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Abstract: Visual object detection is an essential task for the intelligent navigation of an Unmanned
Surface Vehicle (USV), which can sense the obstacles while navigating. However, the harsh illu-
mination conditions and large scale variation of the objects significantly harm the performance of
object detection methods. To address the above problems, we propose a robust water surface object
detection method named multi-scale feature fusion network with intrinsic decomposition generative
adversarial network data augmentation (MFFDet-IDGAN). We introduce intrinsic decomposition
as data augmentation for the object detection to achieve illumination adapting. And an intrinsic de-
composition generative adversarial network (IDGAN) is proposed to achieve unsupervised intrinsic
decomposition. Moreover, the multi-scale feature fusion network (MFFDet) adopts an improved
bidirectional feature pyramid network (BiFPN) and spatial pyramid pooling (SPP) blocks to fuse
features of different resolution for better multi-scale detection. And an improved weighted stochastic
weight averaging (SWA) is proposed and applied in the training process to improve the generaliza-
tion performance. We conduct extensive experiments on the Water Surface Object Detection Dataset
(WSODD), and the results show that the proposed method can achieve 44% improvement over the
baseline. And we further test our method on a real USV in the sailing process, the results show that
our method can exceeding the baseline by 4.5%.

Keywords: multi-scale; intrinsic decomposition; water surface; object detection; generative
adversarial network

1. Introduction

Unmanned surface vehicle (USV) has been widely applied in many fields, including
military tasks, river topographic mapping, water quality monitoring and so on, for its
minisize, lowcost and convenience. Visual perception is an important module for USV, for
it can provide abundant information about the obstacles including location, speed counts
and density. Object detection plays a major role in the relative image processing tasks,
which can provide the category and pixel-level position of the objects. However, for the
difference between the condition on the water surface and that on the ground, effective
object detection for USV perception remains a challenging task.

1.1. Background

To achieve automatic navigation, object detection is a key module for USV, for it can
sense and locate the obstacles around the vehicle. With the great success of convolutional
neural networks and deep learning in the computer vision community [1,2], many effective
object detection methods have been proposed. YOLO [3–6] and SSD [7] are widely applied
object detection algorithms for their fine accuracy and rapidness. However, these methods
are designed and tested in general scenes, while they obtain poor performance in the water
surface scenes. The property of the objects and scenes on the water surface are greatly
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different from that in general scenes, so there exists several challenges to design an effective
object detection method.

One of the challenges is that the range of distance variation from the target is large,
so the scale of the objects varies greatly. The objects of extreme scale (extremely large or
extremely small) can be more likely to cause missed detection. In the field of water surface
object detection, many studies have been carried out to realize multi-scale detection. Most
of these works achieve multi-scale detection by improving the feature fusion strategy [8–11],
while others utilize data augmentation [12] and scene narrowing [13].

Another challenge is that the illumination condition on the water surface can be
complex and harsh, for there exist far more specular reflections. The strong illumination
can badly affect the quality of image, resulting in difficulty in distinguishing the features
of the targets. Additionally, because there is no additional light source, the illumination
condition greatly depends on the sunlight, which results in massive backlight scenes. In the
backlight scenes, we will face a condition that the illumination on the object is extremely
poor while extremely strong light in the background, both of which would harm the perfor-
mance of the object detection. However, previous works hardly focus on this issue. Some
methods choose to improve the illumination condition by preprocessing the input image.
Zhang et al. [14] utilize gamma correction as a preprocess method to reduce the interference
of sunlight and Syed [15] makes use of a specular removal method to reduce the reflection
on the water surface. Preprocessing image to improve the illumination condition is a seem-
ingly feasible method, and there are many works for specular removal by digital image
processing [16–19] and deep learning based methods [20–22]. However, the digital image
processing methods can hardly deal with the complex illumination conditions on water
surface, these methods can cause severe image color distortion, which may decrease the
performance of detection method in contrary. The deep learning methods can be more
powerful for its strong feature extraction ability, but the large calculation of deep neural
network can cause a significant increase in the calculating time, which is not acceptable for
USVs with limited computing resources.

Based on the above analysis, to achieve illumination adapting and multi-scale detec-
tion for water surface scenes, a multi-scale feature fusion object detection with intrinsic
decomposition generative adversarial network data augmentation (MMFDet-IDGAN) is
proposed. And to enhance the generalization ability of the model, an improved Weighted-
SWA is proposed and applied. Extensive experiments on WSODD show that the proposed
method can achieve 44% improvement over the baseline. And the experiments on real
world sailing also demonstrate that our method can obtain better accuracy than other
methods with equal rapidness.

1.2. Contributions

The contributions of this paper include:

1. To deal with the harsh and complex illumination condition on water surface scenes,
we introduce intrinsic decomposition as a data augmentation method to enable the
object detection network to adapt to the harsh illumination condition on water sur-
face scenes. And the results of experiments demonstrate that it is an effective way
to handle the complex illumination condition without any extra calculation while
detecting. For the lack of high quality annotated intrinsic decomposition datasets, we
propose an unsupervised method named intrinsic decomposition generative adver-
sarial network (IDGAN) to address this task. The natural images in the dataset are
decomposed to reflectance and shading to obtain more prior information to achieve
illumination adapting.

2. To obtain better performance while detecting the objects with extreme scale, we
proposed a multi-scale feature fusion object detection network (MFFDet) to improve
the multi-scale detection effect. The network take use a deeper CSPDarknet53 to
obtain more effective semantic features. And a multi-scale feature fusion neck with
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spatial pyramid pooling (SPP) blocks and improved bidirectional feature pyramid
network (BiFPN) is used to improve the multi-scale detection performance.

3. To obtain a model with better generalization, an improved model ensembling method
Weighted-SWA is proposed, which utilizes entropy evaluation to weight the models
to ensure that the models converge to the optimal solution region. The Weighted-SWA
can enhance the generalization of the model by ensuring that the model is located in
the smooth region of the solution space.

1.3. Organization

The remainder of this paper is structured as follows. Section 2 reviews the previous
approaches related to water surface object detection and intrinsic decomposition. Section 3
describes the proposed method in detail. Section 4 presents the experimental results of
our method in dataset experiments and practical verification. In Section 5, we analyze the
experiment results and potential challenges. And we finally give a summarize of our work
in Section 6.

2. Related Works
2.1. General Object Detection Methods

Existing object detection methods mainly include anchor-based methods, anchor-free
methods, and transformer methods. Anchor-based methods can be further divided into
two-stage methods and one-stage methods.

Anchor-based methods set several prior boxes to obtain further classification and
regression. Two-stage methods (R-CNN [23], SPPNet [24], Fast R-CNN [25], Faster R-
CNN [26], Mask R-CNN [27], and Cascade R-CNN [28]) apply region proposal networks
(RPN) to obtain a region of interest to obtain further classification and regression. The two-
stage methods can be more precise but less efficient due to the complex process. One-stage
(YOLOv1-v4 [3–6], SSD [7], RetinaNet [29]) methods generate classification and regression
results directly from the prior boxes. Without the RPN and box reinforcement, one-stage
methods can be faster but not so accurate as the two-stage ones. For the effectiveness and
rapidness of one-stage methods, they are widely applied in engineering conditions. The
use of anchor enable the designer to add prior knowledge to increase the stability and
robustness of the network, while the anchors cost much computation resource. And there
exists the problem of imbalance of positive and negative samples with the use of an anchor,
resulting in a decrease in the accuracy.

For the drawbacks carried by the usage of an anchor, the anchor-free methods (FCOS [30],
CornerNet [31], CenterNet [32]) are widely researched to achieve better detection effects.
FCOS uses a full convolutional network to detect objects, which is similar to semantic
segmentation. CornetNet locates the object by its top left corner and bottom right corner.
Centernet represents the object as a Gaussian circle in the heatmap. The anchor-free
methods can obtain faster detection without anchors, but they can hardly obtain better
precision than the anchor-based ones.

Due to the great success of the transformer model in neural language processing, it
also draws much attention in the computer vision field. DETR [33] is the first one using
transformer to implement object detection tasks. It directly generates the class and location
of objects by a transformer encoder and decoder, which can achieve end-to-end object
detection. Inspired by DETR, many transformer-based object detection methods have been
proposed and obtained promising performance [34,35].

These methods are train and tested on the datasets of general scenes, which can be
badly affected by some noise such as extremely illumination. So, some improvements
should be applied to obtain better detection performance on special scenes.

2.2. Object Detection Methods for Water Surface Scenes

To sense the obstacles on the water surface, many sensing methods are proposed. But
many research about object detection on water surfaces are based on infrared or radar
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images, while few works are proposed for the object detection on water surfaces using
visual images.

An et al. [36] proposed a modified water surface object detection backbone based on
rbox, to obtain the recall rate and precision. Li et al. [37] proposed a water surface object
detection method Yolov3-2SMA, which can achieve real-time object detection with high
precision in a dynamic water environment. Zhang Sr et al. [38] used a modified YOLO
and multi-feature detecting method to detect ships. It applies multi-dimensional scaling
(MDS) for dimensionality reduction of SIFT features, and uses random sample consensus
to optimize SIFT matching, which reduces miss-matching effectively. Jie et al. [39] modified
YoloV3 for detecting ships on inland rivers, which increases the mAP and FPS by 5% and
2%, respectively.

For the importance of effective visual object detection and the lack of studies on water
surface object detection, it is essential to conduct more research on water surface object
detection to obtain better sensing effects.

2.3. Intrinsic Image Decomposition

The concept of intrinsic decomposition originated from Retinex theory [40], and
was first proposed by Barrow and Tenenbaum [41]. Intrinsic decomposition aims to
decompose a natural image into an illumination-variant component and illumination-
invariant component, so it can benefit many high-level computer vision tasks.

Intrinsic image decomposition has been researched for nearly fifty years, and the
research can be divided into non-learning-based methods and learning-based methods.

The non-learning-based methods tend to solve a non-learning optimization with
handmade prior constraints. Many methods set prior constraints based on empirical
observation to extract the reflectance information of natural images [42,43]. These methods
establish a connection between reflectance and the chromaticities of pixels to inference
reflectance images and further obtain shading components. Shen et al. [44] propose to add
texture cues to the traditional methods to obtain better reflectance results. Zhao et al. [45]
formulate intrinsic decomposition as the minimization of a quadratic function, which
incorporates both the Retinex constraint and our nonlocal texture constraint.

In recent years, many learning-based methods have been proposed, which include
supervised and unsupervised methods. The supervised methods tend to directly learn
the distribution of reflectance and shading from labeled reflectance and shading train-
ing samples [46–48]. But most of the public intrinsic decompositon datasets are highly
synthetic [47,49,50], for which the methods trained on them cannot performance well in
the real-world scenes. And other datasets consisting of real images are too small to support
supervised methods to obtain competitive generalization performance [51]. There also
exist several unsupervised methods. Janner et al. [52] use unsupervised reconstruction
error as an additional signal to make use of the plentiful unlabeled data. Zhang et al. [53]
proposed an unsupervised intrinsic decomposition method based on the observations that
the reflectance of a natural image typically has high internal self-similarity of patches.
Lettry et al. [54] build an unsupervised intrinsic decomposition method based on the anal-
ysis of albedo that is invariant to lighting conditions, and cross-combining the estimated
albedo of a first image with the estimated shading of a second one should lead back to the
second one’s input image.

As an effective unsupervised method, generative adversarial network [55] achieved
great success in many tasks, so it is a promising method to achieve effective unsupervised
intrinsic decomposition. But few studies are conducted on intrinsic decomposition gener-
ative adversarial network, for which it’ is essential to apply more research on to explore
the effectiveness.
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3. Method
3.1. Overall Architecture

The images capture by a sailing USV are different from the generally captured ones,
especially the large scale variance and harsh illumination condition. To support effective
perception for USV, we construct MFFDet-IDGAN to achieve accurate and robust water
surface object detection, as shown in Figure 1.
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Figure 1. Overall architecture of MFFDet-IDGAN. The IDGAN (upper part) is only enabled in the
training process for data augmentation. In the detection process, only MFFDet (lower part) is enabled.

Our method is composed of two parts. One part is intrinsic decomposition data aug-
mentation (IDGAN), aiming to enrich the training set with decomposed images. Different
from normal data augmentation methods (Cutmix [56], Mosaic [6], Random Affine and so
on), intrinsic decomposition can revel the illumination and structural information of the
images, which enable the object detection network to adapt to the harsh illumination con-
dition. The other part is an multi-scale feature fusion object detection network (MFFDet),
which utilizes improved modules to fuse features of different scales, aiming to achieve
better multi-scale detection performance. Detailed description of our method is given in
the following sections.

3.2. Intrinsic Decomposition Generative Adversarial Network

Retinex theory states that the information of an image is determined by the combined
action of illumination and the structural property. Accordingly, a natural image can be
decomposed to the reflectance image R and shading image S, expressed as

I = R× S (1)
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Equation (1) is ill-posed because the number of unknown variables is twice that of
the known variables. To solve the problem, we utilize trainable modules to obtain the
domain property of reflectance and shading, and further transfer the natural image to
these domains with the learned knowledge. Recent image-style transfer methods assume
that the content image shares the same content with the styled images. Furthermore, they
assume that the content and the style information of an image can be separated by trainable
encoders [57–59]. Similarly, intrinsic decomposition can be illustrated as a process that
separates the content and domain information, then combine the content information with
the reflectance and shading domain information. Accordingly, we regard intrinsic decom-
position as a physically constrained image-style transfer task, and set several encoders
to learn the domain prior knowledge to generate certain reflectance and shading images.
Formally, the intrinsic decomposition task can be described as follows: given a set of images
of different domains, including natural images I, reflectance images R and shading images
S (the content in I, R and S can be totally different), we aim to learn domain transformation
I − R and I − S. To achieve this goal, we propose an intrinsic decomposition generative
adversarial network (IDGAN), and the detailed implementation is illustrated in Figure 2.
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Figure 2. Architecture of IDGAN.

IDGAN consists of two branches: domain transformation branch and decoupling
branch. The details of the two branches are illustrated as below.

Domain transformation branch. The domain transformation branch aims to transfer
a natural image Ii to reflectance image R(Ii) and shading image S(Ii). To this end, we
utilize generators GR and GS to approximate the distribution of R and S, by employing
discriminators DR and DS to train against the generators. The joint training process of the
generators and discriminators leads to generators that are able to produce images of the
desired domains. Normal image transfer networks tend to take random noise as input to
obtain more diverse-styled images, but from the perspective of intrinsic decomposition, we
desire to obtain a definite output that is as close to the distribution of the desired domain as
much. So we take the latent code of content and domain prior knowledge as input to feed
the generators. To obtain the latent code of the two domains from the single input natural
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image Ii, we utilize learnable prior knowledge encoders ER
P and ES

P to capture the domain
code. And the adversarial losses are defined as follows:

LR
adv = log(1− DR(R(Ii))) + log(DR(Rj)) (2)

LS
adv = log(1− DS(S(Ii))) + log(DS(Sj)) (3)

The total adversarial loss is Ladv = LR
adv + L

S
adv

With only adversarial loss, the generators can produce images with the same distribu-
tion as the desired domains, but cannot keep the content information in Ii. To ensure that
the generated images share the same content with the natural image, we utilize pixel-wise
content loss Lcontent between the natural image Ii and the domain transferred images
R(Ii) and S(Ii). Moreover, to make the pixel-wise content loss not too strict, we apply an
average pooling layer P before calculating the loss. The pixel-wise content loss can be
expressed as

Lcontent = ||P(Ii)− P(S(Ii))||2 + ||P(Ii)− P(R(Ii))||2 (4)

Furthermore, we desire the content features extracted by content encoders EI
C, ER

C , ES
C

from Ii, R(Ii), S(Ii) be constant, so we set content feature loss Lc f , expressed as

Lc f = ||EI
C(Ii)− ER

C(R(Ii))||2 + ||EI
C(Ii)− ES

C(S(Ii))||2 (5)

Equation (1) states that the natural image Ii is equal to the pixel-product of the domain
transferred images R(Ii) and S(Ii), so a physical constraint loss Lphy is employed to
regularize our method, expressed as

Lphy = ||Ii− R(Ii)× S(Ii)||2 (6)

Decoupling branch. With the assumption that the content information and domain
information of the image can be separated and the separated information can be used to
reconstruct the image, we employ several content encoders EC and domain information
encoders ED, and set several losses to ensure the encoders can extract desired information.

To simplify the description, we will focus on the reflectance part, and the shading
part is constructed in the same way. For a reflectance sample Rj, ER

C and ER
D are applied to

obtain the content and domain latent codes, then reconstruct R̂j by generator GR. We utilize
reconstruction loss Lrecon to constrain this process. The reconstruction loss is expressed as

Lrecon = ||R̂j − Rj||2 + ||Ŝk − Sk||2 (7)

With the reconstruction loss Lrecon and the content feature loss Lc f , we can obtain an
effective domain information encoder ER

D to access the domain information of a image. To
ensure the certainty of the generating process, we utilize inverse loss Linv to enforce the one-
to-one mapping between the prior information extracted by ER

P and domain information of
R(Ii). The inverse loss is expressed as

Linv = ||ER
P (I(i))− ER

D(R(Ii))||2 + ||ES
P(I(i))− ES

D(S(Ii))||2 (8)

Total loss and implementation details. We summarize all aforementioned losses and
obtain the total loss.

Ltotal = λadvLadv + λcontentLcontent + λc fLc f + λphyLphy + λreconLrecon + λinvLinv (9)

where the hyper-parameters λadv, λcontent, λc f , λphy, λrecon and λinv control the importance
of each term. We use the compound total loss as the final objective to train our model.
The loss weights are set to λadv = 2, λcontent = 130, λc f = 100, λphy = 1, λrecon = 200,
λinv = 500, The content encoders EC consist of several strided convolutional layers followed
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by residual blocks [60]. The domain information encoders ED and prior information
encoders EP include several strided convolution layers followed by a global pooling layer
and a fully connection layer. The decoder G is constructed with two branches. One branch
takes the content code as input, including several residual blocks. The other branch takes
the domain code as input, and processes it using a multilayer perceptron (MLP) [61] to
produce a set of affine parameters γ and β. Then, the content code and domain code are
combined by adaptive instance normalization (AdaIN) [62] layers.

AdaIN(a, γ, β) = γ(
a− µ(a)

σ(a)
) + β (10)

where a is the activation of the previous convolutional layer in branch one, µ and σ are
channel-wise and standard deviation, respectively. And finally decode the transferred
image with an upsampling module consisting of several deconvolutional layers.

Figure 3 shows some typical results of our IDGAN. The intrinsic decomposition is
only used in the training process as data augmentation method, so it does not effect the
real-time of the detection process.

Figure 3. Examples of image intrinsic decomposition.

3.3. Multi-Scale Feature Fusion Object Detection Network

The architecture of MFFDet can be divided into three parts: Backbone, Neck, and
Head, as shown in Figure 4.
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Figure 4. Architecture of MFFDet.

3.3.1. Backbone

The backbone part extracts the semantic information of the image by stacking convolu-
tional layers. The receptive field expands with the increase in layer depth. We use a deeper
CSPDarknet53 [6] as the backbone, which extends CSPDarknet53 with an extra stage,
to obtain a larger receptive field and more available semantic information, as shown in
Figure 4. The extra stage is composed of 2 CSPResblockBodies. Every stage in the backbone
part changes the resolution of the feature maps to half. And we feed the output of the last
five stages to the neck part for further feature fusion process.

3.3.2. Neck

The neck part further processes the features extracted by the backbone part and
generates the suitable features for the head part to obtain detection result.

The SPP block [24] can fuse features of different resolution, which enhance the robust-
ness of the network for scale variant. In detail, the SPP block applies pooling layers of
different sizes to process the received feature and then concatenate them to generate fused
features. To better fuse features, we set 2 SPPs after the F4 and F5 layers of the backbone
part. The pooling size of the SPPs are set as 5, 9 and 13.

The feature maps from different layers of the backbone part are of different sizes,
meaning that these feature maps obtain different resolutions and are sensitive to objects
of different scales. A common way to fuse features with different resolutions is to adjust
the feature map sizes to the same and then simply add or concatenate them. BiFPN [63] is
an effective feature pyramid network that utilizes attention mechanism and bidirectional
fusion. However, in the process of BiFPN, it removed the fusion nodes of the deepest
and the shallowest layers, for there exist no deeper or shallower features, as shown in
Figure 5a. But the features of these layers are important for multi-scale detection, especially
for the detection of objects with extreme scales (extremely small or extremely large). So, we
generate two auxiliary feature maps P0 and P6 by Upsample Block and Downsample Block
to complete the fusion process, as shown in Figure 5b.
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proved BiFPN.

The auxiliary feature maps are not directly used to predict objects, but can enhance
the fusion process of features of different resolutions, especially the ones with the biggest
and the smallest scales. In detail, the Improved BiFPN utilize Upsample Blocks and
Downsample Blocks to adjust the sizes of features and fuse features of different resolution.
The Downsample Block utilized strided convolutional layers to decrease the sizes of the
feature maps and the Upsample Block utilized strided deconvolutional layers to increase
the sizes of the feature maps.

3.3.3. Head

The head part predicts the final results by processing the features generated by the
neck part. In this part, we use a YOLO-style anchor-based head. Assume that the feature
generated from the neck part is of the shape of H ×W × C, where H, W, and C refer to
height, width and channel. The prediction result shape is H ×W × [A× (4 + 1 + CLS)],
where A is the prior anchors per position, 4 is the bounding box offsets, 1 is objectness
prediction, and CLS is the amount of categories. Moreover, we select five scales of feature
maps with different scales for prediction to obtain better multi-scale detection performance.
The selected feature maps are of shapes of 8× 8, 16× 16, 32× 32, 64× 64 and 128× 128. The
predicted boxes need to be further processed by non-maximum suppression (NMS) [64]
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to obtain the final results. And we use the same loss function as yolov4 [6] to optimize
our model.

3.4. Weighted-SWA

To further improve the generalization capability of our method, we propose an im-
proved Weighted-SWA. SWA [65] is an effective neural network ensembling method that
can accelerate the training process and improve the generalization of the network. In this
section, we propose Weighted-SWA, which use an entropy value method to weight the
checkpoints, instead of simply averaging them.

Entropy represents the chaos of a system. The information entropy can be used as the
objective weight while evaluating a subject, and it can also be used to objectively assign
weights to multiple subjects. By estimating the degree of change of each subject, we can
obtain the degree of contribution of the subject, and the weight of the subject with greater
change is also greater. Assume the index matrix X = (xij)m×n, where m is the amount of
subjects and n is the amount of evaluation indicators. For an indicator xj, the more discrete
the index matrix is, the greater the weight of the index in the evaluation is.

The steps for Weighted SWA are as follows:

1. Performance evaluation of checkpoint. When the loss function basically does not
show a decreasing trend during the training process, it continues to be trained for an
additional period of time using the cyclic learning rate. Then, additional m checkpoint
models are obtained and evaluated on the dataset to obtain their performance on the
n categories.

2. Standardization of data for every indicator. The indicators used in the index ma-
trix usually include positive and negative indicators. But there exists no negative
indicator in the performance of the models, for what only positive indicators are
used. To standardize the indicators, x∗ij =

xij−xmin
xmax−xmin

. Then, use Z-score to obtain the

proportion of model i in indicator j, Zij =
xij−x̄j

sj
, where sj is the standard deviation

sj =
√

1
m [(x1j − x̄j

2 + (x2j − x̄j
2 + · · ·+ (xmj − x̄j

2].

3. Calculate the entropy and entropy redundancy. The information entropy of indicator
j is ej = −K ∑m

i=1 Zij ln Zij, where K is a positive number. The entropy maximizes
when a system is completely disordered. At this point Zij for the given j all the same
and Zij =

1
m . Here, ej takes a great value, i.e., ej = −K ∑m

i=1
1
m ln 1

m = K ln m. The
entropy redundancy of indicator j is dj = 1− ej, representing the effectiveness of
the indicator.

4. Calculate the weight of indicators and the comprehensive evaluation of the mod-
els. The greater the entropy redundancy of a certain indicator, the greater its impor-

tance for evaluation. The weight of indicator j is wj =
dj

∑n
j=1 dj

. And the comprehensive

evaluation of model i is fi = ∑n
j=1 wjx∗ij.

5. Get the final model. The internal parameters of the m checkpoint models are weighted
by the comprehensive evaluation f and synthesized according to the integrated eval-
uation value to determine the optimal model.

4. Experiment

To demonstrate the effectiveness of our method, We conduct extensive experiments
on a water surface object detection dataset. And we further test our method on an USV in
the sailing process to prove the practicality.

4.1. Dataset Preparation

Due to the lack of a water surface dataset with harsh illumination conditions, we
selected 433 images from WSODD [66] in different water scenes, 127 images from the
boat-types recognition dataset, and 417 images containing common objects on the water
surface from publicly available photos on the Internet to build the validation dataset. A
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dataset of 977 images was formed for testing and validating the algorithm. Figure 6 shows
some typical samples of this dataset.

Six common objects on the water surface were selected to be included for recognition:
boat, ship, ball, bridge, harbor, and animal. Table 1 lists the number of images and
instances in every category in the dataset. The object categories in this dataset are also
divided relatively broadly. For example, the boat category includes rubber boats, canoes,
sailboats, etc.

Figure 6. Typical samples in water surface dataset with harsh illumination conditions.

Table 1. The number of images and instances within every category in the dataset.

Category Images Instances

boat 317 677
ship 467 868
ball 170 210

bridge 69 69
harbor 70 77
animal 198 237

total 977 2138

The dataset is annotated in PASCAL VOC style, saving as xml files.

4.2. Experiment on Water Surface Object Detection Dataset

We compare our method with 10 deep-learning-based detection methods on the water
surface object detection dataset. The compared methods include 8 effective general one-
stage detectors (SSD, RetinaNet, Yolov3, RFBNet [67], M2Det [68], CenterNet, EfficientDet,
and Yolov4) and 2 specialized detectors designed for water surface object detection. The
operating system of the experimental platform is Ubuntu 16.04, and the GPU used is Nvidia
Titan-RTX with 24 GB of RAM. We use average precision (mAP) to measure the accuracy of
the detection accuracy and the IoU threshold is set at 0.5. The detection speed is measured
by frames per second (FPS).
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Table 2 shows the results of the baseline tests of the 11 algorithms. Columns 2 and 3 rep-
resent the FPS and mAP of different algorithms on the dataset, respectively. And columns
4–9 show the experimental results of each algorithm for every category in the dataset.

Table 2. Performance of 11 detection algorithms on a water surface object detection dataset.

Method FPS mAP
AP50

Boat Ship Ball Bridge Harbor Animal

SSD 43.44 29.5% 18% 47% 14% 32% 39% 27%
RetinaNet 34.22 23.7% 11% 30% 18% 17% 47% 19%

Yolov3 45.81 31.0% 17% 35% 21% 35% 55% 23%
RFBNet 44.97 25.7% 12% 36% 17% 21% 46% 22%
M2Det 41.11 29.2% 13% 45% 22% 24% 44% 27%

CenterNet 44.09 31.0% 19% 45% 31% 20% 45% 26%
EfficientDet 29.11 25.7% 15% 38% 15% 21% 45% 20%

Yolov4 46.07 31.8% 17% 37% 21% 33% 59% 24%

Yolov3-2SMA 50.19 35.8% 13% 45% 21% 37% 72% 27%
ShipYolo 50.09 29.8% 10% 41% 17% 29% 54% 28%

MFFDET-IDGAN 44.11 46.0% 27% 67% 41% 44% 69% 28%

As can be seen from the table, MFFDet-IDGAN achieved the highest mAP of 46.0%
on the selected dataset compared to other algorithms. There is a 10.2% improvement over
Yolov3-2SMA and 22.3% higher than RetinaNet. The deeper backbone and the auxiliary
feature map cause increases in calculating the detection network. Assume the input is
a RGB image with a width and height of 512. The parameter quantity of our model is
162M and the floating point operations (FLOPs) is 86 G. Compared to YOLOv4 with 64 M
parameters and 60 G FLOPs, our model can reach a 44% increase in mAP with a 30%
increase in calculation. From the perspective of detection speed, our method can reach
44.11 frames per second, which is sufficient to support real-time detection. The results
show that our method can effectively improve the accuracy and keep fine rapidness. By
analyzing the performance of all the categories, it can be seen that our method surpasses
other detectors in most categories, especially for boat and ball. In the evaluation dataset, the
scales of boat and ball categories are relatively small, which is challenging for the detectors,
so the significant improvement on the two categories can prove the superior multi-scale
detection performance of our method. However, the animal category includes different
species such as ducks and geese on the water, and the category features are more complex.
And most of this category in the dataset is made up of small targets, and the semantic
features are not obvious, so the improved algorithm has a limited effect in detecting them.
Furthermore, for the harsh illumination condition of the dataset, the overall improvement
can demonstrate the illumination adaptive property of the proposed MFFDet-IDGAN.

4.3. Ablation Studies

In order to verify the effectiveness and generalization performance of the intrinsic
decomposition data augmentation, we choose to apply it on 4 object detection methods
(Yolov3, CenterNet, Yolov4, and Yolov3-2SMA), comparing the detection performance
between cutmix and IDGAN. The results are shown in Table 3. The results show that
our IDGAN significantly improves the performance of the chosen algorithms. The mAP
improvement can reach at most 7.6% while applied on YOLOv3 and at least 5.5% on the
YOLOv3-2SMA.
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Table 3. Validation of intrinsic image decomposition data augmentation.

Method
Cutmix IDGAN

FPS mAP FPS mAP

Yolov3 45.81 31.0% 45.87 38.6%
CenterNet 44.09 31.0% 44.30 37.1%

Yolov4 46.07 31.8% 46.88 37.8%

Yolov3-2SMA 50.19 35.8% 49.87 41.3%

And we also verify the effectiveness of Weighted-SWA on the chosen detectors, by
comparing the performance of original detector, with SWA and with Weighted-SWA. The
results are shown in Table 4. The results show that the Weighted-SWA can obtain more
significant improvement.

Table 4. Validation of Weighted-SWA.

Method Original Algorithm SWA Weighted-SWA
mAP mAP mAP

Yolov3 31.0% 32.3% 33.8%
CenterNet 31.0% 31.2% 31.9%

Yolov4 31.8% 32.9% 34.0%

Yolov3-2SMA 35.8% 36.2% 37.2%

To further explore the contribution of each key component of MFFDet-IDGAN to the
detector, another 10 models are constructed and evaluated. The basic model is a detector
with a deeper CSPDarknet53 backbone, and a YOLO-style head, without a feature fusion
module. The results are shown in Table 5. The results show that any one of the components
can improve the mAP of detection.

Table 5. Performance of each key part of MFFDet-IDGAN.

+2 SPP - X X X X X X
+ Improced BiFPN - - X X X X X

+ IDGAN - - - - X X X
+ Weighted-SWA - - - - - X X

Backbone→CSPDarknet53 - - - - - - X

mAP 24.9% 27.6% 33.8% 35.7% 43.1% 46.0% 42.8%

4.4. Practical Experiment on USV

To further validate the practical effectiveness of the proposed algorithm, it is applied
on USV180 for visual perception for verification. Figure 7 shows the USV180 and the
Nvidia Jetson TX2 loaded on it for graphics processing.

In the experiment process, we recorded several videos during navigation, and imple-
ment 4 object detection methods (Yolov3, CenterNet, Yolov4 and Yolov3-SMA) on them for
comparison. Here, we choose 3 representative videos for analysis, in which there exists
small scale objects and strong reflection on the water surface.

Video 1 is 24 seconds long and was captured at Linghai Campus of Dalian Maritime
University. The lighting condition in video 1 is fine, but the scale of objects is small,
which is difficult for detection, for the long capture distance. Figure 8 shows the detection
effect of MFFDet-IDGAN on some typical frames, and the small scale objects can be well-
detected. Table 6 shows the detection effect of the chosen detectors. It can be seen that our
MFFDet-IDGAN obtains the best performance with mAP of 91.1%.
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Figure 7. Validation platform for practical experiment. (a) USV180. (b) USV sensing platform
NVIDIA Jetson TX2.

Figure 8. Detection effect of typical frames in video 1.

Table 6. Detection effect in video 1.

Method Total Frames Valid Frames mAP FPS

Yolov3 600 587 88.6% 8.58
CenterNet 600 587 79.6% 8.91

Yolov4 600 587 90.9% 9.22

Yolov3-2SMA 600 587 87.2% 10.03

MFFDet-IDGAN 600 587 91.1% 8.87

Video 2 is 68 seconds long and was captured at Linghai Campus of Dalian Maritime
University. A total of 1450 valid frames are included in 58 seconds of this video. In video 2,
the scale of objects is also small, and there exists a strong reflection on the water surface.
Figure 9 shows the detection effect of MFFDet-IDGAN on some typical frames. Table 7
shows the detection results of the 5 algorithms on video 2. Our method performs the best
in the experiment, with mAP of 94.5%, 4.3% higher Yolov3, 3.5% higher Yolov4 and 4.9%
higher than Yolov3-2SMA.
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Figure 9. Detection effect of typical frames in video 2.

Table 7. Detection effect in video 2.

Method Total Frames Valid Frames mAP FPS

Yolov3 1700 1450 90.2% 8.44
CenterNet 1700 1450 87.9% 8.95

Yolov4 1700 1450 91.0% 9.29

Yolov3-2SMA 1700 1450 89.6% 9.97

MFFDet-IDGAN 1700 1450 94.5% 8.80

Video 3 is 29 seconds long and was captured by USV180 at the North Lake of Liangxi-
ang Campus of Beijing Institute of Technology. The video records the process of another
USV driving away from USV180 and there is a strong reflection on the water surface. All
frames of this video are valid. Figure 10 shows the effect ofIn future works, we plan to make
the detector lightweight to achieve real time detection for the resource-limited USVs on the
detection of some typical frames. Table 8 shows the detection results of the 5 algorithms
on video 3. As can be seen from the table, in terms of detection accuracy, compared to the
other 4 algorithms, MFFDet-IDGAN improves by 4.1% over Yolov4, 6.5% over Yolov3, 7.0%
over Yolov3-2SMA, and 10.0% over CenterNet.

Figure 10. Detection effect of typical frames in video 3.
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Table 8. Detection effect in video 3.

Method Total Frames Valid Frames mAP FPS

Yolov3 725 725 89.7% 8.48
CenterNet 725 725 86.2% 9.01

Yolov4 725 725 92.1% 9.27

Yolov3-2SMA 725 725 89.2% 9.93

MFFDet-IDGAN 725 725 96.2% 8.82

In all 3 videos, MFFDet-IDGAN obtains the best performance of the 5 methods, which
demonstrates our method of practical value. Moreover, in video 2 and 3, the improvement
is more significant than that in video 1, for the strong reflection on the water surface harms
the accuracy of other detectors, which further proves the effectiveness of IDGAN to reduce
the effect of harsh illumination.

5. Discussion

According to the results of the experiments, the intrinsic decomposition data aug-
mentation can deal well with complex illumination. However, it will triple the number of
training samples along with triple the time cost, which is a serious issue when using a large
dataset. By observation of experiments, we found that the decomposed reflectance image
of those extremely bright source images tend to be a completely white image, which we
think will provide little benefit or even be harmful for the detection network. Considering
this situation, we think it a feasible method to evaluate the contribution of the decomposed
samples, and remove the samples that contribute little for the network to accelerate the
training process.

In addition, besides the challenges we analyze in the introduction, we met many other
problems with detecting while sailing, such as the interference of mist and the fake target
caused by the reflection of the water surface. So, more studies need to be made to achieve
more accurate and more robust water surface object detection.

6. Conclusions

In this paper, we analyze the difficulty of water surface object detection, especially on
the scenes with harsh illumination conditions. Accordingly, we propose MFFDet-IDGAN
to address these problems. The intrinsic decomposition method is introduced as a data
augmentation method, which decomposes image optical prior knowledge to increase the
feature diversity of training samples. And a multi-scale feature fusion object detection
network MFFDet is proposed to deal with the scale variant of the objects on the water
surface. The network utilizes a deeper CSPDarknet53 in the backbone to extract more
semantic information. We fuse the features extracted from different convolutional layers by
2 SPP blocks and Improved BiFPN. The Improved BiFPN adapts auxiliary features to obtain
better fusion effectiveness. And an improved model ensembling method Weighted-SWA is
proposed, which makes use of an entropy evaluation method to weight the checkpoint and
obtain the final model to improve the generalization performance. The experiment on the
water surface object detection dataset shows that our method achieved 44% improvements
over the baseline. We further ported our method on a USV to verify its practical effective-
ness, and the results show that our method can better detect the object during navigation
than the comparison methods at equal speed.
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