−
iδ2

θ
2 − 1)]−∑n

i=1 v[sin(∑i
j=1 θ̃j)(e−

iδ2
θ

2 − 1)]

∑n
i=1 u[sin(∑i

j=1 θ̃j)(e−
iδ2

θ
2 − 1)] + ∑n

i=1 v[cos(∑i
j=1 θ̃j)(e−

iδ2
θ

2 − 1)]

. (9)

The above equation gives the first-order distance. By combining it with the Cauchy–
Schwarz inequality, we can obtain the second moment:

(
n

∑
i=1

xiyi)
2 6 (

n

∑
i=1

x2
i )(

n

∑
i=1

y2
i ). (10)

Since the calculation method for the second moment of cumulative error in the X di-
rection is the same as that in the Y direction, we will focus on demonstrating the calculation
process for X. In the subsequent analysis, we will further simplify this expression. Based
on the aforementioned equation, we obtain:

E(x̃n − E(x̃n))
2 =E[

n

∑
i=1

ui [cos(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− e−
iδ2

θ
2 )− sin(

i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

+
n

∑
i=1

ũi [cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2

−
n

∑
i=1

vi [sin(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− e−
iδ2

θ
2 ) + cos(

i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]

−
n

∑
i=1

ṽi [sin(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j) + cos(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2

6 4 · E[
n

∑
i=1

ui [cos(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− e−
iδ2

θ
2 −1)− sin(

i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]
2

+ [
n

∑
i=1

ũi [cos(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2]

−
n

∑
i=1

vi [sin(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− e−
iδ2

θ
2 −1) + cos(

i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]
2

+ [
n

∑
i=1

ṽi [sin(
i

∑
j=1

θ j) cos(
i

∑
j=1

θ̃j) + cos(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2]

= 4 · E(A) + 4 · E(B)− 4 · E(C)− 4 · E(D).

(11)

Through calculations, we can obtain the preliminary expression for the second moment
of cumulative error on the X axis. It consists of four components but has not been fully sim-
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plified. To further simplify this expression, we will apply the Cauchy–Schwarz inequality.

Ax = [
n

∑
i=1

ui[cos(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− e−
iδ2

θ
2 )− sin(

i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2

Bx = [
n

∑
i=1

ũi[cos(
i

∑
j=1

θ j)(cos
i

∑
j=1

θ̃j)− sin(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2

Cx = [
n

∑
i=1

vi[sin(
i

∑
j=1

θ j)(cos(
i

∑
j=1

θ̃j)− e−
iδ2

θ
2 ) + cos(

i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2,

Dx = [
n

∑
i=1

ṽi[sin(
i

∑
j=1

θ j)(cos
i

∑
j=1

θ̃j) + cos(
i

∑
j=1

θ j) sin(
i

∑
j=1

θ̃j)]]
2.

(12)

Similarly, we also have

E(Ax) = n ·
n

∑
i=1

u2
i [cos2(

i

∑
j=1

θ j)e−2iδ2
θ − cos2(

i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
], (13)

E(Bx) = n · δ2
u

n

∑
i=1

(cos2(
i

∑
j=1

θ j)e−2(iδ2
θ ) − e−2(iδ2

θ )

2
+

1
2
), (14)

E(Cx) = n ·
n

∑
i=1

v2
i [sin2(

i

∑
j=1

θ j)e−2iδ2
θ − sin2(

i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
], (15)

E(Dx) = n · δ2
V

n

∑
i=1

(sin2(
i

∑
j=1

θ j)e−2(iδ2
θ ) − e−2(iδ2

θ )

2
+

1
2
). (16)

Finally, we combine the four parts of the simplification, and var(x̃n) becomes

var(x̃n) 6 4n ·
n

∑
i=1

u2
i [cos2(

i

∑
j=1

θ j)e−2iδ2
θ − cos2(

i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
]

+ 4n · δ2
u

n

∑
i=1

(cos2(
i

∑
j=1

θ j)e−2iδ2
θ − e−2iδ2

θ

2
+

1
2
)− 4n ·

n

∑
i=1

v2
i [sin2(

i

∑
j=1

θ j)e−2iδ2
θ

− sin2(
i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
]− 4n · δ2

V

n

∑
i=1

(sin2(
i

∑
j=1

θ j)e−2(iδ2
θ ) − e−2(iδ2

θ )

2
+

1
2
).

(17)

In the same way, we can calculate the second-order moment of the cumulative error in
the Y direction. The specific expression of the second moment is shown below:

var(ỹn) 6 4n ·
n

∑
i=1

u2
i [sin2(

i

∑
j=1

θ j)e−2iδ2
θ − sin2(

i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
]

+ 4n · δ2
u

n

∑
i=1

(sin2(
i

∑
j=1

θ j)e−2iδ2
θ − e−2iδ2

θ

2
+

1
2
) + 4n ·

n

∑
i=1

v2
i [cos2(

i

∑
j=1

θ j)e−2iδ2
θ

− cos2(
i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
] + 4n · δ2

v

n

∑
i=1

(cos2(
i

∑
j=1

θ j)e−2(iδ2
θ ) − e−2(iδ2

θ )

2
+

1
2
).

(18)
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2.3. Error Statistics in Practice

Based on the AUV’s kinematic model, we derived the expression of the second mo-
ment for cumulative errors in the two-dimensional direction. However, these expressions
cannot be used directly because they require the actual values of the arguments. In reality,
it is not possible to obtain the actual values, and we can only obtain relative attitude mea-
surements with noise. Therefore, the real expected value is determined based on the actual
measurements in order for the results to be useful.

E[µt|θm, um, vm] = µm, (19)

E[var(x̃n)|θm, um, vm] = var(x̃m
n ). (20)

E[var(ỹn)|θm, um, vm] = var(ỹm
n ). (21)

To obtain the actual expected value, we can extend the previous equation by using
Equation (1). In this process, we replace the relative attitude measurements with the actual
values. Specifically, we calculate θn = θm

n − θ̃n to obtain the actual values while taking the
influence of real attitude measurement errors on the cumulative errors into account.

E[x̃m
n ] = E[E[x̃n]|θm, um, vm]

= E[
n

∑
i=1

ui[cos(
i

∑
j=1

θ j)(e−
iδ2

θ
2 − 1)]−

n

∑
i=1

vi[sin(
i

∑
j=1

θ j)(e−
iδ2

θ
2 − 1)]]

= E[
n

∑
i=1

(um
i − ũi)[cos(

i

∑
j=1

(θm
j − θ̃j))(e−

iδ2
θ

2 − 1)]]

− E[
n

∑
i=1

(vm
i − ṽi)[sin(

i

∑
j=1

(θm
j − θ̃j))(e−

iδ2
θ

2 − 1)]]

=
n

∑
i=1

um
i (e
−iδ2

θ − e
−iδ2

θ
2 ) cos(

i

∑
j=1

θm
j )−

n

∑
i=1

vm
i (e
−iδ2

θ − e
−iδ2

θ
2 ) sin(

i

∑
j=1

θm
j ).

(22)

Building upon the first moment of the cumulative error, we can derive the second
moment of the cumulative error by using the Cauchy–Schwarz inequality. The details are
as follows:

var(x̃m
n ) 6E[4n ·

n

∑
i=1

u2
i [cos2(

i

∑
j=1

θ j)e−2iδ2
θ − cos2(

i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
]

+ E[4n · δ2
u

n

∑
i=1

(cos2(
i

∑
j=1

θ j)e−2iδ2
θ − e−2iδ2

θ

2
+

1
2
)]− E[4n ·

n

∑
i=1

v2
i [sin2(

i

∑
j=1

θ j)e−2iδ2
θ

− sin2(
i

∑
j=1

θ j)e−iδ2
θ − e−2iδ2

θ

2
+

1
2
]]− E[4n · δ2

v

n

∑
i=1

(sin2(
i

∑
j=1

θ j)e−2iδ2
θ − e−2iδ2

θ

2
+

1
2
)]

6 4n(12 + (−1)2)E[
n

∑
i=1

((ui
m)

2 − (ũi)
2)[cos2((

i

∑
j=1

θm
j )− (

i

∑
j=1

θ̃j))] · e−iδ2
θ · (e−2iδ2

θ − 1)]

+ 4n · δ2
u

n

∑
i=1

[cos2((
i

∑
j=1

θm
j ))e

−4iδ2
θ − e−4iδ2

θ

2
+

1
2
]− 4n · δ2

v

n

∑
i=1

[sin2((
i

∑
j=1

θm
j ))e

−4iδ2
θ − e−4iδ2

θ

2
+

1
2
]

− 4n(12 + (−1)2)E[
n

∑
i=1

((vi
m)

2 − (ṽi)
2)[sin2((

i

∑
j=1

θm
j )− (

i

∑
j=1

θ̃j))] · e−iδ2
θ · (e−2iδ2

θ − 1)]
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After obtaining the above calculation results, we need to continue to simplify var(x̃m
n ):

var(x̃m
n ) 6 8n

n

∑
i=1

[(ui
m)

2 + (δ2
u)][cos2(

i

∑
j=1

θm
j )e
−4iδ2

θ − cos2(
i

∑
j=1

θm
j )e
−3iδ2

θ

− e−4iδ2
θ

2
+

e−3iδ2
θ

2
− e−iδ2

θ

2
+

1
2
] + 4nδ2

u

n

∑
i=1

(cos2(
i

∑
j=1

θm
j )e
−4iδ2

θ

− e−4iδ2
θ

2
+

1
2
)− 4nδ2

v

n

∑
i=1

(sin2(
i

∑
j=1

θm
j )e
−4iδ2

θ − e−4iδ2
θ

2
+

1
2
)

− 8n
n

∑
i=1

[(vi
m)

2 + (δ2
v)][sin2(

i

∑
j=1

θm
j )e
−4iδ2

θ − sin2(
i

∑
j=1

θm
j )e
−3iδ2

θ

− e−4iδ2
θ

2
+

e−3iδ2
θ

2
− e−iδ2

θ

2
+

1
2
].

(23)

As shown in Equations (22) and (25), we obtained the expectation and variance of the
cumulative error in the X direction. By following the same calculation procedure, we can
compute the statistical properties of the cumulative error in the Y direction.

E[ỹm
n ] =

n

∑
i=1

um
i (e
−iδ2

θ − e
−iδ2

θ
2 ) sin(

i

∑
j=1

θm
j ) +

n

∑
i=1

vm
i (e
−iδ2

θ − e
−iδ2

θ
2 ) cos(

i

∑
j=1

θm
j ). (24)

var(ỹm
n ) 68 ∗

n

∑
i=1

[(ui
m)

2 + (δ2
u)][sin2(

i

∑
j=1

θm
j )e
−4iδ2

θ − sin2(
i

∑
j=1

θm
j )e
−3iδ2

θ

− e−4iδ2
θ

2
+

e−3iδ2
θ

2
− e−iδ2

θ

2
+

1
2
] + 4nδ2

u

n

∑
i=1

(sin2(
i

∑
j=1

θm
j )e
−4iδ2

θ

− e−4iδ2
θ

2
+

1
2
) + 4nδ2

v

n

∑
i=1

(cos2(
i

∑
j=1

θm
j )e
−4iδ2

θ − e−4iδ2
θ

2
+

1
2
)

+ 8n
n

∑
i=1

[(vi
m)

2 + (δ2
v)][cos2(

i

∑
j=1

θm
j )e
−4iδ2

θ − cos2(
i

∑
j=1

θm
j )e
−3iδ2

θ

− e−4iδ2
θ

2
+

e−3iδ2
θ

2
− e−iδ2

θ

2
+

1
2
].

(25)

After performing the necessary computations, we obtained the expected value and
variance of the cumulative error. In the calculation process, we first derived the statistical
characteristics of the cumulative error based on actual values, although such data are not
directly accessible in the real world. However, by substituting parameters, we were able to
complete the calculations and obtain the properties of the cumulative error that depend on
actual values and errors. It is important to note that despite simplifications, the resulting
expressions remain quite complex.

To verify the accuracy of our formulas, we need to set up four trajectories and deter-
mine the level of noise that is present. We employed Monte Carlo simulations to compare
the statistical properties obtained from the simulations with the results of our formula
calculations. Through this validation method, we can ensure that our model accurately
describes the behavior of cumulative errors under real-world conditions.

3. Experimental Results

To assess the statistical properties of underwater dead reckoning, we conducted
Monte Carlo simulations, which involved multiple measurements of the same scenario
to demonstrate the randomness of errors. In each simulation, we generated multiple sets
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of noisy measurements for each trajectory and used them to estimate the expected value
and variance of the cumulative error. By repeating this process several times, we obtained
statistical characteristics that reflected the behavior of underwater dead reckoning under
different noise conditions. Unlike typical autonomous driving datasets, our proposed
dataset includes global positions and internal measurements in underwater scenarios with
noise that was manually added to the relative measurements of the ground truth.

The forward velocity noise, transverse velocity noise, and heading angle noise were
considered as 0.1 m, 0.1 m, and 0.005 rad, respectively, as shown in Table 2. Figure 2
displays the four original trajectories calculated with the ground-truth values.
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Figure 2. Four distinct AUV trajectories in different scenarios are shown, featuring typical turning
paths and complex patterns. It is worth noting that these trajectories do not necessarily originate
from the point (0, 0).

Table 2. Parameters used in the Monte Carlo simulation.

Parameters Value

δ2
θ 0.005 rad

δ2
u 0.1 m/s

δ2
v 0.1 m/s

During the simulation process, the evaluation of the first moment of underwater local-
ization errors was carried out by using the following method (taking the X direction as an
example). The same approach is also applicable to the evaluation of the first moment in the
Y direction. By repeating the simulations and calculations, robust first-moment assessments
under different noise conditions were obtained, providing a clear understanding of the
variation trend of cumulative errors in underwater positioning.
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E(x̃m
1 ) = um

1 (e
−δ2

θ − e
−δ2

θ
2 ) cos(

1

∑
j=1

θm
j )− vm

1 (e
−δ2

θ − e
−δ2

θ
2 ) sin(

1

∑
j=1

θm
j ),

E(x̃m
2 ) = E(x̃m

1 ) + um
2 (e
−2δ2

θ − e
−2δ2

θ
2 ) cos(

2

∑
j=1

θm
j )− vm

2 (e
−2δ2

θ − e
−2δ2

θ
2 ) sin(

2

∑
j=1

θm
j ),

E(x̃m
3 ) = E(x̃m

2 ) + um
3 (e
−3δ2

θ − e
−3δ2

θ
2 ) cos(

3

∑
j=1

θm
j )− vm

3 (e
−3δ2

θ − e
−3δ2

θ
2 ) sin(

3

∑
j=1

θm
j ),

...

E(x̃m
n ) = E(x̃m

n−1) + um
n (e
−nδ2

θ − e
−nδ2

θ
2 ) cos(

n

∑
j=1

θm
j )− vm

n (e
−nδ2

θ − e
−nδ2

θ
2 ) sin(

n

∑
j=1

θm
j ).

Figures 3–10 show the results of the Monte Carlo simulation for the estimated un-
derwater localization error. Figures 3–6 present the expected values, while Figures 7–10
present the corresponding variances. In these figures, the red lines represent the evaluation
results from the Monte Carlo simulations, while the blue lines represent our theoretical
results. It can be observed that the estimated first-order moments were very close to the
actual errors in the Monte Carlo simulations, while the variances were higher.

In Figures 3 and 7, we present the first and second moments of trajectory 1. As shown
in Figure 2a, the AUV followed a curved path, leading to a continuous increase in the
X-direction error and a fluctuating Y-direction error. The observed variations in these
values aligned with the vehicle’s motion, which was mainly due to the nonlinear nature
of the second moment. In real-world underwater positioning scenarios, a AUV’s motion
trajectories can be highly complex, resulting in varying performance of the accumulated
error. This nonlinear behavior significantly impacts the accuracy and stability of the
positioning, and, generally, simpler trajectories tend to result in lower positioning errors.
As a result, it is essential to consider the influence of trajectory complexity when designing
and optimizing underwater positioning systems.

Similarly, Figures 4 and 8 present the corresponding results for trajectory 2. Unlike
in the previous scenario, the underwater vehicle followed a circular path in this case, and
the estimated results exhibited patterns consistent with its motion. However, we observed
that the estimation of the second moment was consistently inaccurate. The circular path
introduced periodicity in the AUV’s motion along the X and Y directions, leading to more
complex and unstable estimates of the second moment. This indicated that when the AUV’s
motion trajectory possessed more nonlinear features, the accuracy of the cumulative error
was challenged, thereby increasing the risk and difficulty of localization.

The experimental results demonstrate a strong agreement between the cumulative
error model and the statistical characteristics, particularly in the first order. Our proposed
model accurately fits the expected statistical properties, indicating its high robustness
throughout the process without actual measurements, thus providing a mathematical
solution for evaluating attitude measurements based on relative errors. However, as
the distance becomes sufficiently large, the growth rate of variance becomes unbounded,
resulting in significant degradation of the performance in the second order. Nevertheless, it
can still be considered an online solution for underwater navigation applications. To further
explore how to improve the performance in the second order by introducing additional
information or utilizing prior knowledge and, thereby, to enhance the accuracy and stability
of underwater navigation, we conducted further evaluations.
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Figure 3. The expectation of cumulative error for trajectory (a).
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Figure 4. The expectation of cumulative error for trajectory (b).
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Figure 5. The expectation of cumulative error for trajectory (c).
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Figure 6. The expectation of cumulative error for trajectory (d).
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Figure 7. The variance of the cumulative error for trajectory (a).
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Figure 8. The variance of the cumulative error for trajectory (b).
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Figure 9. The variance of the cumulative error for trajectory (c).
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Figure 10. The variance of the cumulative error for trajectory (d).
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Figures 11 and 12 display the Monte Carlo results of the estimated underwater local-
ization error uncertainty. As shown in Figure 11, the growth trend of the error expectation
from multiple tests was consistent with that of our method, and the uncertainty in error
variation grew moderately, although the effect was not significant. This confirmed the
accuracy of our method.

To provide a quantitative and intuitive observation, Figure 12 presents the statistics of
multiple results, showing that the uncertainty in the error remained stable. The expectation
in the X and Y directions under different trajectories was influenced by the trajectory
trends, but more complex trajectories did not result in significantly higher uncertainty. It is
worth noting that trajectory c generated additional outliers in the expectation, which was
speculated to be caused by uncertain errors arising from straight trajectories.

Furthermore, the uncertainty in the error variance was relatively low across different
trajectories, indicating that our method effectively accounted for the error variations.
The obtained results highlight the robustness and reliability of our proposed method
in addressing uncertainties related to underwater localization errors, particularly when
dealing with complex and diverse trajectories. The stability of error uncertainty under
different conditions demonstrates the effectiveness of our method in providing accurate
and consistent estimates for underwater navigation methods.
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Figure 11. Comparison of the cumulative error uncertainty in the X and Y directions on different
paths. (a) Trajectory (a). (b) Trajectory (b). (c) Trajectory (c). (d) Trajectory (d).
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Figure 12. The error and expected statistical results in the X and Y directions of the four trajectories.
(a) Statistics of error expectations. (b) Statistics of the standard deviation.

4. Conclusions and Discussion

We proposed a noise-based internal measurement odometry uncertainty modeling
method for underwater navigation that was specifically designed to mitigate the drift
effects of cumulative errors in acoustic-denied environments. To address this challenge, we
approximated the first two moments of the cumulative errors. In comparison to related
approaches, our method does not rely on fundamental assumptions but, rather, recursively
estimates biases and uncertainties, thus yielding empirical formulas with statistical charac-
teristics. Through Monte Carlo simulations in various underwater navigation scenarios,
we validated the effectiveness and robustness of the proposed modeling approach. The
experimental results demonstrate that our formulas significantly reduce errors in odometry,
particularly excelling in eliminating cumulative errors in complex environments.

Our model may also have great potential in the following areas:

• The mathematical model that we proposed, in combination with the RFID-based range
measurement method, holds great potential. Odometer systems typically require
recalibration of the position through reference points to mitigate the cumulative error.
Our model represents the first moment of the cumulative error accurately, and it
does not require truth values. Hence, it is feasible to use our model to calculate
the optimal distribution of reference sensors throughout the process. This method
can provide a mathematical solution for the optimal distribution of RFID sensors in
large-scale environments.
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• The evaluation of the performance of various range methods in a large-scale environ-
ment is a challenging task, as different trajectories can result in deviations from the
actual state. In this paper, we proposed a mathematical solution for calculating the
statistics of cumulative errors, and this can serve as a natural bridge for evaluating the
corresponding performance.

Of course, further research could be conducted to expand the scope of the study. For
instance, in some underwater missions, the vehicle may need to carry out three-dimensional
motion, which involves tasks at different depths. However, this work primarily focused
on the statistical characteristics of cumulative errors at the same horizontal level based
on three degrees of freedom. To address this limitation, future studies could establish a
six-degree-of-freedom motion model of the vehicle and obtain the statistical characteristics
of the cumulative errors during three-dimensional motion.
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