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Abstract: Chitosan is a natural biodegradable polymer that is recovered from marine shell wastes.
It has been widely employed in anticancer, antioxidant, and antibacterial applications due to its
outstanding qualities, including biological compatibility, muco-adhesivity, hemocompatibility, and
biodegradability. The contributions of this polymer have established it with respect to biomedical
applications. The distinct morphologies of chitosan, such as in nanoparticulate and microparticulate
for MS and as derivatives and composites have extended its visages even beyond biomedicine. This
review specifically summarizes the biomedical highlights of chitosan-based MS. Special attention has
been focused on the antimicrobial accomplishments of chitosan-based MS. The impact of chitosan
MS against bacteria, fungi and viruses has been reviewed. The gaps in its usage for antimicrobial
investigations have been addressed. The lack of significant contribution from chitosan MS towards
antifungal and antiviral applications has been explicitly highlighted. Future recommendations and
the scope for expansion have been suggested.
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1. Introduction

The marine polymer Chitin can be partly deacetylated, to yield the multifunctional
polymer known as chitosan. It is the second most common naturally occurring polysac-
charide in the world after cellulose and is widely present in marine animals, particularly
crustaceans, e.g., crabs, prawns and lobsters. Chitosan is a linear polymer with D- and
N-acetyl-D-glucosamine units as its building blocks [1].

Chitosan has been employed in many forms that include beads, nanoparticles, nanofibers,
films, microspheres, hydrogels and conjugates. Microspheres (MS) are one of the forms that
are frequently employed in biomedical fields due to their superior drug loading efficiency,
enormous surface area, and affinity for mucus. The natural polymers for use in biomedical
and tissue engineering domains that have been the subject of the most investigation include
chitosan [2], alginate [3], collagen [4], and protein [5] in the form of MS. Chitosan poorly
solubilizes in water and organic solvents because it is a weak base with a pKa range of
6.2–7.0 [6]. However, it dissolves in acidic pH due to protonation of the amino group. Due
to its gel-forming, self-stabilizing behavior, apart from the bioadhesive and anti-pathogenic
properties, chitosan is frequently used in medical applications such as tissue repair and
regeneration [6,7]. Figure 1 consolidates the chitosan properties that enable its antimicrobial
activity.
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applications of chitosan MS covered in this article include: tissue engineering, targeted 
drug and gene delivery, cancer therapy, anti-microbial, enzyme immobilization and 
vaccination. Figure 1 consolidates the chitosan properties that enable its antibacterial 
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This review focuses on highlighting the specific milestones achieved using chitosan 
MS regarding antimicrobial applications. A brief summary of the synthesis procedures 
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suggestions, and recommendations addressing the inadequacies in this field of study have 
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Singla in 2003 [2]. Porosity in MS can be imparted by freeze drying chitosan in a solvent 
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Figure 1. Chitosan properties that affect the antibacterial activity of chitosan. These are the key
properties that enable the antibacterial activity that chitosan exhibits.

The development of MS made of biopolymers, bio-glasses, and ceramics [8] among
other materials [9] is currently pursued by many research groups across the globe. The
properties of MS, which include their uniform size and shape, a larger surface area, lower
mass density, and porosity, enable its potent use in conjunction with chitosan as a favorable
functional biomaterial. These have enabled chitosan’s use for targeted drug delivery with a
controlled degradation rate and ion release as well as an encapsulating agent for biomedical
components [9–11]. In addition to the flexibility of altering porosity (external as well as
internal) and structural interconnectivity, chitosan facilitates the control kinetics of drug
release and biomolecule adhesion, adsorption and their proliferation [10,12]. These MS are
used as is or can be fabricated as 3D scaffolds [10,11,13]. Based on these applications, the
chemical composition, porosity structure and distribution of MS are varied. MS made up of
ceramics [14–16] are predominantly investigated for dental and orthopedic tissue [8] and
radionuclide therapy [17]. Some of the biomedical applications of chitosan MS covered in
this article include: tissue engineering, targeted drug and gene delivery, cancer therapy,
anti-microbial, enzyme immobilization and vaccination. Figure 1 consolidates the chitosan
properties that enable its antibacterial activity.

This review focuses on highlighting the specific milestones achieved using chitosan
MS regarding antimicrobial applications. A brief summary of the synthesis procedures
and the biomedical uses of chitosan microspheres (CMs) is provided. Future directions,
suggestions, and recommendations addressing the inadequacies in this field of study have
been made.

2. Snapshot of Chitosan Microsphere Synthesis

CMs have been produced by various processing methods such as spray drying [18,19],
internal gelation [20,21], electrospinning, emulsification [2] and freeze drying. CMs loaded
with nifedipine showing high nifedipine entrapment and outstanding swelling properties
obtained by emulsification technique were studied by Dhawan and Singla in 2003 [2].
Porosity in MS can be imparted by freeze drying chitosan in a solvent followed by solvent



J. Mar. Sci. Eng. 2023, 11, 1480 3 of 19

removal. Usually, chitosan solution in acetic acid is freeze dried with liquid nitrogen and
vacuum dried to remove the solvents. Similarly, MS from chitosan solution with acetic acid
(0.7 w/v) was obtained under pressure atomizer [18] by utilizing a pressurized atomizer
at 125 ◦C.

Chitosan molecules cross-link when they react with a regulated amount of a multiva-
lent anion. The fabrication of custom-made CMs has involved substantial manipulation of
the cross-linking processes. Before being spray dried, the polymer must first be dissolved in
the necessary solvent, mostly organic, such as acetone, dichloromethane, etc. A high-speed
disperser is used to homogenize drug uniformly in the polymer solution in order to obtain
it in solid form. Then, a jet of hot air is used to atomize the prepared dispersion [22]. Under
atomization, tiny droplets are first produced and the solvent in it instantly evaporates
to form MS with a size range of 1 to 100 µm. Consequently, MS are segregated using a
cyclone separator and vacuum dried to remove the entrapped solvent. The process to
obtain MS is not only rapid but also can also be performed in aseptic conditions. The
coating is homogenized in a volatile solvent that is immiscible with the liquid manufac-
turing vehicle phase in the case of micro-encapsulation. The three phases of the liquid
manufacturing vehicle, the coating material, and the core material are vigorously mixed
until the coated polymer completely encloses the core polymer. Matrix-type microcapsules
are created when the core material is dissolved in the coated polymer solution. With the
solvent evaporation method, a variety of microcapsules with a range of core materials
are obtained [22]. Chemical crosslinking can also be performed after precipitation of the
polymer. Wet MS were obtained by adding an aqueous chitosan solution (3% (w/v) in
4% (v/v) glacial acetic acid) to an agitated medium under continuous stirring [23]. The
wet MS were then filtered, washed, and finally allowed to air dry at room temperature.
The multiple emulsion method involves creating a (o/w) primary emulsion (non-aqueous
drug solution in CS solution), adding the primary emulsion to the exterior oily phase to
create a (o/w/o) emulsion, and either adding glutaraldehyde or letting the organic solvent
evaporate [24]. It was discovered that CMs made using this technique had good physical
characteristics and a decent production yield when loaded with hydrophobic drugs such as
ketoprofen. With the cross-linking technique, a balanced molar ratio between chitosan and
citric acid is maintained to obtain aqueous chitosan solutions of different concentrations.
Thermal crosslinking is performed at 120 ◦C [25] by mixing a cooled (at 0 ◦C) citric acid
crosslinker with corn oil.

Coacervation is a process of liquid-liquid phase separation of a homogenous solution.
The coacervation process is complex and CMs are formed combining polymers such
as sodium alginate, Carrageenan, sodium polyacrylic acid and sodium carboxy methyl
chitosan. Their formation is regulated by the interionic interaction of polymer solutions
with opposing charges with KCl and CaCl2 solutions [26]. Typically, the chitosan-acetic acid
solution is injected through a needle in various concentrations of tripolyphosphate/anionic
mixtures. Then, the micro-beads were collected from the anionic solution and dried after
repeated washing with distilled water. With the wet inversion technique, a nozzle is
used to deliver the produced chitosan-acetic acid solution into the counter-ionic sodium
tripolyphosphate. After being stabilized for an hour, the produced MS were washed,
cross-linked with 5% ethylene glycol diglysidyl ether, and then freeze dried [27].

3. Biomedical Applications of Chitosan MS

CMs have been extensively used for biomedical applications [28]; we present a con-
solidated overview of the various aspects in which they are utilized. CMs are utilized to
encapsulate and control the release of anticancer medicines.

For example, capecitabine has been loaded into partial interpenetrating hydrogel net-
work made of CMs -poly(ethylene oxide-g-acrylamide) followed by emulsion crosslinking
with glutaraldehyde [29]. In another study, IL-2, a substance utilized in cancer immunother-
apy, has been integrated into the porous region of the MS. The prolonged release of IL-2 was
found to be more effective to induce cytotoxic T lymphocytes than free IL-2 [30]. Likewise,
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for the treatment of human ovarian cancer cells, a novel combination of chitosan with
egg-phosphatidylcholine has been employed for prolonged and localized release of pacli-
taxel [31]. As an alternative, biodegradable carriers for the localized delivery of paclitaxel to
solid tumors have been devised using chitin and chitin-Pluronic F-108 microparticles. The
malignant tissue volumes in Lewis lung carcinoma-bearing mice decreased after 6 days,
according to in vivo models [32]. The oral administration of methotrexate loaded CMs
have also shown promising results in mice having Ehrlich ascites tumors [33].

MS incorporated in scaffolds were found to have the inherent potency to enhance
cartilage production [34,35]. A combination of three-dimensional (3-D) collagen-chitosan-
glycosaminoglycan scaffold and TGF-1 loaded CMs have been fabricated for tissue engineer-
ing studies. Likewise, 3D composites of chitosan-PLGA (poly lactic-glycolic acid) porous
scaffolds were developed by sintering MS for restitution of bone tissues. The alkaline
phosphatase activity and expression of alkaline phosphatase genes, bone sialoprotein and
osteopontin were all upregulated on cells grown on scaffolds of CMs composite [36]. The
freeze-dried mixtures of PLGA chitosan were also found promising in tissue engineering
for their property to tune the release kinetics of growth factors [37].

Biodegradable CMs implanted with vancomycin hydrochloride have been reported
to be more effective than intramuscular injection for treating osteomyelitis in methicillin-
resistant rats [38]. Similarly, the implantation of cytarabine containing CMS encased in
PLGA film found these MS to be intact even after 6 months. Most importantly, the periphery
of implanted matrix was found to contain conjunctive tissue, tiny blood vessels and nerve
bundles [39]. The prolonged release of uracil from implanted chitosan composites, either
film- or stick-type, have renewed its interest for safe and biodegradable release of other
anticancer drugs [40]. The combination of chitosan-albumin MS-based delivery vehicle
has demonstrated a good degree of angiogenesis around implants [41]. CMs have also
been employed for targeted delivery of peptides and proteins due to their superior muco-
adhesiveness [42] and permeating ability across biological surfaces. Antioxidant enzymes
such as superoxide dismutase, have been encapsulated inside CMs using the coacervation
process in the design of a protein delivery-based system. The encapsulation efficiency of
the protein vehicle is optimized by adding polyethylene glycol to or varying pH of the
protein solution [42].

Luteinizing hormone-releasing hormone (LH-RH), a decapeptide, is a naturally occur-
ring hormone that controls sex hormone release in humans. Numerous LH-RH analogues
(TX46) have been developed to regulate the menstrual cycle and treat disorders linked to
steroid-dependent illnesses, sex-hormone-dependent cancers, and gynecological condi-
tions [43]. To stop TX46 from being degraded by proteases or other enzymes, a unique type
of CMs has been developed [44]. The insulin integrated CMs formed by the emulsification
process with a step-by-step crosslinking procedure have been reported. The results of high
insulin chemical stability (>95%), and encapsulation efficiency (>80%) with steady release
behavior without any burst have been noted [45]. The chitosan gel beads obtained from
chelating copper (II) ions have been studied for the delivery of peptide, protein therapeutics
and insulin. Implantation into diabetic mice was used to confirm the effectiveness of the
released insulin from the chitosan gel beads [46], and the effectiveness of human growth
hormone encapsulated in CMs for bone osteogenesis has been demonstrated [47].

Recently, vaccines based on CMs have been formulated and evaluated for several
vaccinations, including those against diphtheria, pertussis, and influenza [48]. The immune
responsive agents of Bordetella bronchiseptica dermonecrotoxin, an important virulence
factor causing atrophic rhinitis, has been functionalized inside CMs. By means of in-
tranasal delivery, in vivo stimulation of immunity was studied. When RAW264.7 cells were
subjected to antigen incorporated CMs, TNF- and nitric oxide were gradually released
over time, indicating the CMs potency to illicit the same immunostimulatory reactions
against atrophic rhinitis [49]. From days to months, a single injection of CMs matrices
with tetanus toxoid has been found to keep the antibody level comparable with those
obtained from booster injections of traditional vaccinations. In this way, CMs have the
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potential to replace the expensive PLGA polymer in the delivery of vaccines [50]. Wet
phase inversion was used to create porous CMs, which consequently were altered with
3-chloro-2-hydroypropyltrimethylammonium chloride, making them suitable for antigen
delivery. Antigens for Newcastle disease were sequestered within pores of CMs, and the
released profile was tested [51]. Such antigen delivery strategies have been the subject of
in vivo investigations on rats and hold great promise for the therapy of caries in dentistry.
Moreover, chitosan was surface-coated onto PLGA MS for intranasal delivery to treat
recombinant Streptococcus mutans glucan-binding protein D. Modified-cell transport of
commercially available FluoSpheres® (Molecular Probes, Inc., Eugene, OR, USA) and CMs
is much greater than transport by Caco-2 cell monoculture alone [52,53].

In addition to these uses, microbes have been successfully micro-encapsulated within
CMs for their protectivity in refrigerated storage and safe delivery to targeted systems.
For example, lactic acid bacteria have been encapsulated within chitosan and alginate
to transport it to the colon region [54]. Polyphenols from olive-leaf isolate have been
incorporated into CMs by spray drying, for utilizing its beneficial antioxidant property [55].
Spray drying was used to create mucoadhesive MS for the nasal delivery of drugs such
as propranolol HCl. The MS were typically made up of polymers comprising chitosan,
hydroxypropyl methylcellulose and carbopol 934P [56] or chitosan-poly (methyl vinyl
ether-co-maleic anhydride) combinations [57]. Due to the swelling and polymeric charge
nature of MS, they can affect the integrity of tight gaps without harming cells. [56].

When compared with traditional drugs, CMs loaded with the drug loratadin, to treat al-
lergies, display better drug confinement and mild swelling [58]. Chitosan-4-thiobutylamidine
(TBA) MS have the potential to be an effective formulation for the nasal administra-
tion of peptides because they have demonstrated the regulated release of fluorescein
isothiocyanate-labeled insulin over 6 h. Insulin loaded with MS composites of chitosan
have reported close to theoretical bioavailability in rats [59]. When compared to nasal
in-take of the pure drug as a powder, the carbamazepine contained chitosan-glutamate MS
has demonstrated better drug absorption (Cmax = 800 and 25 ng/mL for CMs and pure
drug, respectively) [60]. For the nasal administration of insulin, CMs polymerized by ascor-
byl palmitate have been synthesized by an emulsification procedure. Intravenous infusions
of insulin delivered by CMs has resulted in a 67% decrease in blood sugar with a reported
bioavailability value of 44% [61]. In vivo release profile of salbutamol from mucoadhesive
CMs has confirmed sustained and regulated release [62]. In a sheep model, a CMs-based
formulation administered nasally yielded a five- to six-fold increase in bioavailability
compared to the regular mode [63].

Lately, cerebral edema has been successfully treated using CMs. In comparison to the
established and topical administration of dexamethasone via intraperitoneal means, the
potency of the drug when administered together with CMs for treating cold-injury-induced
brain edema was much higher in Sprague-Dawley rats [64]. Indeed, the progesterone-
loaded glutaraldehyde crosslinked spherical CMs (45–300 µm) that was injected intra-
muscularly have shown to maintain concentrations of 1–2 ng/mL in plasma even up to
5 months without any adverse burst release.

Chitosan is well known for immobilizing simple peptides to complex enzymes. It
has potential applications for medical examinations and diagnostics. For instance, laccase
entrapped with magnetic CMs has bettered the bio-sensing operation of fiber optic oxygen
consumption with regard to analyte oxidation and provided scope for its application in
medical diagnostics [65]. Another enzyme, that has been sequestered within CMs via the
phase-inversion technique is catalase [66], with sulphoxine serving as a complexing resin
bound to CMs and as a scaffolding matrix [67]. For liver carcinoma therapy, cisplatin-CMs
were used as hepatic arterial chemo-embolization agents. The results from angiograms
showed a notable reduction in arterioles in the liver with histopathological observation
of nodular necrosis and liver cell degeneration in the embolized region [68]. Drugs such
as mitomycin have been immobilized in alginate-coated CMs (100–400 µm) for chemoem-
bolization [69]. The viability of these chitosan-combined alginate MS as chemoembolization
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agents was demonstrated by the renal angiograms obtained before/post embolization along
with histological observations [70]. Suspension crosslinking has been used to create well-
formed spherical CMs of 100–250 m for use as vehicles under magnetic stimuli [71]. By
electrostatically adhering acrylic acid and then polymerizing it onto the chitosan-coated
Fe3O4 cores, stable, chitosan-polyacrylic magnetic MS with substantial amounts of Fe3O4
were fabricated. Its potential for use in the targeted administration of pharmaceuticals was
demonstrated by the sustained release of the confined ammonium glycyrrhizinate [72].
Furthermore, these superparamagnetic CMs have been tested for their use as MRI con-
trasting agents [73–75]. Instances of employing the sonochemical approach to embed these
nanoparticles onto CMs (100–150 µm) were also reported [76,77].

During the 1990s, researchers investigated the possibility of chitosan as a vehicle for
gene transportation via the oral route. The electrostatic nature of chitosan has enabled it
to successfully bind with DNA in acidic or saline solutions without its deterioration. A
complicated coacervation procedure was used in one study to encapsulate plasmid DNA
(pDNA) in CMs, and subsequently gene expression was elicited after its oral intake in
in vivo studies [78]. Using plasmid CMs, a high level of IL-2 expression was attained
to the level comparable with lipofectin. Apparently, the combined chitosan and DNA
polyplexes significantly enhance their transfection efficacy. Nevertheless, because these
polyplexes have limitations as they cannot maintain the prolonged release of DNA, affect-
ing consistent gene transfer over time, to overcome this limitation, chitosan polyplexes
have been created by physically fusing PEG-grafted chitosan with PLGA using a modified
version of the standard emulsion solvent evaporation process [79]. Utilizing CMs-based
mucosal delivery of adenoviruses has been reported with advantageous features. Typ-
ically, the virus is encapsulated in chitosan-bile salt microparticles which preserves its
infectiousness and allows for a slow release of the physiologically active particles but the
timing of delivery was regulated by the host [80]. Likewise, DNA can be delivered using
poly(L-lysine), however, there is a problem sustaining prolonged release. One alternative
of using pDNA:poly(L-lysine) complexes enclosed in CMs has been suggested. In fact,
this method proved viable for polycation-based gene carriers as its in vitro release and
transfection capabilities along with pDNA integrity towards serum and DNase I were
found positive [81]. In fact, CMs have been used to enclose two distinct pDNAs (pGL2
and pMK3) without compromising their functionality or structural integrity [82]. Using
low density or floating hollow CMs is another intriguing method for controlled release of
drugs especially one of gastroretentive. When given orally to fasting gerbils, crosslinked
tetracycline CMs provide a longer residence duration than both tetracycline solution or
MS made by precipitation [83]. In simulated gastric fluid, the melatonin released from
floating MS were significantly delayed due to ionic interaction with matrices encompassing
sodium dioctyl sulfosuccinate-CMs. Moreover, the MS kept their structure intact for greater
than 3 days as opposed to non-floating MS, where the release of the drug was almost
instantaneous [84]. Another novel stomach specific delivery vehicle using CMs has been
created using tetracycline for its activity against Helicobacter pylori [85]. Reacetylation of
CMs for regulated release of metronidazole and amoxicillin in the stomach cavity, for
elimination of H. pylori associated with gastric ulcers and perhaps gastric cancer, has also
been reported [86].

Using pressurized devices such as inhalers, both chemically crosslinked (glutaralde-
hyde) and non-crosslinked CMs have been employed as potential vehicles of delivery
of proteins, peptides, and pDNA to the lungs [87]. Betamethasone-loaded CMs made
of gelatin and pluronic F68 demonstrated improved drug potency (1% less hydrolysis
product), a 95% entrapment rate, and a net positive surface charge of 37.5 mV. Studies
conducted in vitro indicated that the drug’s release profile was excessively prolonged over
12 h, allowing for pulmonary administration [88–90]. In vitro studies confirmed prolonged
drug release (upto 12 h) validating its utility towards pulmonary delivery. A particularly
useful method for creating dry particles suitable for drug administration through the lungs
is spray drying. Chitosan-tripolyphosphate nanoparticles facilitate peptide/polypeptide
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uptake via mucosal layer of lungs are employed to encapsulate insulin bounded CMs [91].
Elcatonin is another drug delivered to the lungs using chitosan microencapsulated PLGA
nanospheres. In a study, these chitosan-based PLGA nanospheroids have been reported to
become gradually expelled from the lungs following pulmonary intake. Furthermore, by
maintaining its presence for 24 h, they reduced blood calcium levels to 80% of the beginning
concentration [92]. In fact, a pulmonary route-based vaccine carrying pDNA encompass-
ing restricted T cell epitopes from Mycobacterium tuberculosis has been developed. In
comparison with similar delivery of plasmid solutions or intramuscular immunization,
chitosan-PLGA nanospheres showed higher levels of IFN-γ secretion [93].

To transport eudragit-coated CMs (200 µm) particularly to the colon, an emulsion-
solvent evaporation approach has been devised [94]. Likewise, mucoadhesive CMs-alginate
containing prednisolone has been produced for colon-specific administration. The mucoad-
hesive nature of the MS varies depending on the method of experimental synthesis [95]. In
a different study, a drug similar to albendazole was locally administered to the colon using
CMs, which could bring about drug release in 24 h in colonic fluid in rat models [96].

4. Antimicrobial Activity of Chitosan Microspheres
4.1. Antibacterial

Antibacterial activity is exhibited by organic as well as inorganic materials. Metals,
metal oxides, and metal phosphates, belonging to the family of inorganics, have been
studied for antimicrobial properties. Particularly, metal oxides, such as TiO2, MgO, ZnO and
CaO are of interest as they are stable under processing conditions as well as biocompatible
with humans and animals. Aromatics such as phenols and halogenated substances belong
to organics group of antibacterial agents. However, nowadays, natural polymers such
as chitosan gained attraction for their special antimicrobial properties [97]. The general
antibacterial mechanisms of chitosan microspheres are represented in Figure 2.
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The solid granular beads or MS have been of much interest for oral drug intake for
numerous reasons. The uniform spread of drugs in the gastrointestinal tract, homoge-
nous drug absorption, minimal side effects, e.g., irritation and lesser probability of their
intestinal retention in comparison with singular, non-disintegrating drugs, are the major
advantages [98,99]. The prolonged release of ampicillin was noted with good acid resis-
tance and stability under simulated gastric juice for CMs crosslinked with pentasodium
tripolyphosphate and methylpyrrolidinone [100]. For usage as buccal tablets to resist
bacterial infections, spray-dried chlorhexidine diacetate CMs have been produced. Like-
wise, CMs integrated with carboxymethyl [101] and ciprofloxacin were prepared by spray
drying [102] and they were found to be more efficacious than intramuscular antibiotics
for treating osteomyelitis [102]. By freeze drying, MS of chitosan glutamate, aspartate
and hydrochloride coated with fatty acids such as myristic, stearic, palmitic, and lauric
acids were produced. The continuous release of vancomycin hydrochloride from CMs was
studied to reflect peptidic model medication [103]. Due to CMs muco-adhesive property,
MS loaded with clarithromycin were able to sustain for a longer time, making them suitable
to treat stomach ulcers. In comparison with simple suspension-based drug ingestion, the
bioavailability of clarithromycin from CMS was found to be higher as demonstrated by
in vitro experiments in stomach tissues [104]. For optimal cell attachment and regulated
drug release, drugs such as tetracycline have been incorporated with CMs to treat cases
such as periodontitis.

It was found that drug release was slightly above the minimal dosage, sufficient to
resist Staphylococcus aureus growth [105]. To increase the oral bioavailability of Polymyxin B,
CMs with diameters below 3 µm were designed and reported to be absorbed by modified
cells of Peyer’s patches as drug carriers to the gut-related lymphoid tissue [106]. It has
also been demonstrated that the discharge of ofloxacin contained in porous N-methylated
CMs (2 to 5 µm) occurs more quickly at near neutral pH of 7.4 than at acidic pH of
1.2, reaching 90 wt% in just 8 h [107]. Three anti-TB drugs—isoniazid, rifampicin and
pyrazinamide—have been enclosed in alginate CMs and confirmed of their sustained
release with bioavailability consistent enough for sub-therapeutic doses. Prescribed dosages
of MS administered over a 10-day period to guinea pigs infected with Mycobacterium
TB H37Rv resulted in the elimination of the bacteria, within 10 days, comparable to the
standard 6-week treatment. Thus, the dosage of drugs is reduced by half when using
MS [108]. In another trial, CMs carrying cefradine grafted ethyl cellulose retained their
drug’s plasma level consistently for 24 h, helping in enhanced drug absorption in the
intestine [109].

Using a gas diffusion technique, hybrid Ag-hydroxyapatite carboxylated CMs were
obtained. An investigation into the antimicrobial properties of the hybrid CMs has shown
better antibacterial effect against S. aureus [110]. In addition, the hybrid MS encouraged
MG63 cells to proliferate and adhere. Few antimicrobial peptides (AMPs) such as MSI-78A
(Pexiganan A) can eliminate Helicobacter pylori, a harmful bacterium that infects the stomach
mucosa among 50% of the globe’s population [111]. About 20–40% of H. pylori-affected
patients do not respond well to the conventional therapies based on antibiotics. A novel bio-
engineered approach of grafting AMP onto CMs has been reported. Typically, MSI-78A was
grafted to CMs by thiol-maleimide using a heterobi-functional spacer (NHS-PEG113-MAL)
to the C-end cysteine. The particles were pre-incubation in set up mimicking stomach
conditions, the AMP borne CMs showed anti-bacterial effect against H. pylori J99 strain (a
human one) at lower doses than the isolated peptide (277 µg bounded MSI-78A-SH/mL
versus 512 g free MSI-78A-SH/mL). The mechanism of the H. pylori bacterial membrane
damage and cytoplasmic discharge was noted in a proportion of about ten bacteria per
MS after its exposure with AMP-CMs. Additionally, the electrostatic interaction of CMS
facilitated H. pylori’s affinity to chitosan, which made it easier for the incorporated AMP to
attack the bacterial membrane using the inverse emulsion technique; modified TiO2, with
and without Ag doping, were cross linked with CMs [112]. Consequently, the antibacterial
activities of composite TiO2-CMs were investigated under visible light. It was observed
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that TiO2 were uniformly dispersed within CMs, the particles having sizes ranging from 1
to 10 µm, showed good bactericidal effect versus E. coli, S. aureus and P. aeruginosa under
the visible spectrum due to their larger surface interaction with the bacterial cell.

CMs that have been polymerized with epichlorhydrin were fabricated, and their
ability to bind and form Ag+ was assessed for antibacterial potential and regulated drug
release [113]. The fabricated CMs exhibited antibacterial action versus S. aureus and E. coli.

By employing Ca2+ ions as mediators for polymer densification, alginate cross-linked
with CMs with uniform particle size distribution were synthesized [114]. Even at extremely
low concentrations of 5–20 mg, the synthesized alginate-CMs demonstrated antibacterial ac-
tivity against a wide spectrum of biofilm and pathogens of public importance. Particularly,
they demonstrated effective antibiotic activity against both Gram-positive and -negative
bacteria, including Enterococcus faecalis and S. aureus, as well as P. vulgaris and P. aeruginosa,
respectively.

Multiphase functional MS were synthesized through emulsion-based crosslinking by
mixing chitosan and gelatine solution with different concentrations of copper nanoparticles
(CuNPs) [115]. The antipathogenic activity of the hybrid MS with and without CuNP was
examined using agar diffusion and culture method. Typically, Gram-negative E. coli and
Gram-positive E. faecalis were involved in the test. The hybrid MS with CuNP showed
better antimicrobial inhibition than CuNPs and the effect was medium (solid or liquid)
dependent.

The anti-bacterial and physical properties of MS can be enhanced by means of com-
positing microsphere with hydrogel. Typically, OAlg-CMs hydrogel is crosslinked with
tetracycline hydrochloride incorporated gelatine MS [116]. In this way the antibacterial
effect against E. coli ad S. aureus was improved, providing a promising future for this
composite MS against bacterial infections.

There have been reports of putative antibacterial activities for chitosan/silver MS
(CAgMS) [117]. The substance utilized to crosslink is glutaraldehyde. The CAgMS’s
antimicrobial effectiveness was examined in experiments using fungus and bacteria. It was
discovered that as Ag concentration and MS surface area increased, the inhibition potential
of MS also did so.

A composite MS was made by combining green synthesized hydrogel and cryogel
nanoparticles that were doped with Ag nanoparticles [118]. The antibacterial impact was
then evaluated using the optical density measurement and disc diffusion methods against
both Gram-positive and -negative bacteria. The hydro-cryogel combination MS has been
found to have an exceptional antibacterial action when compared to commercially available
conventional antibiotics.

Chitosan-quercetin (CTS-QT) was synthesized via a unique method, and their antibac-
terial effect was compared to that of pure CTS and QT [119]. One hundred (100) mg of CTS
and equal amounts of QT and maleic anhydride were combined to produce the CTS-QT
combination with carbodiiamide crosslinkers. The CTS-QT complex had a two-fold bacteri-
cidal impact on E. coli and P. aeruginosa, and a 1.5-fold effect on S. aureus, according to an
antibacterial assay investigation.

The cytocompatibility and antibacterial activity of CFP-integrated polymer
O-carboxymethyl chitosan (CFP-OCMC-MPs) MS towards S. aureus was assessed [120].
Additionally, the CFP-OCMC-MPs demonstrated to have a prolonged bactericidal effect.

To enhance the antimicrobial and related properties of chitosan coatings, ZnO and
Ag/ZnO are incorporated with chitosan coating by casting method [121]. The modified
chitosan coating with ZnO revealed better antibacterial and mechanical properties whereas
Ag/ZnO exhibited optimal properties. Before modification, chitosan was able to incur
minor damages on the bacterial surfaces, based on the surface charge interaction of amine
group of chitosan with bacterial surfaces. Whereas the combined ZnO-chitosan coating
incurred extensive damage on the bacterial cell membranes on account of charge interaction,
along with hindering the synthesis of bulk protein.
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CMs with oleoyl group were added to chitosan by emulsification method. The CMs
had a smooth 124 µm spherical surface [122]. The antibacterial effect was found to be
directly correlated with hydrophobicity and concentration of CMs.

Chitosan-polymeric and chitosan-polymeric-metal oxide of chitosan/poly vinyl al-
cohol (pva) and CS/PVA/ZnO) were synthesized and their antibacterial activity was
tested [123]. When E. coli and S. aureus were exposed to CS/PVA/ZnO beads, it was
discovered that the tri-phase beads had higher antibacterial activity than pure chitosan
or bi-phasic MS. In general, a composite is usually made up of two or more materials
having two or more phases with heterogeneous characters, the advantage of such com-
posites is that compared to the single phase, the bi/or tri phases will encompass and
exemplify the combined properties of all the contained phases. So, when two material
components combine in a biphase, compared to those properties the triphasic beads will
have an added advantage. This is what we see manifested (as higher antibacterial property)
in the CS/PVA/ZnO triphasic system compared to the CS/PVA biphasic material [123].

Chitosan gel beads made of polysaccharide were created employing a twofold ionic
co-crosslinking mechanism [124]. As crosslinkers, alginate and tripolyphosphate were
employed. Both streptomycin and kanamycin A’s in vitro release profiles were investigated.
The gels had an antibacterial effect on Gram-negative E. coli.

New environmentally friendly hydrogel made up of chitosan/genipin/cellulose
seeded with dimethyldiallyl ammonium chloride (DMDAAC) was synthesized to selec-
tively adsorb anionic dyes and these were demonstrated for their antibacterial activity
against E. coli and S. aureus as well [125].

Wet milling solvent evaporation method was used to make curcumin coupled CMs
(CCCMs). These CCCMs appeared to be spherical particles of size 2–5 µm [126]. The zone
of inhibition was 28 mm and 23 mm against S. aureus and E. coli using CCCMs.

The core-shell MS with PLGA-glycol was prepared by emulsion-solvent evaporation
method using chlorhexidine acetate and bFGF in the core of GC shell and PLGA MS
respectively [127]. The release profile of CHA and bFGF have showed to retain antimicrobial
and bioactive property.

To ensure prolonged resistance against bacteria, the KSL-W incorporated PLGA-CMs
were developed by electrospraying and emulsion crosslinking technique [128]. Physical
parameters such as surface texture, particle size and its surface, size distribution, overall
drug encapsulation capacity and its in vitro release profile and antibacterial activity were all
examined for various MS formulations. The study confirmed longer antibacterial resistance
of formulated hybrids on oral bacteria.

A hybrid hydrogel containing graphene oxide/polyvinyl alcohol (PVA)/rose bengal
(RB) were formed by freezing and de-freezing PVA and RB mixture along with CMs and
Beta graphene oxide [129]. The irradiation at 808 nm and 550 nm stimulates hyperthermia
condition and reactive oxygen species (ROS) production from graphene oxide and RB, re-
spectively. These give rise to excellent antimicrobial properties within 10 min of irradiation
in both in vivo and in vitro trials.

4.2. Antifungal

By spray-congealing, seven distinct formulations were created. Chitosan, sodium
carboxymethylcellulose, and poloxamers (Lutrol F68 and F127) were added, along with
a lipid-hydrophilic matrix (Gelucire 53/10), which served as the carrier [130]. Investi-
gations into the MS antifungal efficacy against Candida albicans ATCC 10231 were also
conducted [131]. High yields (>90%, w/w) of non-aggregated MS were obtained. The
bioavailability (in vitro), solubility of the already low soluble formulation was improved
significantly by poloxamer (p < 0.01). Poloxamers/Gelucire-based MP showed good inhibi-
tion against C. albicans, thereby underlining their potential for treating vaginal candidiasis
with minimal administration frequency. By altering their mitochondrial structure, the
monoterpene aldehyde citral has been shown to be able to suppress a wide range of
pathogenic fungus [131].



J. Mar. Sci. Eng. 2023, 11, 1480 11 of 19

By spray-congealing, seven distinct formulations were created. Chitosan, sodium
carboxymethylcellulose, and poloxamers (Lutrol F68 and F127) were added, along with
a lipid-hydrophilic matrix (Gelucire 53/10), which served as the carrier [129]. Investi-
gations into the MS antifungal efficacy against Candida albicans ATCC 10231 were also
conducted [130]. High yields (>90%, w/w) of non-aggregated MS were obtained. The
bioavailability (in vitro), solubility of the already low soluble formulation was improved
significantly by poloxamer (p < 0.01). Poloxamers/Gelucire-based MP showed good inhibi-
tion against C. albicans, thereby underlining their potential for treating vaginal candidiasis
with minimal administration frequency.

By altering their mitochondrial structure, the monoterpene aldehyde citral has been
shown to be able to suppress a wide range of pathogenic fungus [132]. Citral an acyclic
monoterpene aldehyde has been reported to alter mitochodria cell structure of variety of
fungi. Nevertheless, their chemical fragility and lability limit its use in the agricultural
sector. Botrytis cinerea, an invasive plant fungus, was successfully eradicated by modified
chitosan/carboxymethyl cellulose (CS/CMC) hydrogel MS incorporated with citral. In
contrast to previous applications of citral as a preservative of fruits, their combination
with chitosan matrixes provided scope for use in plant defense against pathogens such as
Botrytis cinerea.

4.3. Antiviral

Crosslinking based on emulsion technique was used to efficiently enclose the antiviral
medication acyclovir, which has low water solubility, inside chitosan and dextran that
is filled with polymeric network of acrylamide [133]. The release profile showed slower
release of drugs even up to 12 h for 94% acrylamide grafting efficiency. The in vivo study
of acyclovir CMs into the rabbit eye showed sustained elevated concentration of acyclovir
along with higher AUC values [134].

Chitosan was crosslinked with genipin, a plant-derived nontoxic reagent to form a
nano/microsphere with the ability to adsorb coronaviruses [135]. Similar beads of N-(2-
hydroxypropyl)-3-trimethyl chitosan (HTCC-NS/MS) were obtained from glycidyltrimethyl-
ammonium chloride (GTMAC). This novel biopolymer was examined as adsorbents for
Human coronavirus NL63 (HCoV-NL63), human coronavirus HCoV-OC43 and mouse
hepatitis virus (MHV) in aqueous virus suspensions. An order of strong, moderate and
insignificant adsorption was noted for HCoV-NL63 virus MHV and HCoV-OC43 virus,
respectively. Thus, the CMs provide a means to potentially purify contaminated water by
filtering or eliminating harmful viruses. The antipathogenic activities of chitosan MSs that
are reported are listed in Table 1.

Table 1. Chitosan MS/MS composites and their antimicrobial activity.

Chitosan MS/
Composite Type Microbe Activity

Tetracycline has also been loaded into
CMS Staphylococcus aureus Antibacterial activity-Growth inhibition

Carboxylated
chitosan/silver-hydroxyapatite

(CMCS/Ag-HA) hybrid MS
Staphylococcus aureus Antibacterial activity by synergistic effect

of Ag+ and CMCS

MSI-78A with a C-terminal cysteine was
grafted onto chitosan MS (AMP-ChMic) Helicobacter pylori Bactericidal-membrane disruption and

cytoplasmic release

Ag and TiO2 nanoparticles on the
cross-linked chitosan MS E. coli, P. aeruginosa and S. aureus

Antibacterial-enhancement of both
electron-hole separations, oxidizing

hydroxyl release,

Epichlorohydrin-crosslinked chitosan MS
loaded with silver nanoparticles E. coli and S. aureus Antibacterial



J. Mar. Sci. Eng. 2023, 11, 1480 12 of 19

Table 1. Cont.

Chitosan MS/
Composite Type Microbe Activity

Chitosan-alginate (CS/ALG) MS

Gram-positive Staphylococcus aureus,
Enterococcus faecalis and Gram-negative

Pseudomonas aeruginosa and Proteus
vulgaris

Antibacterial, antibiofilm

Cephalosporins loaded in magnetic
chitosan MS Staphylococcus aureus and Escherichia coli Antibacterial

CuNPs coated with chitosan Gram-negative bacterium E. coli and the
Gram-positive bacterium E. faecalis Antibacterial

Tetracycline hydrochloride (TH) loaded
gelatin MS (GMS) integrated into the

OAlg-CMCS hydrogel

Escherichia coli and Staphylococcus
aureus Powerful bacterial growth inhibition

Chitosan/silver MS (CAgMS) E. coli,
S. aureus, Rhizopus and Mucor Antibacterial and antifungal

Hydrogel and cryogel MS doped with
green synthesized silver nanoparticles

(CS-AgNPs)

Gram-positive and gram-negative
bacteria Antibacterial

Chitosan-quercetin (CTS-QT) E. coli, S. aureus and P. aeruginosa Bactericidal

Cefepime loaded O-carboxymethyl
chitosan MS Staphylococcus aureus Long lasting bactericidal activity

Ag/ZnO-CS Shewanella putrefaciens and Pseudomonas
aeruginosa Bacterial cell membrane

Oleoyl-CMS (OCMS) E. coli. Antibacterial

Chitosan/poly(vinyl alcohol)/zinc oxide
(CS/PVA/ZnO) Escherichia coli, and Staphylococcus aureus Antibacterial

Aminoglycoside-Loaded
Chitosan/Tripolyphosphate/Alginate

MS
Escherichia coli Growth inhibition

Dimethyldiallylammonium chloride
(DMDAAC) grafted

chitosan/genipin/cellulose hydrogel
beads (CCBG-g-PDMDAAC)

S. aureus and E. coli Antibacterial

Curcumin conjugated chitosan MS
(CCCMS) Staphylococcus aureus and Escherichia coli Antibacterial

PLGA-glycol chitosan (GC) core-shell MS Staphylococcus aureus Antibacterial

KSL-W-loaded PLGA/chitosan
composite MS (KSL/PLGA/CS MSs) Oral bacterial pathogens Antibacterial

Rose bengal/graphene oxide/PVA
hybrid hydrogel immobilized with CMS Hyperthermia generated ROS Antibacterial

Chitosan, sodium
carboxymethylcellulose and poloxamers Candida albicans Antifungal

Chitosan/carboxymethyl cellulose
(CS/CMC) Botrytis cinerea in Solanum lycopersicum Antifungal

Crosslinking of chitosan (CHIT) with
genipin

Human coronavirus NL63 (HCoV-NL63),
mouse hepatitis virus (MHV), and
human coronavirus HCoV-OC43

Antiviral
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5. Future Recommendations and Conclusions

The antimicrobial activity of chitosan and its composites have been reviewed. The
contribution of chitosan towards this cause stands unequivocally proven. With antibiotic
resistance and mutants on the rise, natural alternatives for antimicrobial applications are
continuously being sought after. Chitosan, known for its natural and humble origins, is
an attractive option, which has been proven, as projected in this review. CMs are well
established for their drug delivery applications and their antibacterial activity. Through the
course of this review, we discovered that only scattered single reports are available with
respect to the use of chitosan/chitosan composite MS. Moreover, these have been tested
against only a handful of bacterial species. More intensive studies should be planned to
expand its use against the exhaustive list of clinical pathogens.

With respect to the antibacterial, antifungal and antiviral applications of chitosan mi-
crospheres, it was found that antifungal and antiviral applications were backed up by scanty
research publications. Our PubMed search, using the search terms, ‘CMs antibacterial
activity’ hit 216 results, implying there is a long way to go (Figure 3a). The evident gap is
in the fact that antifungal and antiviral applications of CMs had only 16 (Figure 3b) and
1 (Figure 3c) supportive research publications. With the versatility of CMs antimicrobial
activity well-established, the fact that almost nothing had been applied towards antifungal
and antiviral applications is puzzling. With the strong potential of chitosan MS well-proven,
it is necessary that it is tested for all possible applications. Given the recent COVID-19
pandemic, where a virus locked down the entire globe, extending CMs antimicrobial activity
for anti-COVID solutions is a much-required endeavor. Chitosan has been prevalently
used for antifungal and anti-viral applications, chitosan MS crosslinked with potential
antimicrobial moieties, should far surpass the chitosan standalone effect. This review
highlights the importance of focusing on this aspect. The fact that the mechanism of
interaction of chitosan with almost all bacteria (with exceptions) is that the amine group
acts as a positively charged moiety under right conditions, disrupting the negatively
charged bacterial membrane. However, in contrast, only a fraction of viruses have such
negative electron charge density on their surfaces. Hence, this might become a limiting
factor against the antiviral activity of chitosan microspheres. This aspect is yet to be
confirmed, affirmative research in this direction is encouraged.
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CMs have been predominantly highlighted for its use in drug delivery applications
owing to their unique morphologies, yet this review emphasizes that there is scope for
expansion into other biomedical aspects which need to be investigated and realized.

This review surveyed the current scenario with respect to the various antimicrobial
applications of CMs and their composites, the review also highlights the need to intensely
look into the mechanism of antimicrobial activity of CMs as well as intricately expand its
potential to fatal pathogens that are currently challenging human health and welfare.
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