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Abstract: Satellite image analysis is a potentially powerful tool for monitoring coastal shoreline
positions. This study explores the use of multi-temporal, dual-polarised Sentinel-1 GRD synthetic
aperture radar (SAR) imagery with a spatial resolution of 10 m for delineating shorelines. It was
conducted in a data-deficient and complex environment (the Niger delta of Nigeria), in a developing
country with a cloud-heavy climate. The study focuses on exploring and testing the capability of
using multitemporal waterlines from SAR images to derive shoreline positions at high and low tidal
states. From 54 Sentinel-1 images recorded in 2017, the study selected 12 images to represent both
high and low tidal states. These were spread across the wet and dry seasons in order to account for
seasonal differences. Shoreline positions were obtained by identifying the land–water boundary via
segmentation using histogram-minimum thresholding, vectorizing and smoothing that boundary,
and averaging its position over multiple waterlines. The land–water segmentation had an overall
accuracy of 95–99%. It showed differences between wet and dry season shoreline positions in
areas dominated by complex creek networks, but similarities along open coasts. The SAR-derived
shorelines deviated from the reference lines by a maximum of 43 m (approximately four pixels), and
often less than 10 m (one pixel) in most locations (open coast, estuarine, complex creek networks) at
high and low tides, except low tide lines in areas with extensive inter-tidal flats at shorelines 70 m to
370 m from the reference lines. However, for applications such as coastal vulnerability assessment, the
high tide shoreline is of greater importance. Thus, depending on the application of interest, problems
with low tide shoreline delineation may be irrelevant. Despite limitations, notably the relatively small
number of images available that were recorded at high or low tide, the method provides a simple,
objective, and cost-effective approach to monitoring shorelines at high and low tide.

Keywords: shoreline delineation; synthetic aperture radar (SAR); backscatter; thresholding; vectorizing;
positional accuracy; coastal data; Niger Delta

1. Introduction

Coastal shorelines are affected by a combination of natural processes and human-
induced changes. The natural processes of erosion and accretion that transform their
configuration are caused by both extreme weather events and more common wave, wind
and tidal states acting over long timescales. Globally, there is an increasing need for moni-
toring the shoreline position in order to track climate change-induced sea-level rises (SLR).
Various studies have shown that satellite image analysis is a potentially powerful tool
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for monitoring coastal shoreline positions [1–4] as well as shoreline management strate-
gies [5–8]. Shoreline position information is also crucial for coastal scientists and modellers,
who need it to understand sediment transport and assess sediment budgets [9,10], predict
the rates of coastal land loss or gain over time [11–14] and provide measures for assessing
coastal vulnerability [7,8,15]. In a practical context, this information is used by coastal
managers to inform day-to-day and long-term planning; thus, it requires substantial spatial
and temporal coverage, as well as high accuracy. A range of remote sensing techniques
can be applied for shoreline monitoring, captured from some video cameras (which can be
based on relatively small spatial scales), to light detection and ranging (LiDAR) devices
(medium spatial scale) and satellite imagery (large spatial scale). Freely available satellite
imagery with high spatial and temporal resolution provides an important source of data for
shoreline detection, particularly in developing countries where ground-based monitoring is
not extensive. However, shoreline determination from such imagery has many challenges.

There are two steps to defining a shoreline; firstly, a suitable coastal indicator feature
needs to be defined, and secondly, this needs to be used to detect the shoreline within
the available data source [15]. In theory, the shoreline is defined as a spatially continuous
line of contact between the land and a body of water [15]. This concept is simple, but
in practice, shoreline delineation is complicated due to temporal variability across many
timescales, ranging from quasi-instantaneous changes to super-annual scale changes caused
by hydrodynamic phenomena such as waves and tides, and geomorphological changes
due to erosion and accretion [16]. Furthermore, the precise identification of the shoreline
position can be complicated by near-continuous across-shore gradients from shallow water
to wet sand or mud to drier land surfaces, which can frequently occur over tens of metres.
Boak and Turner [15] outline different shoreline indicators, which are grouped into three
categories. The first category is based on visually recognisable coastal elements, which
are physically seen (i.e., permanent dry/wet land). The second category is based on tidal
datum-based shoreline indicators, which are determined by the intersection of a coastal
profile with a specific vertical elevation. Often the mean water level (MWL), the mean
high spring tidal level or the mean high neap tidal level are used. The final category is
based on the application of image processing techniques which are used to delineate proxy
shoreline features from coastal remote sensing imagery that are not visible to the human
eye. Researchers have used several indicators in the third category as satellite technology
has advanced and its ability to objectively delineate a range of shorelines in a robust and
repeatable manner has evolved. A recent study by Paz-Delgado et al. [17] examined how
synthetic aperture radar (SAR) and multi-spectral imagery (MSI) used publicly available
satellite images in mapping, detecting, and capturing the coastline variations (both inter-
annual and sub-annual) in three coastlines in England, namely gravel pocket-beach, soft
cliff environment, and estuarine. However, it is important to note that any delineated
shoreline indicator does not necessarily represent the “actual” shoreline, however that
may be defined [18]. Zheng et al. [19] used SAR-imagery to present correction criteria
in investigating coastline areas using a waterline extraction approach and obtained an
automatic method for the coastline extraction.

Historically, the first optical satellite launch in 1972 advanced the course of digital
image processing, of the geographic information system (GIS) and of remote sensing. This
first land observation satellite, called Landsat-1, had a revolutionary multispectral scanner
(MSS), which delivered digital time sequence array as a way of transferring data [20].
Since the launch of that first optical satellite in 1972, satellite images have been used to
delineate shoreline positions, such as the use of tidal lines and water lines. According to
Niedermeier et al. [21], the waterline is defined as the instantaneous land–water boundary
at the time of the imaging process to differentiate them from the coastlines, while shorelines
are defined both in temporal and spatial senses and must take into account waterline
variability on the time scale of the image processing [15]. As the rest of this study is focused
on shoreline delineation, which will be used, more background on this study is important.
Researchers have used a variety of moderate and high-resolution optical satellite sensor
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imagery for shoreline delineation. These multispectral imageries have contributed to
shoreline delineation globally, but their applicability has been limited due to factors such
as cloud cover, cloud shadow, haze from rainfall, snowy climes, ice formations and sun
glint. A number of researchers have developed index- and threshold-based techniques for
delineating the shoreline position and change over time from optical imagery including
the Normalised Difference Vegetation Index (NDVI) [22], Normalised Difference Water
Index (NDWI) [23,24], Modified Normalised Water Index (MDWI) [25], Tasselled Cap
Wetness index (TCW) [26,27], and Automated Water Extraction Index (AWEI) [19,28]. Vos
et al. [29] recently introduced a Google Earth Engine-enabled python toolkit for delineating
coastlines from optical satellite-based imagery in Australia. However, such indices are
less effective in areas where cloud cover dominates for much of the year, or in complex
intertidal environments, where the position of the shoreline can change rapidly depending
on the state of the tide or storm surges. In general, there is no widely accepted technique
for delineating shorelines from optical imagery since each technique has its own limitations
regardless of the imagery and the nature of the environment in which the technique is
applied [30].

In contrast to optical image acquisition systems, synthetic aperture radar (SAR) satel-
lite systems have all-weather day–night imaging capabilities. Since their introduction in
1978, several methods have been developed to delineate shorelines from data generated
using different SAR satellite sensors. A number of researchers have used edge detection
techniques to determine shoreline position. For example, Lee and Jurkevich [31] developed
an edge detection algorithm for shoreline delineation based on an edge tracing algorithm.
This showed reasonable accuracy when visually assessed but required further refinement
in order to achieve the required accuracy for geospatial applications. Mason and Dav-
enport [32] developed a semi-automatic technique to delineate shoreline position from
ERS-1 SAR imagery, using the imagery to develop a digital elevation model (DEM) of the
intertidal area, which was subsequently used in a hydrodynamic model. Niedermeier
et al. [9] employed wavelet-based edge detection techniques and active contour algorithms
to derive shoreline positions from SAR imagery. The accuracy of land–water segmentation
using wavelet-based edge detection was compared to the outputs of a block-tracing algo-
rithm, with the results indicating that 85% of the edge points were within two pixels of
the derived shoreline. Spinosa et al. [33] adopted automated edge detection techniques to
delineate shoreline position from Sentinel-1 SAR imagery. The satellite-derived shoreline
was validated against an in situ video-derived shoreline whose spatial resolution varied
from decimetres to approximately 13 m based on the distance of the camera footprint along
the nearshore. The result revealed a positional accuracy of about 10 m and a root mean
square difference (RMSD) of 21.48 m. Wang and Liu [34] adopted a robust ridge tracing
method to delineate shoreline position from RADARSAT-2 and Sentinel-1 SAR images. The
method proved effective when compared to the ridge tracing technique with an in-situ
video monitoring system. The video imagery was then used to evaluate the accuracy of the
two delineated SAR images using pixel radii percentages. The results indicated that the
level of agreement between the derived shorelines from optical images and SAR images
varied at different locations. Generally, most of the delineation approaches are simple and
robust, though the use of a single SAR image polarisation gave discontinuous outcomes,
which are inconsistent with reality, as shoreline are continuous features.

A range of analysis have been conducted in various studies using SAR imagery
data obtained from Sentinel-1 satellite and good solutions to various environmental and
marine concerns have been found (see [35–38]). Launched in 2014 and 2016, the Sentinel-1
SAR C-band imaging twin satellites (1A and 1B) provide all weather, day–night imagery
for the coastal zone [39,40]. The SAR C-band instruments support operation in single-
polarisation (HH or VV) or dual-polarisation (HH + HV or VV + VH) modes. Here, in
the present study, in line with many previous studies, the focus is on the vertical-transmit
polarisation options (VV and VH). Studies have shown that VV polarisation is more
sensitive to incident wave angles and wind speeds than VH polarisation ([41,42]) due
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to longer underlying waves which modify the Bragg scattering (Bragg waves) [42,43].
Similarly, other studies have shown that SAR backscatter depends on surface roughness
and dielectric properties [44,45]. Mouche and Chapron [42] applied empirical model-based
techniques to characterise the SAR backscatter as a function of local characteristics of soil
moisture, while Altese et al. [44] utilised a theoretical model for a sensitivity assessment
of soil moisture using the surface scattering model in an earlier study that combined the
field data with SAR data. Consequently, the accuracy of a shoreline delineated from SAR
imagery depends on external factors (i.e., wind, weather, wave, and tide conditions), and
coastal sand moisture at the time of image acquisition. Using single-polarisation SAR
images to delineate shoreline under different tidal conditions is challenging due to the
mixed backscattering response resulting from variation of dry and wet sands and mudflats,
which can lead to problems of misclassification.

There have been several studies of the extraction of shorelines from SAR satellite im-
agery, and more specifically the use of dual polarimetric systems to this end [46–48]. Ding
et al. [49] explored this issue using Cosmo SkyMed data in a region of inter-tidal flats and
found that both single- and dual-polarisation data identified waterlines ‘satisfactorily’, but
that their accuracy decreased as the flats got wetter. Unsupervised classification of land and
sea (and thus delineation of their boundary) was successful using the single-polarisation
data when the land–sea contrast was high, but not when it was low or in complex areas.
The same approach applied to dual polarisation data worked well under all these condi-
tions. Others have focused on the application of alternative segmentation techniques to
polarimetric SAR data, for example, fuzzy clustering [50] or K-means based methods [51].
More recently, Pelich et al. [52] put forward an automatic, unsupervised technique for de-
riving the mean shoreline position from a stack of Sentinel-1 dual-polarisation SAR images
collected over a year and demonstrated that this was an effective way of reducing speckle
whilst retaining high spatial resolution, as well as averaging over temporal variations at
time scales of up to a year. They reported an agreement of 80–90% between their derived
shorelines and Open Street Map (OSM) coastlines, and good agreement on a qualitative
level with coastlines in optical Sentinel-2 imagery.

Thus, this present study extends the work of Pelich et al. [52], which delivered annual
mean shoreline positions, and an earlier study by Dike et al. [53], which considered inter-
tidal environments in shoreline delineation. Additionally, it later metamorphosed into the
recently recorded SAR imagery in data-poor regions for reference lines using SAR-derived
shorelines based on an accuracy approach [54]. This accuracy approach is supported by
another study by Tajima et al. [55] that used a newly developed knowledge based on
applying satellite SAR imagery using an artificial neural network (ANN) approach for
shoreline detection, which found that most of the SAR images had classification accuracies
of more than 95%. In comparison to this study, we found that most of the SAR images
in the present study had overall accuracies of more than 95–99%. Thus, the aim of the
study reported here is to explore and test the capability of using a stack of multiple SAR
images to derive shoreline positions at high and low tidal states. This present study has the
potential to provide greater insights into both the hydrodynamic and geomorphological
aspects of coastal change and enable processes such as inter-tidal zone monitoring and
management to be carried out more effectively. It will also test the relative capabilities of
SAR imagery to distinguish between water and relatively dry land (at high tide) and water
and recently wetted inter-tidal land surfaces (at low tide), and between these two states
during wet and dry seasons, thus providing a more nuanced test of the applicability of
this approach. Two important aspects of the study are that it is carried out in a region
where (i) ground-based data are very sparse, and (ii) there is a mix of open coastlines
with relatively simple geometry and complex regions of dendritic networks of inter-tidal
channels. Therefore, the objectives of this study are as follows: (a) to develop a robust
and repeatable segmentation technique to delineate waterline from multiple SAR images
recorded around user-defined tidal states (high and low water in the present study); (b) to
assess the accuracy of the derived shoreline at each tidal state against independent ref-
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erence data; (c) to find and explain differences in the accuracy of this approach between
high-water and low-water conditions during both the wet and dry seasons; and (d) to infer
the implications of our findings for the application of this approach to aspects of coastal
management. This paper is structured as follows: Section 1 introduces the paper, while
Section 2 presents materials and methods. Section 3 presents the results of analysis, while
Section 4 presents the discussion, and Section 5 presents the conclusions drawn.

2. Materials and Methods
2.1. Study Site

To develop the technique, imagery from the Niger Delta region was used. The Niger
Delta is one the most extensive wetlands in the world and contains an abundance of water
bodies including estuaries, creeks, lakes, and streams. It is severely threatened by sea-level
rise: projections estimate that over 250 km2 of land in the coastal zone of the Niger Delta
would be submerged if, as predicted, there is a 1 m rise in sea level by 2100 [56,57]. Due
to the sensitive nature of the region in terms of capital investment, human and natural
resources, it is estimated that the region will lose between USD 8.05 billion and USD
17.5 billion based on average sea level rises of 0.2 m and 1.0 m, respectively, by 2025 [57].
Accurate and up-to-date measurements of the shoreline are vital to support the assessment
of coastal vulnerability and the development of mitigation strategies. Climatic conditions
in this region make the acquisition of cloud-free optical imagery challenging, hence the
attractiveness of imagery from all-weather SAR systems. While the Niger Delta region has
a lot of oil and gas activities [58–60], there are various issues that require environmental
monitoring in the area, such as oil spills [61–63] and sea level rise [2,64,65]. There are
ranging levels of vulnerabilities to the Niger Delta coastline [2,53,54,65,66], which may
be attributed to the fact that the Niger Delta coastline is low-lying, as reported by the
IPCC [67]. However, there is no systematic sea level monitoring programme along the
Niger Delta coastline; thus, comparisons with ground-based measurements to assess the
accuracy of results derived from remotely sensed data are not possible. This constitutes
an important aspect of the challenge addressed in this study. The study area is located
along a 560 km section of coastline at the eastern distributary of the river Niger, which is
the ninth longest river in the world and second longest in Africa (see Figure 1). In addition
to the Niger River, many other rivers deposit sediments into the Gulf of Guinea in the
eastern portion of the delta around the cities of New Calabar, Bonny, Imo and Qua Ibo.
The region has a typically wet season (March to October) and dry season (December to
February) with an annual rainfall of approximately 1900–3500 mm. During the wet season,
tropical southwest winds from the Atlantic Ocean generate abundant rainfall, making the
study area among the wettest regions on Earth [68]. The annual temperature of the area
varies from 20 ◦C to 35 ◦C with high cloud cover and relative humidity ranging from 70
to 80%. The terrain of the region is low-lying, varying from 0 to 45 m above sea level [64]
with a mean tidal range that increases eastwards from Bonny estuary (1.9 m) to Ibo river
(3.0 m). Together, these factors make shoreline delineation especially challenging.

2.2. Data Selection

Multi-temporal Sentinel-1 Level 1 SAR C-band ground range detected (GRD) data
were acquired from the European Space Agency (ESA) Copernicus Open Access Hub
(https://scihub.copernicus.eu/ last accessed on 12 July 2023). The technical information
on the data repository and the Sentinel-1 SAR satellite are openly available online [39,40].
Interferogram Wide (IW) dual-polarisation (VV and VH) sensor images were downloaded
for 100 km × 100 km tile scenes in UTM/WGS84 projection at 10 m spatial resolution. The
year 2017 was chosen, arbitrarily, as the period on which the study focused, matching the
length of the single year used by Pelich et al. [52] in their study of the overall average
shoreline position, as described above. A total of 54 Sentinel-1 images were available for
this year. The timing of these images was compared with tidal data measured at the city
of Bonny (see Figure 1 for location), as shown in Figure 2. To delineate the shoreline at
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low tide, the six images recorded when the tidal height at Bonny was below 1 m were
used. A matching number of images (6) recorded when tidal height was above 2 m were
selected from the total of 14 recorded at that tidal state. This selection for the high tide state
was made arbitrarily in order to correspond to the available low tide data, which is less
than 1 m (see Figure 2). The images from both the wet and dry seasons (roughly March to
October and November to February, respectively) were used to allow the assessment of the
variation in the ability of the method used to delineate the shorelines between them.
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To assess the accuracy of the shorelines derived from the Sentinel-1 SAR images,
multispectral optical Sentinel-2 imagery acquired on 25 January 2018 and 31 December
2017 at tidal heights of 2.1 m and 0.8 m, respectively, was utilised. It is worth noting that
both images were captured during the dry season, when, presumably, coastal cloud cover
is less of an issue. The Sentinel-2 multispectral instrument (MSI) has 13 spectral bands with
spatial resolutions of 10, 20, 60 m. This study used the 10 m multispectral data, which are
equivalent to the spatial resolution of the SAR data.

2.3. Data Collection and Processing

The technology under study is the adoption of SAR imagery and the procedure
applied for the tidal data obtained from the Nigerian Naval Office in Bonny, Nigeria. The
methodology adopted for deriving shoreline for high and low tides is summarised in
Figure 3. Prior to shoreline delineation, the SAR images were pre-processed using the
standard generic workflow for Sentinel images in the ESA Sentinel Application Platform
(SNAP). To enable batch processing of the bulk images, a command graph-based procedure
was adopted. Six standard correction procedures were applied to optimally reduce error
dissemination in the resulting images, including precise orbit, radiometric calibration, and
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range Doppler terrain correction. Other geographical data can also be obtained from public
domain sites, while the vectorization of the waterline is achievable via standard tools
available in most GIS software packages.
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2.4. Dual Polarisation Image Formation

The VV and VH polarisation data were combined and averaged into a single backscat-
tered image. This is because wind and wave conditions are known to significantly impact
the backscatter of the ocean surface, which affects SAR data, especially in VV polarisation,
and thus affects shoreline delineation (e.g., [49,52]). The mean of the VV- and VH-polarised
data was adopted, yielding lower backscatter intensity values for waterbodies and higher
backscatter intensity values for dry sand and mudflat features (Figure 4). This makes it
easier to distinguish land from water, particularly along sections of open coastline where
the backscatter values in the VV and VH images showed considerable variation in the
swash zone, which would have made shoreline delineation problematic if they had been
used alone.
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Figure 4. Backscatter pixel intensity of major land cover type.

In order to quantify the variation in the land cover types, the backscatter intensity
values between the mean VV and VH, and VV and VH polarisation indicate variation in the
reclassified land cover types (Table 1 and Figure 5). The mean VV and VH polarisation has
proven to be effective for the delineation of land and water bodies. This is because based
on the backscatter intensity values for the land cover, the minimum observation value for
VV polarisation on the land is −12.0, while the maximum observation value for the water
body is −12.5. Additionally, the VH polarisation demonstrates quite different backscatter
intensity values with a minimum observation intensity value on the land of −18.1 and a
maximum observation intensity value on the water body of −24.1. Nevertheless, there
are outlier backscatter intensity values observed in mean VV and VH polarisations for
the land cover types as shown in Figures 4 and 5. In order to reduce this outlier problem,
relative mean values of the two-land cover were used, which were applied to the threshold
approach to classify the images.
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Table 1. Overall polarisation backscatter intensity value for each land cover.

Reclassified
Land Cover Metric Mean VV

and VH VV VH

Land

Minimum −17.9 −12.5 −18.1

Maximum −7.6 −0.5 −11.9

Mean −11.9 −8.4 −15.1

Standard Deviation 1.9 2.8 1.8

Water Body

Minimum −28.2 −27.9 −28.6

Maximum −14.3 −12.0 −24.1

Mean −23.0 −20.8 −26.1

Standard Deviation 3.2 3.6 1.4
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2.5. Threshold-Based Segmentation

The averaged VV and VH backscatter images that cover both land and water surfaces
have a bimodal frequency distribution of pixel intensities. A simple threshold approach
was therefore used to differentiate between land and water in them. In theory, the backscat-
ter value between the two peaks in the bimodal frequency distribution with the lowest
frequency (pixel count) should be adopted as the threshold. However, due to the com-
plexity of the images, which was confounded by noise in some cases, it was challenging
to establish a single threshold that could be applied to all images. Therefore, this study
utilised the backscatter value with the minimum intensity frequency between the peaks
of multiple histograms. For example, in Figure 6, the averaged backscatter values from
images recorded at multiple tidal states range from −33 dB (water) to +4 dB (land). A
threshold value of −16.5 dB was adopted to the segment between water and land for all
these images, which is the minima across the multiple histograms (see Figures 6 and 7).
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2.6. Raster-Based Accuracy cum Confusion Matrices Assessment

The accuracy of the land–water classification of the Sentinel-1 SAR imagery was
assessed against high-resolution Google Earth imagery captured on 21 December 2018
under low-tide conditions using confusion matrices, a widely used accuracy assessment
technique [51,69]. An equalised stratified random sampling procedure was used in which
reference points were captured from locations distributed evenly across the areas classified
as land and water. The sample reference point data were then compared to equivalent data
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from the SAR-based raster images to measure the levels of overall agreement. From these,
a confusion matrix was created, from which producer’s and user’s accuracy could be calcu-
lated. An additional measure of accuracy, the kappa coefficient, was also calculated [24,28].

2.7. Raster-Featured cum Vector-Based Analysis

The ArcGIS raster-to-feature tool was used to convert the binary land–water images de-
rived from the segmentation explained above into polygon features. The polygon features
were converted to polylines which were then smoothed to improve their cartographic qual-
ity. This improvement was achieved using a polynomial approximation with exponential
kernel (PAEK) algorithm which calculated a smooth line passing through the input vertices
of the polylines with a smoothing tolerance of 40 m [70,71]. Lower levels of smoothing
tolerance resulted in unacceptably jagged lines. Finally, a model-builder geoprocessing (i.e.,
conversion of multitemporal waterlines polylines into polygon, generalization (dissolve)
from data management, topographic production (polygon to centreline) tool) approach
was used to convert the multi-temporal vectorized waterlines into shorelines for high and
low tide.

2.8. Positional Accuracy cum Vector-Based Assessment

In order to evaluate the positional accuracy of the derived MWLs, independent wa-
terline datasets covering high and low tidal states were acquired by manually digitising
Sentinel-2 MSI images. The vectorised MWLs derived from the Sentinel-1 SAR imagery
were then assessed for positional accuracy against the Sentinel-2 image (reference data)
using the ArcGIS 10.4 Positional Accuracy Assessment Tool (PAAT). PAAT is a point-based
standard methodology (PBSM) which uses a series of measures to characterise the positional
difference between two sets of geospatial data. It computes the random and systematic
errors between a reference dataset and a target dataset, expressing differences through three
metrics: mean residual, root mean square error (RMSE), and standard deviation [72–74].
Likewise, the degree of uncertainty is calculated using two metrics: absolute circular error
(ACE) and relative circular error (RCE) at a 90% confidence level. The standards were devel-
oped in 1947 by the United States’ National Standard for Spatial Data Accuracy (NSSDA),
which was published in 1998 by the US Federal Geographic Data Committee [74].

3. Results and Analysis
3.1. Raster-Based Analysis from Seasonal Changes

Figure 8 illustrates the results of applying the thresholding technique to four Sentinel-1
SAR images covering two seasons (wet and dry) and tidal states (high and low). Figure 8a,c
is derived from Sentinel-1 SAR images acquired during the wet season at 2.10 m and 0.78 m
tidal height, respectively. Figure 8b,d is derived from Sentinel-1 SAR images acquired
during the dry season at 2.14 m and 0.93 m tidal height, respectively. A visual inspection of
the images confirms similarity in shoreline position along the open coast but substantive
differences in the complex creek areas.

3.2. Raster-Based Accuracy Assessment from SAR imagery

The results of the raster-based accuracy assessment based on the analysis of each
of the twelve images are summarised in Table 2. Taking all statistics into account, the
overall accuracy across all raster-based classifications of Sentinel-1 SAR imagery ranges
from 95 to 99%. The user’s accuracy ranged between 86 and 100% for water bodies, and
93 and 100% for land areas. The producer’s accuracy ranged between 95 and 100% for
water bodies, and 90 and 100% for land areas. It is worth noting that the variations in the
accuracy measures may in part be due to tidal state differences between the baseline data
(Google Earth imagery) and the segmented Sentinel-1 images. The kappa coefficient, which
is consistently high for each image regardless of season or tidal state, confirms a high level
of consistency can be achieved using the threshold-based classification.
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Figure 8. Binary classification of Sentinel-1 images into land and water body classes, showing
the images retrieved on (a) 13 April 2017, (b) 20 November 2017, (c) 19 May 2017, and (d) 26
December 2017.

Table 2. Raster-based accuracy assessment for threshold-derived shorelines from Sentinel-1.

Image
Acquisition Date

Feature
Classes

Accuracy metric
Tide Level SeasonProducer’s

Accuracy (%)
User’s

Accuracy (%)
Overall

Accuracy (%)
Kappa

Coefficient

12 January 2017
Water Body 100 89

97 0.93 High Dry
Land 90 100

5 February 2017
Water Body 99 97

98 0.96 Low Dry
Land 97 99

1 March 2017
Water Body 100 93

97 0.93 High Wet
Land 93 100

13 March 2017
Water Body 100 89

95 0.89 High Wet
Land 90 100

13 April 2017
Water Body 100 93

97 0.93 High Wet
Land 93 100

19 May 2017
Water Body 100 96

98 0.96 Low Wet
Land 96 100

17 June 2017
Water Body 100 99

99 0.99 Low Wet
Land 99 100

18 July 2017
Water Body 100 98

99 0.98 Low Wet
Land 98 100
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Table 2. Cont.

Image
Acquisition Date

Feature
Classes

Accuracy metric
Tide Level SeasonProducer’s

Accuracy (%)
User’s

Accuracy (%)
Overall

Accuracy (%)
Kappa

Coefficient

16 August 2017
Water Body 99 98

98 0.97 Low Wet
Land 99 98

21 September 2017
Water Body 99 95

97 0.94 High Wet
Land 95 99

20 November 2017
Water Body 95 95

97 0.95 High Dry
Land 100 100

26 December 2017
Water Body 99 99

99 0.98 Low Dry
Land 99 99

3.3. Vector-Based Analysis Using Regions of Interest (ROI)

Figures 9 and 10 show examples of the extent to which the vectorized shorelines
derived from the Sentinel-1 SAR imagery compared to the manually digitised Sentinel-2
MSI waterlines for different regions of interest (ROI). In the open coastal environment,
there is a decrease in the differences between the SAR-derived shoreline and the reference
data decreases from west to east, especially at low tide. Figure 9a illustrates the difference
between the shoreline’s positions for an area of open coast at the western side of the image,
which ranges from 11 to 43 m for the high tide shoreline, and 7 to 34 m for the low tide
shoreline (for all these differences, positive values indicate that the SAR line is landward of
the reference data line, and negative values indicate the opposite). In an area of open coast
in the middle of the image (Figure 9b), the agreement ranges from 4.7 to 7.9 m for the high
tide shoreline and −8.9 to 7.0 m for the low tide shoreline. In an area of open coast to the
east of the image (Figure 9c), the differences for high tide shoreline and low tide shoreline
range from −4.8 and 16.4 m, respectively. This variation seems to largely be a consequence
of differences in the image acquisition times.

In the complex creek environment, as illustrated in Figure 10, the overall performance
of the method against the reference data seems to be consistent. The region of interest in
the complex creek environment was selected based on tidal influence and land cover of the
study area. In freshwater-dominant areas, such as those illustrated in Figure 10b, which
have little or no tidal influence, the derived shorelines are in close agreement with the
reference data for both high mean waterline (HMWL) and low mean waterline (LMWL),
with offsets ranging from −1.6 to 11.0 m and −4.0 to 5.8 m for HMWL and LMWL,
respectively. In the estuary, which is dominated by mangrove, the derived shorelines show
a similar degree of offset from the reference data, with values ranging from 0 to 10.3 m and
−3.8 to 17.5 m for HMWL and LMWL, respectively. However, Figure 10d shows that, in
the mudflat area, while the two MWL estimates are in good agreement at high water, the
SAR method identifies additional land–water boundaries landward of this. Thus, at low
water, the two MWL estimates do not overlap; the reference data provide an approximately
straight MWL that is seaward of any part of the SAR-derived MWL, while the SAR-derived
MWL itself is much more complex in form and spreads across the mudflat area. Together,
these give differences from 69.1 to 369.3 m. The present study interprets these differences as
being due to relatively subtle variations in surface roughness and homogeneous scattering
on the mudflats, which affect the backscatter intensity measured by the SAR instrument.
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3.4. Positional Accuracy Assessment from Shoreline Positions

Figures 9 and 10 illustrate the level of agreement between the derived shorelines and
the reference data for some selected regions of interest. A positional accuracy assessment
was conducted using Sentinel-2 MSI as a reference dataset to statistically evaluate the
overall accuracy of the low and high tide shorelines derived from the Sentinel-1 SAR data.
Table 3 summarises the positional accuracy statistics for shorelines on the open coast and
complex creek ROIs. In the open coast ROI, the ranges of the accuracy statistics were from
9.17 m to 34.63 m for the RMSE; from 5.11 m to 13.94 m for the SD; from 14.38 m to 48.36 m
for the absolute circular error (ACE) at a 90% confidence level; and from 15.45 m to 41.40 m
for the relative circular error (RCE). In the complex creek ROI, the corresponding values
ranged from 4.11 m to 213.39 m for the RMSE; from 2.57 m to 120.33 m for the SD; from
6.56 m to 331.01 m for the absolute circular error (ACE) at a 90% confidence level; and
from 7.74 m to 396.28 m for the relative circular error (RCE). However, of the seven derived
shoreline datasets in both the open coast and complex creek ROI, only five have an RMSE
greater than 10 m (one pixel), while the ACE and RCE results of the derived shorelines
shows that the value ranges from −2.02 to 10.89 m.

Table 3. Results of the positional accuracy assessment, illustrating the statistics of the differences
between shoreline positions derived from Sentinel-1 SAR and Sentinel-2 multispectral optical band
imagery.

Location Zone Tidal Level Number of
Observation

Mean of
Residual RMSE SD ACE RCE

Figure 8a Open Coast MHWL 213 32.36 34.63 12.37 48.36 37.47

Figure 8a “ MLWL 213 30.85 33.59 13.32 48.07 40.46

Figure 8b “ MHWL 111 10.22 14.83 10.8 24.20 31.97

Figure 8b “ MLWL 111 15.71 20.96 13.94 33.80 41.40

Figure 8c “ MHWL 263 7.41 9.17 5.4 14.38 16.40

Figure 8c “ MLWL 263 13.30 14.24 5.11 19.90 15.45

Figure 9a Complex Creek MHWL 114 7.177 8.72 4.97 13.61 14.86

Figure 9a “ MLWL 117 10.30 12.10 6.39 18.57 18.39

Figure 9b “ MHWL 110 4.34 5.1 2.69 7.83 8.17

Figure 9b “ MLWL 110 3.22 4.11 2.57 6.56 7.74

Figure 9c “ MHWL 130 6.17 8.51 5.89 13.79 18.01

Figure 9c “ MLWL 129 22.84 29.69 19.04 47.52 58.92

Figure 9d “ MHWL 354 10.01 13.17 8.57 21.07 26.14

Figure 9d “ MLWL 379 176.34 213.39 120.33 331.01 396.28

4. Discussion

This study has explored the capability of using Sentinel-1 imagery to accurately delin-
eate shorelines in the Niger delta region at high-tide and low-tide conditions from dual
SAR polarisation (VV and VH) data by (i) segmenting images into two classes (water and
land); (ii) defining the boundary between them using histogram-minimum thresholding;
(iii) vectorizing and smoothing that boundary using tools built into ArcGIS; and (iv) av-
eraging the shoreline positions over multiple images taken near high and low tides over
the course of one year. Using this type of data to delineate waterlines has been previously
explored by a number of other researchers [46,47,49,50,52], but exploring the ability of this
type of technique to delineate the shoreline at specific tidal states (high and low water in
this case), as this study presents here, but does not appear to have been reported in the
literature search to date. Liu et al. [51] investigated the construction of tidal flat digital
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elevation models (DEMs) using waterlines derived from satellite imagery including SAR
data at different tidal states but assumed the accuracy of the waterline delineation methods
they adopted. That study [51] investigated the delineation of waterlines at different tidal
states in a similar way to that presented here, but the researchers used optical satellite
imagery, which would not be possible in our study area (i.e., the Niger Delta coastline)
because of the issue of cloud cover, which takes up 8/12 months of the year. In another
study, Omari et al. [75] studied the use of polarimetric SAR data to map inter-tidal zones
but used aerial photographs from unmanned airborne vehicles (UAVs) to train an image
classification process to distinguish wet and dry areas. Here, our intention was to develop
method with a cost as low as possible for application in relatively data-deficient countries
such as Nigeria; thus, our classification is untrained.

The method presented in this study provides a simple, robust, objective, and cost-
effective approach for monitoring shoreline positions in the coastal environment that avoids
problems of cloud cover and is therefore particularly appropriate for equatorial contexts
such as the Niger delta. The images are free to download from a publicly accessible website;
the segmentation process using histogram frequency minima was consistent across all
the images used and did not require manual adjustment; and the vectorization of the
waterline is achievable via standard tools available in most GIS software packages. Thus,
the whole process is amenable to any operator with access to the internet and a GIS. The
positional accuracy attained from this method is encouraging, in that it has an RMSE of the
order of one pixel (10 m) in most of the area analysed (with notable exceptions, which are
discussed further below). The accuracy measures found are dependent on the accuracy
of the reference data itself. Due to unavailability of waterline data from the relevant
national ministry/agency, such as the reference data used by, for example, Pelich et al. [52],
the positional accuracy results presented here relied on manually digitalized waterlines
from optical data from the sister satellite (Sentinel-2) of the satellite from which the SAR
data were recorded (Sentinel-1). In previous studies, as identified in Section 1, assessing
the positional accuracy of derived shorelines has not been straightforward due to factors
including sensor type, sensor acquisition geometry, and acquisition times (and thus tidal
state) differences [76]. In the present study, the sensor geometry of the two data sources
varied: the incidence angle of Sentinel-1 SAR ranges from 29.1◦ to 46◦, while the Sentinel-2
MSI incidence angle is 20.6◦. Secondly, as noted above, the difference in data acquisition
times may have influenced the accuracy of the results due to coastal geomorphological
changes in the time between acquisition of each dataset. However, as these differences
would only reduce accuracy measures, the PAAT output values listed in Table 3 are upper
limits of the accuracy of the method presented.

There are a number of noteworthy ways in which the proposed method performs well.
The derived shorelines are fully continuous, with no breaks. Thus, the creation of averaged
imagery from dual-polarisation data, segmentation, vectorization and smoothing processes
used to generate them are shown to be appropriate for this task. This finding aligns with
those of previous studies, which have found histogram thresholding techniques to be
capable of classifying land and water body in a subjective, fast, and repeated way [9,77,78].
This method also has the benefit of being simple to operate and thus appropriate in contexts
where operator expertise may be limited. There is a clear difference between the shoreline
derived during the wet and dry seasons. In agreement with many others (op. cit.), it also
demonstrates the value of combining VV- and VH-polarised data to create dual-polarised
images prior to applying the segmentation and delineation processes.

A key limitation of the method is the relatively small number of images available
within the space of a year that fall into the category of being recorded at ‘high’ or ‘low’
tide. The cut-offs for these categories are arbitrary; however, there is a trade-off in that
for, say, high tide, the lower the cut-off, the more images can be used to derive a shoreline
position, but those additional images will come from further away from the maximum
high tide, thus reducing the average height of the tide. The higher the cut-off, the more
strictly ‘high’ tide the derived shoreline will be, but fewer images will be usable. Without
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ground-based information on the across-shore topographic variations at each point on
the coast, matching images to their precise point in the tidal cycle will not allow the high
tide line to be extrapolated from waterlines for differences in tidal phases; therefore, in
data-sparse environments like the Niger delta, an appropriate balance between the number
of images used to derive the high tide line and the strictness of the definition of high tide
images needs to be struck. However, as more images are recorded over time, it should
become possible to develop 3D terrain models (assuming that accurate tidal height data
are available), and these can be gradually filled in as the images will inevitably come from
different points in the tidal cycle. This would lead to a more reliable high and low tide line
delineation but would take several years to accumulate.

The most notable limitation of the method described, as evidenced by the results
presented, is its poor performance in delineating the shoreline at low water in areas of
inter-tidal mudflats within the estuarine and complex creek ROIs. Figure 8d shows that the
LWL derived from the SAR imagery is landward of that observable in the corresponding
optical image and appears to be distinguishing between two regions of the inter-tidal zone
(i.e., the area between the high and low waterlines in the optical image). The difference
between these two regions is not clear but given that SAR reflectance is dependent on
surface roughness and dielectric constant, the regions may be distinguished by the type of
material that dominates them (e.g., pebbles, sand, mud or possibly biota such as shellfish or
seaweed) or by subtle variations in their height, which lead to slightly raised areas drying
out more quickly during receding tides. A solution to this problem may require a more
sophisticated approach to one or more stages of the process described and requires further
study that is beyond the scope of this paper.

Despite the limitations, notably the relatively small number of images available that
were recorded at high or low tide, this method provides a simple, objective, and cost-
effective approach to the monitoring of shorelines at high and low tide. However, various
recent studies suggest potential ways forward in this respect of improving data availability
and providing solutions, which include developing vulnerability maps [79]. Other areas for
future work that could be applied in this study are machine learning, optimization schemes
and deep learning [55,80–83]. For example, Tajima et al. [55] used an artificial neural net-
work (ANN) with SAR imagery data to establish a shoreline detection method considering
accuracies from the classification carried out via machine learning. An et al. [80] used a
fuzzy C-means approach combined with a wavelet decomposition algorithm to reduce
speckle in SAR imagery and thus improve the segmentation process and, consequently, the
boundary definition. Wei et al. [81] developed a geometric active contour model to identify
shorelines from SAR imagery where the land–water boundary is weakly defined. Other
studies include the use of Sentinel-1 SAR imagery for flooding investigation using Hybrid
Swarm Optimized Multilayer Neural Network [82] and deep learning [83]. These studies
all portray further applications that could be conducted in this area.

The use of Google Earth images in this present study as the reference data is necessary
because Google Earth imagery is needed at first to evaluate all the results, more evaluation
was carried out in this research to ensure that the Google Earth imagery is not erroneous
as qualified reference data since it is a well-validated data source [29,36,84]. Based on the
focus of the study, Google Earth imagery was only used to assess the raster-based accuracy
of the segment backscattered due to the extent of the study. The confusion matrix was
used because it is a simple cross-tabulation of the class labels allocated by the classification
of the map data against the reference data (Google Earth). Although, a vital limitation of
the approach taken in this study is that while it is suitable to only use the high-resolution
Google Earth images from more recent times than 2018, the quality of the imagery output
under low-tide conditions obtained when assessing the raster segmentation results will
differ as the more recent ones will be better. Additionally, due to the quality demand,
some analysed images are acquired under high-tide conditions. However, the reason these
image data from Sentinel-2 MSI imagery were used to assess positional accuracy is that the
authors want to use uniform satellite imagery for low and high tide from the same Sentinel
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family. In this study, we acknowledged the limitations experienced by the data because the
tidal height used in the study year has a significant impact on the availability of data. It
is worth noting that the most important aspect in characterising the study’s data is that
the data cut across two seasons (wet and dry). The availability of such data based on the
method used might vary from region to region across the globe. The reference data from
Google Earth software were only used to assess the raster-based segmentation of land and
water bodies in the SAR images. The Google Earth imagery was only used to assess the
user’s accuracy, the producer’s accuracy, the overall accuracy, and the kappa coefficient.

While the method used in the study is the threshold-based water body segmentation
approach, it uses data from SAR imagery that are not very recent and somewhat out-of-
date (as of 2018) and appear arbitrary; however, these were the available data in the data
repository used during the data retrieval, as this study was conducted at different stages.
In addition, there are many advanced methods, both conventional and more recently
enhanced machine learning (and deep learning) methods, that can achieve a very high
accuracy with high stability. However, there are studies that have shown that both machine
learning and deep learning methods have strengths and limitations. Some studies have
used threshold-based methods with combinations of other methods, as in the most recent
study [54]. In short, it has also been evidently presented that there are several methods
that could be considered for segmenting SAR imagery, such as machine learning and
deep learning [82,83,85,86], developing openly available digital shoreline analysis systems
like ODSAS [87], or having an SAR-imagery data repository like the Copernicus Open
Access Hub (previously referred to as Sentinels Scientific Data Hub) [39,40,88]. However,
there is no generally accepted method of segmenting imagery currently, especially when
segmenting shorelines.

Overall, the method presented in the present study has further limitations as it lacks
the sophistication of some other methods reported in the literature but emphasizes utility
in data-sparse contexts and provides delineations of high and low shorelines that this study
argues are sufficiently continuous and reliable, especially on open coasts, for practical
applications such as coastal vulnerability and flood risk assessments. This argument
is supported by the comparisons with optical imagery presented. Although there are
problems in certain contexts with the low tide shoreline, for applications such as these,
it is the high tide line that is of concern, and the method works well in all ROIs in that
respect. Based on the metric used, we suggest other precision-based approaches as opposed
to only accuracy, such as the use of intersection over union. For the positional accuracy
assessment tool (PAAT), the point-based standard methodology (PBSM) provides a more
robust metric for assessing shoreline position. The PAAT tool has been found to be a
useful support raster-vector analysis on ArcGIS software. This is because it computes the
random and systematic errors between a reference dataset and a target dataset, expressing
differences through three metrics: mean residual, root mean square error (RMSE), and
standard deviation (SD).

5. Conclusions

Given that satellite image analysis has been identified to be a potentially powerful
tool for monitoring shoreline positions, we utilised it in this research to solve a coastal
problem of shoreline delineation. The present study explores the use of multi-temporal,
dual-polarised Sentinel-1 synthetic aperture radar (SAR) imagery with a spatial resolution
of 10 m for delineating shorelines in a complex environment with a cloud-heavy climate.
The case study for the investigation is in the Niger delta region of Nigeria, which is a
developing country in Africa. This study focused on exploring and testing the capability of
using multitemporal waterlines from SAR images to derive shoreline positions at high and
low tidal states. From 54 Sentinel-1 images recorded in 2017, the study selected 12 images
to represent both high and low tidal states. These were spread across the wet and dry
seasons in order to account for seasonal differences. Shoreline positions were obtained
by identifying the land–water boundary via segmentation using histogram-minimum
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thresholding, vectorizing and smoothing that boundary, and averaging its position over
multiple waterlines. This study makes a significant contribution to shoreline delineation
in coastal regions, and the model applied in this study adds to the understanding of SAR.
The approach considered in this research also highlights the novelty in data collection and
processing for SAR.

From this study, it was observed that the land–water segmentation had an overall
accuracy of 95–99%. Accuracy was assessed against reference waterlines derived manually
from Sentinel-2 multispectral instrument optical imagery. It showed differences between
wet and dry season shoreline positions in areas dominated by complex creek networks, but
similarities along open coasts. The SAR-derived shorelines deviated from the reference
lines by a maximum of 43 m (approximately four pixels), and often less than 10 m (one
pixel) in most locations (open coast, estuarine, complex creek networks) at high and low
tide. The notable exception was the low tide line in areas with extensive inter-tidal flats. In
those cases, the processing method picked up apparently subtle variations, which led to it
identifying shorelines 70 to 370 m from the reference lines. However, for applications such
as coastal vulnerability assessment, the high tide shoreline is of greater importance; thus,
depending on the application of interest, problems with low tide shoreline delineation
may be irrelevant. Overall, despite the limitations, notably the relatively small number of
images available that were recorded at high or low tide, this method provides a simple,
objective, and cost-effective approach to monitoring shorelines at high and low tide.

The study achieves the stated aims of developing a robust and repeatable segmentation
technique to delineate shorelines at high and low tide; to assess the accuracy of the derived
shorelines against reference data; and to infer the implications of our findings for the
application of this approach to aspects of coastal management. In so doing, this study
has presented a simple method that overcomes the problem of extensive cloud cover and
provides a viable approach to shoreline delineation in data-sparse contexts where operator
expertise in image analysis techniques may be limited. To develop this method further, the
issue of poor low tide line delineation in some conditions needs to be addressed, and the
possibility of building up terrain models from the ever-growing archive of high-resolution
imagery should be explored. By carrying this out, SAR imagery could be complemented
by optical imagery recorded on occasions when cloud cover is low, allowing ongoing
referencing and accuracy assessment of the SAR-derived shorelines to be carried out.
Future works should consider assessing the shoreline delineation accuracies in different
regions (open coast, complex creek networks, etc.). Additionally, future directions could be
considered in using other methods of imagery to obtain geographical and environmental
data in the Niger Delta area of Nigeria. Lastly, it should be noted that more metrics should
be used to provide a more comprehensive evaluation, such as precision, and intersection
over union, instead of only using accuracy in future studies.
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