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Abstract: This study utilized Chlorophyll-a, sea surface temperature (SST), and sea surface height
(SSH) as the environmental variables to identify skipjack tuna catch hotspots. This study conducted
statistical methods (decision tree, DT, and generalized linear model, GLM) as ensemble models that
were employed for predicting skipjack area for each time slice. Using spatial historical data, each
model was trained for one of the ensemble model sets. For prediction, the correlations of historical
and new inputs were applied to select the predictive model. Using the scene-based model with
the highest input correlation, this study further identified the fishing area of skipjack tuna in every
case whether the alterations in their environment affected their abundance or not. Overall, the
performance achieved over 83% for correlation coefficients (CC) based on the accuracy assessment.
This study concluded that DT appears to perform better than GLM in predicting skipjack tuna
fishing areas. Moreover, the most influential environmental variable in model construction was sea
surface temperature (SST), indicating that the presence of skipjack tuna was primarily influenced by
regional temperature.

Keywords: decision tree; generalized linear model; ensemble prediction; skipjack tuna; fisheries

1. Introduction

Tuna is one of the largest and most commercially important groups of fish species,
known for its specialization in various areas. Tuna species play a fundamental role in
the open ocean ecosystem as both predator and prey within the intricate food web [1].
Among major tuna fisheries, the most important and significant catches within the species
are the skipjack tuna (Katsuwonus pelamis), which accounted for more than half of the
total global catch [2–4]. The skipjack tuna, characterized by its small size, is the most
abundantly caught species of tuna both in terms of total numbers and weight [1]. In
addition to its abundant resources, skipjack tuna stands out for its exceptional productivity
when compared to other tuna species [5]. Due to these reasons, skipjack tuna has held
a high importance level in global fisheries. However, recently, the world fishery area is
facing increased pressure from a range of factors, including overfishing, climate change,
pollution, and habitat degradation [6]. This problem held great importance due to the
connection between the support received by the fishing industry and the overexploitation of
marine resources [7,8].

Determining a possible fishing spot improves fishing efficiency and helps to facilitate
the fisherman to maintain the total catches of skipjack tuna. Determining the possible
fishing area for skipjack tuna is desirable by considering their life preference, which is much
related to the marine environment condition. Their life preferences can be analyzed through
the relationship between their presence with marine environmental parameters such as sea
surface temperature (SST). The skipjack tuna is primarily found in habitats characterized
by warm water masses with high oxygen content due to the limited thermoregulation
capabilities. The habitat is often situated near cooler waters (below the thermocline),
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allowing the skipjack tuna to release any excess metabolic heat [9]. Skipjack habitat is
associated with an SST range between 18◦ and 30 ◦C [10], with a preferred range in
the equatorial area ranging from 28.5 ◦C to 30.5 ◦C [11]. Dueri et al. [12] and Lehodey
et al. [13] conducted a more complex investigation that derives skipjack habitat preferences
as input data for population models such as SST and oxygen using a biogeochemical
model. Mugo et al. [9] conducted a more detailed analysis of skipjack habitat by using
generalized additive models to associate SST, chlorophyll-a (Chl-a) concentration, sea
surface height (SSH) anomalies, and eddy kinetic energy at weekly and monthly time
scales. Hsu et al. [14] found the suitability index based on SST, SSH, sea surface salinity,
mixed layer depth, chlorophyll, and finite-size Lyapunov exponents. Putri et al. [15] aimed
to analyze the relationship between satellite data on SST and Chl-a anomalies, and skipjack
tuna catch distribution. Mugo et al. [16] predicted habitat suitability maps using SST,
SSH, Chl-a, diffuse attenuation coefficient, and surface wind speed. Thus, we analyze the
relationship between the possible skipjack presence with the environmental variables such
as Chl-a, SSH, and SST. Moreover, the ensemble model is a machine-learning technique
that combines multiple models to produce an optimal predictive model [17]. Here, each
case in the ensemble model is reproduced using historical environmental data. This study
uses models, including the generalized linear model (GLM) and decision tree (DT) to
develop the presence prediction of skipjack tuna. The utilization of DT to identify and
classify objects was implemented first by Hunt et al. [18]. DT is supervised learning
used for classification and regression [19]. Previous studies compared the predictive
accuracy of statistical and rule-based methods [20,21]. GLMs are commonly used for
prediction modeling because of their strong statistical ability to realistically model ecological
relationships [22]. GLM provides a less restrictive form than classic multiple regressions by
providing error distributions since the variance is not constant or normally distributed. A
comparative analysis will be conducted between DT and GLM to identify the most suitable
predictive model.

Fishing area prediction of skipjack tuna is conducted by identifying the hotspot of the
tuna fishing activities using environmental variables, e.g., Chl-a, SST, and SSH. This study
uses statistical approaches such as GLM and DT to generate a favorable fishing area for
skipjack tuna on a weekly scale. Based on ensemble model sets, each model is trained using
spatial historical data. For scene-based prediction, the correlations of historical and new
inputs are applied to select the most suitable predictive model. This study further estimates
the spatial distribution of skipjack tuna fishing spots using this scene-based approach.

2. Materials and Methods
2.1. Study Area

The study area for this study is located at 140◦ to 179.91◦ W, −10◦ to 30◦ N which is
revealed in Figure 1 below. The area was part of the Western and Central Pacific Ocean
(WCPO) and situated near the equator line. The warmest pool of oceanic surfaces lay in this
area and played an essential role in the Earth’s climate. Annual SST in the western Pacific
Ocean was above 28 ◦C [23]. Skipjack tuna are usually found year-round concentrated in
warmer tropical waters of the WCPO, with that distribution expanding seasonally into
subtropical waters to the north and south, particularly on the western side of the WCPO [24].
A previous study carried out by Hampton [24] stated that the catch is highly concentrated
in the equatorial zone due to the abundant catch of skipjack tuna in this area.

2.2. Dataset

This study dataset consists of fish catch points and environmental variables such as Chl-
a, SST, and SSH in 2016 and 2017. The complete dataset comprises 48 cases, encompassing
the model development and the prediction phases. This study developed the model using
a weekly dataset (46 cases) in 2017. For scene-based prediction, the new dataset consisted
of weeks 2 and 14 in 2016 (2 cases).
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is 9 km using a resampling process based on bilinear interpolation. The input image time 
series are selected based on the closest time of weekly fishing catches. 

  

Figure 1. Study area at 140◦ to 179.91◦ W, −10◦ to 30◦ N.

2.2.1. Fishing Catch Points

Fishing catch points were obtained from the location record of skipjack tuna fishing
activities within the study area (Figure 2). Fishing catch points were obtained from the
Overseas Fisheries Development Council of Taiwan (dataset can be accessed at www.ofdc.
org.tw, accessed on 10 July 2020). The recorded points consisted of fishing date, latitude,
longitude, fishing activity code, vessel school type, start and end time of fishing activities,
and the total catch.
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Figure 2. Fish catch point for the first four weeks in 2017.

2.2.2. Environmental Factors from Remote Sensing

According to Laevastu and Hayes [25], the distribution of pelagic fish tends to migrate
to fertile water. The skipjack tuna catch results are more influenced by the combination of
two oceanographic variables, which are SST and Chl-a [11,25]. Aside from those variables,
this study also considers the fact of skipjack tuna habit to inhabit the upper layer of the
ocean. In consideration of that, this study also includes SSH as one of the environmental
variables for predicting skipjack tuna fishing areas. Table 1 shows details of satellite imagery
dataset information about Chl-a, SST, and SSH. The spatial resolution of data is 9 km using
a resampling process based on bilinear interpolation. The input image time series are
selected based on the closest time of weekly fishing catches.

www.ofdc.org.tw
www.ofdc.org.tw
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Table 1. Imagery dataset details.

Var Information Details

Chl-a MODIS-Aqua Level 3 SMI; Temporal: 8 Days; Spatial: 9 km; Unit: mgm−3

SST MODIS Level 3 SMI; Temporal: 8 Days; Spatial: 9 km; Unit: ◦C

SSH Global Ocean Analysis; Temporal: Daily mean; Spatial: 0.083◦ × 0.083◦; Unit: Meter (m)

2.3. Method

Figure 3 shows scene-based ensemble prediction. The relation between the possible
skipjack presence and environmental variables using machine learning is analyzed. Firstly,
a machine learning model is constructed using training datasets, which leads to the gen-
eration of the skipjack presence map. Using weekly spatial data, every model is trained
for ensemble model sets. To understand their performance from DT and GLM, this study
used confusion matrix methods to calculate correlation coefficients (CC), Cohen’s kappa,
and area under curve (AUC) to analyze the ability of both models for predicting the fish
probability maps. After training, an additional dataset is incorporated into the scene-based
model to predict the final skipjack presence maps. For fish-presence prediction, the correla-
tions of historical and new inputs are applied to select the most suitable predictive model.
Using the scene-based model with the highest input correlation, this study will further plot
the spatial distribution of skipjack tuna in any case and understand whether the alteration
in their environment affects their abundance or not.
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for one of the ensemble model sets; prediction: adding a new dataset into the scene-based model to
predict the skipjack presence map).
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2.3.1. Fishing Catch Point Density Map

To assume the possible fishing area, this study uses a density map based on the fishing
catch point in 2017. The kernel density method in ArcMap 10.5 was used to generate
the density maps. Kernel density estimation (KDE) is a technique for the estimation of
probability density function (PDF) that analyzes the studied probability distribution. The
kernel technique produces smooth estimation, uses all sample points locations, and more
convincingly suggests multimodality. In the commonly used practical application, kernel
estimation uses the symmetric kernel function, although the asymmetric function has
recently been increasingly used [26,27].

For a random sample y1, y2, . . . , yT, the kernel estimator of the PDF f ′T(y) at point y
can be expressed as:

f ′T(y) =
1

nh

T

∑
i=1

K
(

y− yi
h

)
(1)

where n is the number of observations, h is the bandwidth that determines the smoothness
of the estimate, and K(·) is the kernel [28,29]. In other words, the kernel transforms the
point location of i y into an interval centered around y i [27].

In this study, the fishing points were used as samples to generate the density maps.
Furthermore, the density map will help to assume the fish presence area. The dense area in
density maps indicated the area with the most gathered fishing catch points and vice versa.
Moreover, this study assumed the dense area as the fishing area, considering the abundance
of fishing catch points here, which implied that massive amounts of fishing activities
occurred. Meanwhile, the area with lower density is assumed to be an area with the least
fishing activities. Following that, for this study, we will set the dense area as the fish area
(FA) and the lower density area as the no fish area (NFA). To obtain the prediction model, it
is necessary to generate the training samples dataset as well as the testing samples dataset.
The training samples dataset is employed to construct the prediction model; meanwhile,
the testing samples dataset is employed to test the model’s performance with the intention
that a processing method explained in the following section be carried out.

2.3.2. Fishing Area Prediction Model Construction

This study applied DT and GLM techniques to construct predictive models. All calcu-
lations were performed under the statistical software “R” and its contributed packages [21].
The model utilizes the R Software Environment, employing the ‘CART’ package for DT and
the ‘glm’ package for GLM. The processing was conducted on a computer system equipped
with an Intel(R) Core™ i5-3550 CPU operating at 3.30 GHz and 8.00 GB of RAM. With this
computer specification, the runtime for the process ranged from approximately 3 to 5 h.
CARTs are nonparametric classification techniques that are implemented using a binary
recursive partition algorithm [19]. We already prepared the training samples dataset such
as Chl-a, SST, and SSH values. The classified fish area, which consists of class 1 for FA
and class 2 for NFA, will be assigned as the response variables, while Chl-a, SST, and SSH
values assigned as explanatory variables. GLM is executed in this study as the alternative
model to compare the performance of DT for the prediction. The response variables for
GLM will be carried out by classified fish area based on explanatory or predictor variables.

A GLM is made up of a linear predictor:

ηi = β0 + β1x1i + . . . + βpxpi (2)

A link function that describes how the mean, E(Yi) = µi, depends on the linear predictor
shown in Equation (3) below,

g(µi) = ηi (3)

In a link function, a logistic regression model is used to predict fish area occurrence.
Where x1i, . . . xpi are environmental variables in this study, e.g., Chl-a, SST, and SSH.

β0, β1, . . . βp are model parameters in Equation (2).
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2.3.3. Scene-Based Prediction

This study generated 46 weekly models for ensemble models. To know which model
gives the best performance when applied to the new dataset, we analyzed the correlation
between the environmental variables. The correlation matrix is one of the foundations of
factor analysis and has found its way into such diverse areas, playing an essential role
in multivariate analysis since, by itself, it captures the pairwise degrees of relationship
between different components of a random vector [30,31]. The model, which has the
highest correlation with the new and historical dataset, conducts further as the main
prediction model.

2.3.4. Accuracy Assessment

The confusion matrix is needed to calculate most of the measures of classification
accuracy from the prediction model [32]. It quantified the prediction performance of the
model as the percentage samples where the model correctly predicts the FA and NFA class
using the testing samples dataset. From the values in the matrix of confusion matrix, this
study, therefore, calculated alternative performance measures including CC [32,33], Co-
hen’s kappa, and the area under the receiving operating characteristic curve (AUC) [32,34].
The CC is the ratio of samples correctly classified by the prediction model. Cohen’s kappa
is a statistic that measures the agreement of two categorical items [35]. The kappa index
also considers both omission and commission errors and can be used to assess whether
prediction model performance differs from expectation based on chance alone [33]. In
this study, the agreement that was measured was between the observed and predicted
FA and NFA classes. Cohen’s kappa values were used to determine which model was
better for fishing area prediction (Table 2). A previous study conducted by McKenna and
Castiglione [36] used the categorization presented in the following Table to assess the sig-
nificance of Cohen’s kappa values. Following that, this study also used this categorization
system for determining Cohen’s kappa significance. The receiver operating characteristic
(ROC) curve is a graphical method that represents the relation between the false positive
fraction and the sensitivity for a range of thresholds [34]. If the prediction was possibly
expected by chance, the relation would be 45◦. Good model performance is characterized
when the curve passes close to the upper left corner of the plot. The area between the 45◦

line and the curve that measures discrimination was called AUC. The AUC quantifies the
ability of a model to discriminate between the area where the fish is present (FA) versus
those where it is absent (NFA).

Table 2. Cohen’s kappa value categorization.

Cohen’s Kappa Value Agreement Categorization

<0.01 No agreement

0.01−0.20 Slight agreement

0.21–0.40 Fair agreement

0.41–0.60 Moderate agreement

0.61–0.80 Substantial agreement

>0.80 Almost perfect agreement

3. Results
3.1. Fishing Catch Point Density Maps

Figure 4 shows the weekly density map of fish catch points in 2017 from Week 13
to Week 16. The unit of the density map is the total catch points within one pixel. The
brown color area in density maps was the dense area, while the yellow area was the low-
density area. The dense area in density maps indicated the area with the most fishing catch
points gathered and vice versa. This dense area is assumed to be the fishing potential area,
considering the abundance of fishing catch points here, which implied massive amounts of
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fishing activities occurred. Furthermore, the density pattern appears to be more clustered
in maps. The point distributions in these weeks were more scattered than in another week.
Considering the KDE used the points distribution location to generate the density map,
this circumstance might happen because of the scattered points distribution in these weeks.
Following the goal of this study, we predict and generate the possible fish presence area
probability map constructed by the DT and GLM. The map reveals the possibility of the
percentage of fish existence by considering environmental factors consistent in every area
calculated by the models. The result displayed an almost zero density pattern in week 33.
We assume that this condition was caused by a limited number of points occurring in this
week, producing a very low-density pattern in the density map.
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3.2. Fishing Area Model in DT and GLM

Most spatial patterns of fishing spots are similar when compared to DT and GLM
in these weeks (Figure 5). All CC achieved more than 80% in DT and GLM, except week
33 in DT (Table A1). The DT belonging to the supervised classification was processed to
generate the fishing area prediction. By considering the environmental factors condition
in every area as the explanatory variables and the fish area assumption as the response
variables in model construction, the DT can predict the fish possibility. Ensemble models
in DT were obtained. Using the input dataset, we constructed, weekly, 46 models and
generated the fish probability map. We found SST to be the most influential variable in
weekly processing. The SST became the most influential variable from 46 weeks of model
construction, followed by SSH and Chl-a, respectively (Table A2). Aside from that, we also
generated the fish probability maps for weekly processing using the constructed models.
From the maps, we were able to discover much white area around the possibility maps
result. The white area indicated the null value area that was caused by the null value in
the Chl-a satellite imagery. Moreover, we discovered a particular result happened because
there was a lack of fishing catch points within a week, indicating less fishing catch activity
occurring at that time. Following that, in the training samples preparation, we obtained
fewer samples for the fish area class, causing the DT to assume that there were no fish
areas detected.

Mostly, GLM achieved less accuracy than DT. This study executed GLM techniques
as an alternative model because GLM was one of the simple parametric approaches for
prediction. The purpose of this comparison is to evaluate which prediction method might
be more robust and accurate for fishing area prediction. This study applied a simple GLM
with linear terms to all the cases. GLM proceeds using the same training and testing sample
dataset with the DT, with the response variables being carried out by classified fish area
assumption while the remaining will be explanatory or predictor variables. In GLM, we
discover SST almost has high significance every week (Table A3). Similar to fish maps
probability generated by DT, we also found the null value of Chl-a affecting the map result.
Meanwhile, GLM was able to classify and generate a probability map.
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3.3. Scene-Based Prediction in Fishing Area

To discover the best prediction model among the generated models, the correlation
was used between the environmental dataset in those 46 weeks with the new datasets. The
week in which environmental variables have a high correlation with the new dataset will
be chosen as the main prediction model for the weekly processing.

Since the environmental variables change every week, we, thus, intended to find a
prediction model that might work well in different weeks. The correlation matrix between
the environmental variables indicated in the week with the highest correlation. In the
previous section, DT has a better performance than GLM in predicting fish presence. Thus,
we applied the prediction model generated by DT to our new dataset. To know whether the
model can give an excellent performance using the new dataset, an accuracy assessment
was conducted. The accuracy assessment presented by CC, Cohen’s kappa, and the AUC
value from the prediction results is shown in the following Table 3. Based on the CC value,
the model can achieve more than 80% accuracy. This finding indicated that the prediction
model was appropriate to be the main prediction model for weekly processing. Figure 6
plotted the new prediction maps with the fishing catch points. The red area represents the
predicted FA while the blue area presented the NFA class. The maps appeared to mostly
land in the predicted FA, indicating that the prediction model can generate the prediction
maps accurately.

Table 3. Accuracy assessment results for new datasets.

CC Kappa AUC

Test 1 0.8814 0.7315 0.8455

Test 2 0.8308 0.6311 0.8087
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4. Discussion
4.1. Ensemble Model

The application of machine-learning algorithms to fishing area prediction is appropri-
ate for improving estimation accuracy [37,38]. Machine learning is an effective approach to
evaluating relations between the potential fishing area and corresponding environmental
parameters. The GLM as the logistic method fits a single line to divide the area precisely
into two. The GLM bisects the variables into smaller and smaller regions until it fits the
condition needed. GLM determines the significance level statistically between the variable
and the term which, in this case, is the fish presence class. The GLM showed a more stable
result for the variable significance in its model construction. Meanwhile, GLM considers
the significance of each variable statistically in the term, making it possible for the variable
to be significant in all cases. Moreover, DT establishes the variable’s rule in the model
construction by fitting all the variables into a suitable condition, causing the importance
of the variables to vary in each case. For the consideration of both models’ performances,
we discover both DT and GLM to be appropriate for predicting skipjack tuna fishing areas.
Furthermore, the performance of DT appears to be better than that of GLM in all cases
based on their accuracy assessment result. DT’s ability to partition the variables into groups
until it fits with the class term and becomes a major reason for DT to perform best for
the prediction based on the classification in this study. However, DT fails in the very
low-density pattern of fishing area prediction.

We only applied one-year weekly data for the ensemble model. More ensemble models
with historical data will generate a more accurate spatial map of the fish potential zone.
The model proves to be able to predict the weekly fish presence with high accuracy but
may get lower accuracy along with the longer period. This condition makes sense due to
the uncertainty in their environmental variables at time scales.

4.2. Tuna and Environmental Variables

A compelling case was found when there was a massive decrement in the skipjack
tuna catch number. A strong El-Niño occurred, causing the SST to become an anomaly
in the study case region [39]. Following that, we consider more analysis of the change in
SST with the predicted fishing area. Our study case was located in the Western Equatorial
Pacific which has the warmest surface temperatures in the world and is commonly known
as the ‘warm pool’ with SST > 29 ◦C [40]. This area also has a weak seasonal variation of
the warm pool, which means the temperature only slightly changes over seasons. Skipjack
tuna spreading in this area is hypothesized to correlate with the position of the warm
pool–cold tongue convergence zone state [13]. In the Northeast Indian Monsoon, NEM
season, the predicted fish area was located mostly in the coastal area with an SST range
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around 29–30 ◦C. We also discovered part of the fishing area is located in the offshore
area, where the position of the convergence zone in this season with SST is around 29
◦C. In the IM1 (inter-monsoon 1) season, the fishing area was shifting to the offshore
area mostly located in the convergence area, while the cold tongue appears to be more
apparent during this season. During the rapid decrease of the total skipjack tuna catch
number from IM2 into the southwest monsoon, SWM season, the Chl-a concentration
was not changed seriously. The Chl-a increased rapidly in the IM2 season from 0.093 to
0.129 mgm−3, inversely proportional to the decreasing total catch number. Based on the
predicted result, the fish gathers around the area with Chl-a concentration ranging from
0.09 to 0.10 mgm−3. In addition, the fishing spots were not far from strong SST fronts
(its gradient) [41]. The high-gradient SST front was highly associated with the fishing
area. Future work will suggest that the SST front, subsurface temperature, or near-surface
salinity can be considered as a predictor in the model [14,42].

5. Conclusions, Limitations, and Future Research

The research goal of this study is to predict skipjack tuna fishing areas by investigating
the relation between skipjack tuna presence and marine environmental parameters using
an ensemble model. The predictive tuna fishing area for all cases in this research was
successfully obtained by using DT and GLM methods. Both models can generate the
predicted maps but DT appeared to perform better than GLM in this research. In the
accuracy assessment, most performance achieved more than 80% for CC. Following these
results, DT is more appropriate to use in predicting skipjack tuna fishing areas. Furthermore,
the correlation for environmental variables between new and historical input datasets is
analyzed to discover the suitable prediction model. This prediction was proven to acquire
a good performance based on the optimal-scene ensemble model.

In the scene-based model, this result supports our assumption that the environmental
variables have an effective impact on the skipjack tuna area prediction. The strong corre-
lation between the prediction and the environmental variables, particularly sea surface
temperature (SST) and chlorophyll-a concentration (Chl-a), is indicative of their significant
influence on fish feeding habits. This observation validates the robust association between
the presence of skipjack and the environmental conditions prevalent in the region. This
scene-based model is appropriate to use for potential fishing zone prediction. This model
is only available based on spatial environmental data, e.g., satellite-image time series.
For future research works, it is recommended to adopt fine spatial-resolution datasets to
provide fishing areas at finer resolutions. This would allow us to obtain more detailed
fishing area maps, enhancing their usefulness for localized research studies. The impact
of marine environmental parameters on the presence of skipjack tuna will be thoroughly
examined in the future.
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Appendix A

Table A1. Model Performances in DT and GLM with CC (Correlation Coefficients), Kappa, and AUC
(Area Under Curve).

DT GLM

Weeks CC Kappa AUC CC Kappa AUC

Week 1 0.922 0.823 0.925 0.845 0.638 0.849

Week 2 0.913 0.807 0.894 0.874 0.712 0.816

Week 3 0.956 0.905 0.958 0.857 0.689 0.840

Week 4 0.946 0.882 0.941 0.929 0.845 0.932

Week 5 0.911 0.804 0.907 0.899 0.774 0.869

Week 6 0.885 0.869 0.917 0.879 0.729 0.843

Week 7 0.898 0.733 0.872 0.879 0.734 0.900

Week 8 0.983 0.925 0.976 0.922 0.838 0.974

Week 9 0.919 0.612 0.924 0.859 0.707 0.912

Week 10 0.938 0.803 0.947 0.918 0.826 0.947

Week 11 0.911 0.870 0.888 0.931 0.847 0.903

Week 12 0.933 0.833 0.958 0.878 0.733 0.891

Week 13 0.876 0.669 0.872 0.832 0.626 0.854

Week 14 0.846 0.759 0.863 0.901 0.781 0.908

Week 15 0.848 0.736 0.88 0.840 0.628 0.764

Week 16 0.92 0.735 0.935 0.860 0.680 0.893

Week 17 0.899 0.808 0.874 0.871 0.708 0.841

Week 18 0.874 0.722 0.845 0.859 0.678 0.813

Week 19 0.9 0.725 0.907 0.813 0.585 0.840

Week 20 0.873 0.807 0.925 0.878 0.726 0.833

Week 21 0.935 0.824 0.923 0.915 0.814 0.928

Week 22 0.91 0.791 0.919 0.802 0.603 0.889

Week 23 0.885 0.835 0.914 0.885 0.745 0.897

Week 24 0.887 0.793 0.881 0.850 0.658 0.831

Week 25 0.817 0.614 0.781 0.824 0.608 0.841

Week 26 0.859 0.778 0.905 0.890 0.753 0.887

Week 27 0.836 0.614 0.845 0.815 0.580 0.827

Week 28 0.894 0.741 0.902 0.813 0.600 0.867

Week 29 0.868 0.671 0.89 0.795 0.573 0.881

Week 30 0.835 0.761 0.893 0.897 0.771 0.881

Week 31 0.809 0.594 0.852 0.766 0.445 0.715

Week 32 0.823 0.656 0.891 0.839 0.624 0.805

Week 33 0.333 0.000 0.5 1.000 1.000 1.000

Week 34 0.914 0.798 0.944 0.829 0.616 0.881

Week 35 0.9 0.802 0.884 0.876 0.727 0.892

Week 36 0.921 0.785 0.907 0.835 0.616 0.750
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Table A1. Cont.

DT GLM

Weeks CC Kappa AUC CC Kappa AUC

Week 37 0.871 0.709 0.864 0.821 0.589 0.811

Week 38 0.903 0.782 0.916 0.866 0.707 0.884

Week 39 0.914 0.857 0.919 0.905 0.797 0.923

Week 40 0.857 0.734 0.829 0.881 0.739 0.899

Week 41 0.848 0.683 0.846 0.856 0.675 0.827

Week 42 0.92 0.808 0.929 0.902 0.785 0.912

Week 43 0.927 0.781 0.933 0.863 0.697 0.863

Week 44 0.902 0.806 0.892 0.872 0.745 0.967

Week 45 0.911 0.798 0.925 0.876 0.738 0.938

Week 46 0.888 0.743 0.897 0.885 0.737 0.905

Table A2. Variable Importance of DT (variable importance: a score to quantify how useful they are at
predicting a target variable).

Weeks Chl-a SST SSH

Week 1 12% 43% 45%

Week 2 17% 52% 31%

Week 3 13% 47% 40%

Week 4 23% 42% 35%

Week 5 22% 47% 31%

Week 6 9% 47% 45%

Week 7 20% 65% 15%

Week 8 22% 53% 25%

Week 9 27% 48% 25%

Week 10 17% 59% 25%

Week 11 22% 56% 22%

Week 12 23% 43% 34%

Week 13 22% 56% 22%

Week 14 25% 58% 17%

Week 15 26% 49% 25%

Week 16 25% 46% 29%

Week 17 25% 47% 29%

Week 18 38% 29% 33%

Week 19 27% 39% 34%

Week 20 25% 21% 54%

Week 21 44% 20% 37%

Week 22 42% 18% 40%

Week 23 23% 29% 48%

Week 24 17% 18% 64%
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Table A2. Cont.

Weeks Chl-a SST SSH

Week 25 24% 3% 72%

Week 26 21% 13% 65%

Week 27 18% 22% 60%

Week 28 48% 13% 39%

Week 29 51% 17% 31%

Week 30 31% 22% 47%

Week 31 27% 16% 57%

Week 32 10% 18% 72%

Week 33 28% 16% 55%

Week 34 21% 20% 59%

Week 35 13% 49% 39%

Week 36 53% 8% 39%

Week 37 32% 21% 47%

Week 38 43% 28% 29%

Week 39 45% 23% 32%

Week 40 13% 56% 31%

Week 41 27% 45% 28%

Week 42 25% 46% 29%

Week 43 20% 43% 38%

Week 44 12% 55% 33%

Week 45 26% 45% 29%

Week 46 19% 50% 31%

Table A3. Coefficients, and Significance Level in GLM (t-tests are used to determine if a particular
variable is statistically significant).

Weeks
Variables

Chl-a SST SSH

Week 1 0.921 1.58 × 10−10 *** 0.221

Week 2 3.42 × 10−14 *** <2 × 10−16 *** 0.002 **

Week 3 2.55 × 10−8 *** <2 × 10−16 *** 1.96 × 10−6 ***

Week 4 <2 × 10−16 *** <2 × 10−16 *** 0.145

Week 5 0.120 <2 × 10−16 *** 0.476

Week 6 0.727 1.65 × 10−13 *** 4.47 × 10−5 ***

Week 7 0.757 <2 × 10−16 *** 0.033 *

Week 8 0.044 * 2.54 × 10−11 *** 1.00 × 10−5 ***

Week 9 0.211 <2 × 10−16 *** 3.48 × 10−5 ***

Week 10 0.102 <2 × 10−16 *** 0.006 **

Week 11 0.216 <2 × 10−16 *** 1.15 × 10−11 ***

Week 12 0.836 <2 × 10−16 *** 5.85 × 10−9 ***

Week 13 0.769 <2 × 10−16 *** 2.27 × 10−5 ***



J. Mar. Sci. Eng. 2023, 11, 1398 14 of 16

Table A3. Cont.

Weeks
Variables

Chl-a SST SSH

Week 14 0.688 <2 × 10−16 *** 0.029 *

Week 15 0.591 <2 × 10−16 *** 0.002 **

Week 16 0.814 1.96 × 10−15 *** <2 × 10−16 ***

Week 17 <2 × 10−16 *** 9.08 × 10−15 *** 0.389

Week 18 2.37 × 10−8 *** <2 × 10−16 *** 6.07 × 10−13 ***

Week 19 0.467 <2 × 10−16 *** 0.013 *

Week 20 0.177 <2 × 10−16 *** <2 × 10−16 ***

Week 21 <2 × 10−16 *** <2 × 10−16 *** <2 × 10−16 ***

Week 22 <2 × 10−16 *** 1.55 × 10−10 *** <2 × 10−16 ***

Week 23 3.07 × 10−6 *** 6.71 × 10−16 *** 1.96 × 10−11 ***

Week 24 1.21 × 10−7 *** 2.49 × 10−6 *** 1.03 × 10−15 ***

Week 25 0.646 0.491 <2 × 10−16 ***

Week 26 <2 × 10−16 *** <2 × 10−16 *** <2 × 10−16 ***

Week 27 <2 × 10−16 *** <2 × 10−16 *** <2 × 10−16 ***

Week 28 <2 × 10−16 *** <2 × 10−16 *** 2.44 × 10−13 ***

Week 29 <2 × 10−16 *** <2 × 10−16 *** <2 × 10−16 ***

Week 30 2.07 × 10−8 *** 2.14 × 10−6 *** 0.064

Week 31 1.21 × 10−7 *** <2 × 10−16 *** <2 × 10−16 ***

Week 32 <2 × 10−16 *** 0.001 ** <2 × 10−16 ***

Week 33 0.112 0.848 0.845

Week 34 <2 × 10−16 *** <2 × 10−16 *** <2 × 10−16 ***

Week 35 8.05 × 10−9 *** <2 × 10−16 *** <2 × 10−16 ***

Week 36 2.26 × 10−8 *** <2 × 10−16 *** <2 × 10−16 ***

Week 37 0.00356** <2 × 10−16 *** <2 × 10−16 ***

Week 38 1.98 × 10−14 *** <2 × 10−16 *** <2 × 10−16 ***

Week 39 <2 × 10−16 *** 9.67 × 10−14 *** 0.016 *

Week 40 0.013 * <2 × 10−16 *** 2.21 × 10−5 ***

Week 41 4.4 × 10−11 *** <2 × 10−16 *** 0.217

Week 42 1.77 × 10−8 *** <2 × 10−16 *** 0.881

Week 43 0.733 <2 × 10−16 *** 0.066

Week 44 0.344 3.95 × 10−14 *** 0.083

Week 45 0.055 <2 × 10−16 *** 0.001 **

Week 46 0.748 <2 × 10−16 *** 0.700
‘***’ is one whose p-value < 0.001; ‘**’ is p < 0.01; ‘*’ is p < 0.05; ‘.’ is p < 0.1.
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