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Abstract: The intelligent maritime transportation system has emerged as a pivotal component in
port management, owing to the rapid advancements in artificial intelligence and big data technology.
Its essence lies in the application of digital modeling techniques, which leverage extensive ship
data to facilitate efficient operations. In this regard, effective modeling and accurate prediction of
the fluctuation patterns of ship traffic in multiple port regions will provide data support for trade
analysis, port construction planning, and traffic safety management. In order to better express the
potential interdependencies between ports, inspired by graph neural networks, this paper proposes a
data-driven approach to construct a multi-port network and designs a spatiotemporal graph neural
network model. The model incorporates graph attention networks and a dilated causal convolutional
architecture to capture the temporal and spatial dimensions of traffic variation patterns. It also
employs a gated-mechanism-based spatiotemporal bi-dimensional feature fusion strategy to handle
the potential unequal relationships between the two dimensions of features. Compared to existing
methods for port traffic prediction, this model fully considers the network characteristics of the
overall port and fills the research gap in multi-port scenarios. In the experiments, real port ship
traffic datasets were constructed using data from the Automatic Identification System (AIS) and port
geographical information data for model validation. The results demonstrate that the model exhibits
outstanding robustness and performs well in predicting traffic in multiple sub-regional port clusters.

Keywords: spatiotemporal graph neural network; traffic flow prediction; ship big data; AIS; port
traffic prediction

1. Introduction

Maritime transportation, characterized by its substantial carrying capacity, cost-
effectiveness, and remarkable adaptability to diverse environmental conditions, plays
a significant role in international trade as an important mode of transportation. The accu-
rate prediction of ship traffic flow holds immense significance, as it offers invaluable data
support for the advancement of the national maritime industry and the strategic planning of
international trade initiatives. Furthermore, it plays a crucial role in facilitating port layout
planning, thereby addressing the prevalent challenge of aligning the port capacity with
the escalating number of vessels arising from the rapid growth of the maritime industry.
Additionally, this predictive capability contributes to the reduction of traffic congestion
and the mitigation of accidents within maritime areas, consequently enhancing the overall
efficiency of port infrastructure utilization [1].

This paper primarily concentrates on the prediction of maritime traffic flow in multi-
port scenarios. Traffic flow prediction entails a typical task of time series forecasting,
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wherein the objective is to capture inherent patterns within traffic flow and speed data,
characterized by their temporal sequences. By effectively discerning such patterns, it be-
comes feasible to infer future traffic flow states [2]. The primary challenge in time series
prediction lies in accurately extracting a consistent temporal pattern. In practice, numerous
factors, including environmental fluctuations, seasonal variations, and unforeseen acci-
dents, can disrupt these theoretically stable patterns, thereby adding a considerable level
of complexity to time series prediction problems. Consequently, time series prediction
methods necessitate the incorporation of diverse influencing factors [3].

In the past, linear methods such as Autoregressive Integrated Moving Average (ARIMA)
models and historical average analysis were limited in handling complex external factors.
Scholars have attempted to use nonlinear machine learning methods such as backpropa-
gation networks [4] and support vector machines [5] to uncover hidden patterns in time
series data. However, these methods often suffer from slow convergence and algorithmic
incompleteness, resulting in unsatisfactory solutions to time series prediction problems.

Consequently, researchers have turned to the application of deep learning techniques
as a means to tackle practical time series prediction challenges. Deep neural networks
exhibit the inherent capability to capture and model nonlinear relationships. By leveraging
the stacking of multiple layers, these models can effectively capture a multitude of hidden
factors and intricate variables within the data. Recurrent neural networks (RNN) [6],
long short-term memory (LSTM) [7], and subsequent models such as gated recurrent
units (GRU) [8], WaveNet [9], and Transformer [10,11], have demonstrated outstanding
performance in the field of time series prediction.

With the rapid development of graph neural networks in recent years, spatial-convolution-
based graph neural network models led by graph convolutional networks (GCN) [12] and
graph attention networks (GAN) [13] have gained significant attention. In graph neural
networks, a graph is composed of a set of vertices (nodes) that are interconnected by a set
of edges. By performing convolutions on graphs with arbitrary structures, graph neural
networks can learn rich spatial features. In recent years, they have been successfully applied
in various domains, such as trajectory prediction [14,15] and traffic flow prediction [16].

In traffic flow prediction methods, conventional approaches often consider traffic in-
tersections or sensors as entities, represented as individual nodes. Simultaneously, the road
network, which accommodates these traffic entities, serves as the edges that symbolize the
relationships between these nodes. Graph neural-network-based traffic flow prediction
methods aggregate traffic flow information from neighboring nodes within a local spatial
range, thereby predicting the potential information of nodes in the traffic subnetwork.

Nevertheless, relying solely on spatial information to predict traffic flow states is
not rigorous and can lead to a significant loss of temporal information. To address this
limitation, researchers have extended their efforts by incorporating temporal prediction
learning methods into graph neural networks [17]. By leveraging techniques such as gate
units and recurrent neural networks (RNN), they have introduced “spatiotemporal graph”
models, which effectively capture both the spatial and temporal features of traffic flow
prediction [18,19]. These spatiotemporal graph models take into account both temporal
patterns and the spatial correlation structure of traffic entities. They can effectively capture
the underlying meanings and interactions of nodes and edges within complex systems,
resulting in superior prediction performance in traffic flow prediction.

In recent years, numerous excellent spatiotemporal graph models have been pro-
posed and applied in the field of urban traffic prediction. Representative works include
Multivariate Time Series Forecasting with Graph Neural Networks (MTGNN) [20], Dif-
fusion Convolutional Recurrent Neural Networks (DCRNN) [21], Spatiotemporal Graph
Convolutional Networks (STGCN) [18], and others.

However, the application traffic flow prediction methods in the maritime domain still
faces two major challenges. Firstly, there is a scarcity of public datasets that can be directly
used for analysis. The process of constructing maritime traffic flow datasets is arduous
and complex. Secondly, the maritime traffic flow prediction scenarios do not possess the
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same traffic network structures as urban settings, rendering it difficult to directly apply
spatiotemporal graph methods developed for urban traffic flow prediction [22]. Existing
port flow prediction methods typically focus on single-port scenarios and do not fully
consider the characteristics of port networks. They fail to consider the patterns of flow
changes from the perspective of the overall port distribution structure, resulting in a relative
scarcity of research in multi-port scenarios [23].

The scarcity of maritime traffic datasets stems primarily from the extensive geo-
graphical distribution, intricate structural arrangements, and challenges in regulating the
maritime networks comprising ports across diverse countries. The widespread adoption
of the Automatic Identification System (AIS) has significantly addressed the data gap in
the maritime domain. The AIS is an onboard broadcast response system that has been
gradually deployed on international vessels since 2002 and now has achieved widespread
coverage through satellite networks. Vessels equipped with AIS devices regularly transmit
navigational status data such as position points, speed, heading, and identity to ground-
based stations and satellite receivers [24]. This enables data exchange between vessels and
assists in navigation.

Despite the development of AIS, there are significant challenges related to the noise
contamination in the raw AIS data, which limits their application in maritime traffic
systems [25]. In this study, we address this issue by combining AIS data with spatial
information from various ports worldwide and employing various big data processing
techniques, similar to [26]. Through these approaches, we are able to effectively filter out
noisy AIS data to the maximum extent possible and reconstruct realistic maritime traffic
flow scenarios. As a result, we have constructed a multi-port flow dataset that can assist in
conducting in-depth research on ship traffic flow prediction and validating the effectiveness
of models under fair conditions.

The second challenge is that most existing research focuses on specific and single-port
traffic flow scenarios, while studies on wide-scale, networked, and multi-port ship traffic
flow prediction are relatively scarce. For example, ref. [27] combines Kalman filtering
with regression analysis to improve short-term ship traffic flow prediction performance.
Ref. [28] proposes a multi-variable extended CNN model based on convolutional methods,
which specifically considers the impact of extreme weather events on ship traffic flow
changes. However, the experimental settings in [28] involve geographically close ship
traffic statistical areas, failing to consider the complex correlation structures among multiple
regions. Ref. [29] uses AIS data to analyze the hourly ship traffic volume in a specific area
near Ningbo and achieves ship traffic flow prediction for multiple time periods using an
improved GRU-based time series prediction model. Nevertheless, it is also limited to the
task of predicting traffic flow in a single maritime area.

This article tackles the challenge of ship traffic forecasting in a scenario involving
multiple ports, employing a spatiotemporal graph model. Our proposed approach adopts
a data-driven methodology that leverages actual data to construct a comprehensive multi-
port graph structure, thereby establishing a realistic representation of the traffic network
for the accurate prediction of maritime traffic flow. Subsequently, we utilize graph neural
networks to capture the intricate message-passing patterns occurring between nodes within
the port network. This enables the timely identification of abnormal traffic fluctuations
in neighboring port nodes, thus enhancing the model’s capacity to capture and exploit
complex temporal dependencies. The incorporation of these techniques leads to improved
prediction performance and effectively addresses the need for coordinated management in
the context of multiple ports.

In summary, this paper contributes to the research in the following ways:

• It proposes a data-driven method for the construction of a multi-port network based
on historical data and creates a realistic port ship traffic dataset using AIS data.

• It presents a traffic prediction model specifically designed for maritime scenarios,
utilizing a spatiotemporal graph neural network. The novel model addresses the issue
of imbalanced temporal and spatial features in the spatiotemporal dataset.
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• The improved model’s effectiveness is validated through experiments conducted on
multiple port group datasets.

2. Methods

This study focuses on the task of forecasting ship traffic flow in multiple ports, which
is a typical time series prediction problem. This problem can be formulated as follows:

(Xt−τ+1, Xt−τ+2, . . . , Xt)
f (∗)−→ (Xt+1, Xt+2, . . . , Xt+n) (1)

As mentioned above, in this task, the model is given historical data of τ consecutive
time steps as input. After being transformed through the function f (∗), the model predicts
the future states of port traffic data for n consecutive time steps. Here, N represents the
number of ports, C represents the feature dimension of the data, and Xt ∈ RN×C represents
the traffic state of each port at time t. Since the purpose of this study is to forecast the
inbound and outbound traffic of ports, the initial value of C is 2 (for outbound traffic and
inbound traffic).

2.1. Spatiotemporal Blocks

In the context of multi-port traffic flow prediction, we consider each individual port as
a distinct node and employ a data-driven methodology to establish edge relationships be-
tween ports, thereby constructing the port network based on historical data. The collection
of nodes and edges represents the graph structure of the multi-port network.

The previous study [30] presented in this paper demonstrated that existing spatiotem-
poral graph models do not exhibit significant advantages over traditional time series
prediction models when applied to multi-port traffic flow prediction. The spatial explo-
ration capability of the spatiotemporal graph network was found to be underutilized. We
propose two potential explanations for these experimental results. Firstly, the multi-port
network structure in this scenario may inadequately represent the connectivity and spatial
relationships between ports. Secondly, there may exist an inherent imbalance between the
temporal and spatial features, with the roles of time and space varying across different
datasets. To address the first conjecture, we optimize the existing data-driven method for
the construction of the multi-port network structure. Additionally, we conduct theoretical
research based on the second conjecture and make targeted improvements to the existing
spatiotemporal graph framework.

Firstly, this paper summarizes the existing general framework of spatiotemporal
graphs, as shown in Figure 1. The combination of the temporal layer and the spatial
layer is referred to as a “spatiotemporal block.” In the spatiotemporal block, the temporal
layer captures the temporal patterns of historical traffic flow data for each port, while the
spatial layer handles the relationships among port nodes across different time dimensions.
The sequential arrangement of multiple spatiotemporal blocks forms a deep spatiotemporal
graph neural network model.

Figure 1. General framework of spatiotemporal graph model.

From a holistic perspective, the framework directly utilizes the output of the temporal
layer as the input for the subsequent spatial layer, and the output of the spatial layer be-
comes the input for the next temporal layer. After several iterations of these spatiotemporal
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blocks, the predicted results are generated through the output layer. There is no specific
handling between the temporal and spatial layers in this architecture. The advantage of
this approach lies in its ability to fully preserve the features processed by the temporal and
spatial layers. However, it overlooks the potential master–slave relationship between the
temporal and spatial layers.

Inspired by [31], this paper employs a gating mechanism to determine the propaga-
tion and forgetting of information, in order to simulate the imbalance between time and
space. As shown in Figure 2, the model first duplicates the input tensor into two identical
copies. One copy is processed through the temporal layer and then passed through a tanh
activation function for output. The other copy is processed through the spatial layer and
mapped to the range of 0 to 1 using a sigmoid function, treating it as a filtering net for
spatial information. Finally, the two parts of the output are combined using element-wise
multiplication (Hadamard product). In other words, this structure treats the spatial hidden
features as a filter, using spatial features to filter important temporal features, which are
then outputted in the form of temporal features to enter the next hidden layer. This struc-
ture enhances the model’s sensitivity to temporal flow data while reducing the influence
of the graph structure on feature information. It can effectively simulate the imbalance
between time and space.

Figure 2. Structure of a spatiotemporal block.

In summary, the spatiotemporal graph framework used in this paper is illustrated in
Figure 3.

Figure 3. Overall framework of the Gated Attention Graph WaveNet model.
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2.2. Temporal Layer

The fundamental concept behind the temporal layer is based on dilated convolution.
By incorporating dilated convolution, the model can effectively expand its receptive field
while maintaining the sequential nature of data modeling. This allows the model to
capture longer temporal feature patterns with fewer computational costs, thereby capturing
temporal dependencies over a larger time span.

Dilated convolution is a convolutional operation. As shown in Figure 4a, during the
convolution process, fixed-sized “holes” are introduced between the elements of the convo-
lution kernel, expanding the kernel. This means that, with the same computational cost,
a larger effective filter size is used for convolution. Compared to a convolutional kernel
of the same size, dilated convolution offers higher computational efficiency. In particular,
dilated convolution with a dilation factor of 1 is equivalent to a regular convolution.

(a) (b)

Figure 4. Structure of temporal layer. (a) Stacked dilated convolutional layers; (b) WaveNet structure
with gating mechanism.

To accommodate different time step lengths, this paper adopts a dilation factor pattern
of “1, 2, 4, 8” as the base and cycles through it as the model’s hidden layers increase. Let us
apply this to the scenario of port traffic flow prediction, assuming that the input historical
flow data have a time step length of 14 and the convolution kernel size is 3.

In the first layer of the temporal layer, the dilation factor is 1, which means that fine-
grained time feature processing is performed at the level of 1 time step. As the network
goes deeper, the second layer of the temporal layer has a dilation factor of 2; the process of
applying time convolutions involves making leapfrog-like strides over the input sequence.
This approach results in less fine-grained time feature processing, but, correspondingly,
the same-sized convolutional kernel can handle twice the length of time steps.

By repeating this process, the temporal convolutional layer with a dilation factor of
8 can cover the entire input sequence, thereby extracting long-term historical features. This
enables the model to capture temporal dependencies over a larger time span.

On the other hand, as a key to the success of recurrent neural networks, gating mecha-
nisms preserve the non-linear capabilities while addressing the vanishing gradient problem,
leading to better performance in tasks involving long-term dependencies. WaveNet [9]
incorporates gating activation structures into causal convolutions, proposing the WaveNet
structure shown in Figure 4b. The formula can be represented as

hl(X) = tanh(X ∗W)� δ(X ∗V) (2)
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where X represents the feature tensor, and l denotes the current layer. W and V represent
two dilated convolution kernels, δ(∗) represents the sigmoid function, and � denotes the
element-wise multiplication operator.

Based on this gating structure, the temporal layer can easily perform feature selec-
tion on the input data. Compared to linear processing methods, this nonlinear structure
possesses stronger modeling capabilities for time series features.

2.3. Spatial Layer

The non-Euclidean nature, irregularity, and sparsity of graphs pose challenges in
directly applying convolutional neural networks (CNNs) to process graph features. This
limitation has impeded progress in graph representation within the field of machine learn-
ing. However, in recent years, researchers have made strides by combining spectral graph
theory with Fourier transforms, allowing the definition of convolutional kernels in the
spectral domain. This breakthrough has enabled graph convolutions in the spectral domain
and has laid the foundation for graph convolutional networks (GCN) [12]. By simplify-
ing the computation process, GCNs have facilitated rapid advancements in graph neural
network models.

Subsequently, the graph attention network (GAT) [13] was proposed as a graph neural
network model based on attention mechanisms. GAT controls the aggregation of infor-
mation from nodes and edges by assigning different learning weights to their neighbors.
This allows the model to extract more valuable hidden features. Compared to GCN, GAT
offers a more flexible node feature aggregation process, addressing the limitation of GCN
in which the fixed adjacency matrix prevents the graph structure from being expandable.

GAT can be divided into two stages: Stage 1 involves computing global similarity coeffi-
cients, while Stage 2 focuses on computing node features based on local attention coefficients.

Take a graph G = (V, E) with N port nodes as an example, where the historical flow
features of each port can be represented as Xi ∈ RT×C, with T being the time dimension
and C being the feature dimension. In the graph attention layer, a trainable shared weight
matrix W is first used to linearly transform the initial features of all nodes. Based on the
edge relationships, the transformed node features are then used to calculate the similarity
coefficients eij between adjacent nodes on each edge. The formula for this stage is as follows,
where N is the set of first-order neighboring nodes of the target node i, l is the current
neural network layer, and the mapping function a(∗) is used to compute the similarity
between the flow features of port nodes i and j.

e(l)ij = a
([

W(l)X(l)
i ‖W(l)X(l)

j

])
, j ∈ Ni (3)

In the aggregation stage, the model uses so f tmax to normalize the similarity coeffi-
cients of all nodes within the first-order neighborhood of the target node i. The normalized
coefficients represent the attention coefficients for each node within the neighborhood.
The specific formula for the calculation of the attention coefficients is as follows:

α
(l)
ij =

exp
(

LeakyReLU
(

e(l)ij

))
∑

k∈Ni

exp
(

LeakyReLU
(

e(l)ik

)) (4)

Subsequently, the features of each node are weighted and aggregated based on the
calculated attention coefficients, resulting in the new feature X(l)

i of the central node i at
layer l. Here, σ(∗) represents an optional activation function.

hl(Xi) = σ

(
∑

j∈Ni

α
(l)
ij W(l)X(l)

j

)
(5)
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Repeating Formulas (4) and (5), we perform feature aggregation for all nodes in the
graph, completing the processing of a GAT layer.

In summary, the overall calculation formula for the spatiotemporal block of the model
can be summarized as follows:

hl

(
X(l−1)

)
= tanh

(
WaveNet

(
X(l−1)

)
∗W + b

)
� δ
(

GAT
(

X(l−1)
)
∗V + c

)
(6)

3. Scenario and Data Sources

The experimental dataset in this study consists of 2019 AIS data and global port
geospatial data.

Firstly, we employed big data techniques to process the vast amount of raw AIS data.
To ensure data accuracy, we cross-referenced the information with vessel Lloyds Register
profiles and applied data cleaning techniques to eliminate erroneous data. Subsequently, we
integrated the trajectory data with spatial boundary information from global port geospatial
data. This integration enabled us to infer the departure and arrival details of vessels,
resulting in the creation of a global vessel port origin–destination (OD) dataset for the year
2019. The dataset comprised 154,205 vessels, 2697 ports, and a total of 5,275,645 records.
Finally, leveraging the origin and destination port IDs, along with the recorded arrival and
departure times in the OD dataset, we calculated the daily inflow and outflow of vessels
for each port. This enabled us to quantify the daily traffic volume of ships entering and
leaving each port.

Following the acquisition of historical port traffic data, the creation of a multi-port
spatial graph structure emerged as a pressing research challenge. Figure 5 illustrates that
employing the physical distance alone as the basis for constructing the port graph structure
would result in a significant loss of information. For instance, in the case of the Netherlands,
Rotterdam Port exhibits considerably different average daily vessel traffic in comparison
to nearby ports such as Leiden Port and Arnhem Port. This difference is also reflected
in the scale of the ports, where Rotterdam Port is classified as a large-sized port with a
maximum draught of 18 m, whereas Leiden Port and Arnhem Port fall under the category
of medium-sized ports. Such disparities would introduce substantial errors during the
feature aggregation stage within the graph convolutional layer.

(a) (b)

(c) (d)
Figure 5. Fluctuation in ship flow between different ports in the Netherlands. (a) The locations of four
closely located ports within the Netherlands; (b) Rotterdam Port 2019 daily inbound and outbound
traffic curve; (c) Arnhem Port traffic curve; (d) Leiden Port traffic curve.
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To tackle this problem, the present study introduces a methodology for the construc-
tion of a dynamic port correlation graph utilizing historical data. The fundamental concept
behind this approach is to employ actual maritime traffic patterns as an evaluative cri-
terion. By quantifying the frequency of vessel movement between two ports, a spatial
interconnection relationship is established, thereby creating an extensive multi-port correla-
tion network.

Specifically, the initial step involves utilizing the previously generated 2019 global
vessel port OD dataset, which is derived from the flow data calculation procedure, as the
foundation for the construction of the graph. The direct count of vessel traffic between
each pair of ports is computed on a monthly basis, encompassing global coverage. For the
purpose of experimentation, three months of OD data are randomly selected for the com-
putation process. A unidirectional edge relationship is established between two ports if
the vessel traffic count surpasses a predefined threshold. In the experiment, this threshold
was set to 10 to distinguish the level of closeness in the navigational relationship between
two ports. To prevent the graph structure from becoming overly dense or sparse, we com-
prehensively consider the port scale and previous experiments, and determine the optimal
range for this threshold as 5 to 10, guided by prior knowledge, which allows us to achieve
the optimal solution in terms of computational costs and experimental effectiveness.

Moreover, taking into account the extensive number of ports globally and the sub-
stantial volume of OD data involved, we adopt a strategy to mitigate the computational
overhead. This involves constructing independent sub-networks comprising port clusters,
with several prominent ports across the world serving as central hubs. In our experiment,
the central hubs selected were Rotterdam Port, Shanghai Port, Singapore Port, Boston Port,
Antwerp Port, Hong Kong Port, and Incheon Port. This approach allows for the more
efficient processing of the data while still capturing the essential connectivity among ports.

Using Rotterdam Port as an illustration, we initially filter the OD dataset to include
only maritime shipping data where Rotterdam Port is either the origin or destination. We
then identify the destination (or origin) ports that exhibit a mutual traffic count that satisfies
the threshold constraint, thereby indicating direct connections to Rotterdam. Through this
procedure, we identify a total of 250 port nodes that are directly linked to Rotterdam Port.

Subsequently, we shift our attention to these 251 ports and proceed to compute the
direct vessel traffic count between each pair of ports. Employing a similar methodology
as before, if the traffic count surpasses the predefined threshold, a unidirectional edge
relationship is established between the two ports.

Finally, we obtain a sub-network structure comprising multiple ports, with Rotterdam
Port as the central hub. The corresponding adjacency matrix is generated as a result.
Figure 6 provides a visual representation of the schematic diagram depicting the multi-port
graph structure centered around Rotterdam Port.

The geographical coordinates and location information of the seven central ports are
displayed in Figure 7. The comprehensive data attributes of the port cluster network scene,
centered around these seven ports, are recorded in Table 1.

Table 1. Dataset attributes for seven port subnetworks.

Central Port Name Port Nodes Edges Data Size

Rotterdam 251 3036 91,615
Shanghai 241 10,876 87,965
Singapore 388 10,017 141,620

Boston 121 1054 44,165
Antwerp 217 2706 79,205

Hong Kong 182 7731 66,430
Incheon 86 2733 31,390
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Figure 6. A multi-port graph structure with Rotterdam as the central port.

Figure 7. Distribution of locations of central ports.

4. Results
4.1. Experimental Environment

This study utilized a 2080ti GPU to conduct the experiments. To ensure a fair and con-
sistent testing environment, the experiments were conducted on the Libcity platform [32],
utilizing standardized hyperparameter configurations, with the hidden feature dimensions
uniformly set to 32. The input window for time series data was defined as 21, while the
output window was set to 7, meaning that the models aimed to predict the future 7-day
traffic changes based on the preceding 21 days of data.

Specifically, the models employed in the study consisted of eight hidden layers.
For models incorporating the multi-head attention mechanism, eight heads were used.
In the case of models employing the diffusion convolution mechanism, the dilated factors
were cyclically set as “1, 2, 4, 8”.
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4.2. Baseline and Metric

In the experiment, the baseline models were divided into two major categories, spa-
tiotemporal graph models and temporal models, based on whether they handled spatial
features. RNN, AE [33], Seq2Seq [34], WaveNet [9], and Transformer [10] are classical
temporal prediction methods that have proven effective in various domains, such as NLP
and traffic prediction. STGCN [18], AGCRN [35], and the proposed model GAGW in this
paper belong to spatiotemporal graph models. On the other hand, based on different time
layer processing strategies, models can be further categorized into RNN-based prediction
models led by RNN and DCRNN [21], TCN models such as GWNET [36] and STMGAT [37],
and self-attention-mechanism-based models such as STTN [38].

The evaluation metrics used in the experiment include commonly employed mea-
sures in traffic flow prediction, MAE, MAPE, and RMSE, as depicted in Equations (7)–(9),
respectively. MAE, known as the mean absolute error, is a widely used performance
metric in regression tasks, directly quantifying the average difference between predicted
values and actual values. MAPE, built upon MAE, measures the average percentage er-
ror of the experimental results. RMSE, or the root mean square error, in comparison to
MAE, is more sensitive to large errors, thus challenging the stability and robustness of the
predictive model.

MAE =
1
n

n

∑
i=1
|ŷi − yi| (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ ∗ 100% (8)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

4.3. Experimental Results

In the experiment, we extracted the consecutive 21-day inflow and outflow data for
each port from the test set as input and expected the model to generate predictions for the
next 7 days of each port in a single output. Taking the Rotterdam sub-scenario as an exam-
ple, which comprises 251 port nodes, the input should include an adjacency matrix with
251 nodes and an initial tensor of shape [32, 251, 21, 2]. Here, “32” represents the specified
batch size, and “2” indicates that the initial features only include inflow and outflow. Cor-
respondingly, the model’s output should be a tensor of shape [32, 251, 7, 2]. By comparing
the predicted 7-day traffic variations with the ground truth values, the predictive capability
of the model can be evaluated.

As presented in Table 2, cross-validation experiments were conducted across seven
major multi-port network scenarios centered around the seven central ports. The GAGW
model proposed in this study incorporates a weighted relationship to address the imbalance
between spatial and temporal features. Consequently, the model demonstrates consistent
and superior predictive performance across all scenarios, achieving the best results in the
majority of experimental scenarios.

Through a comprehensive comparison of the experimental results, it has been observed
that the majority of the existing spatiotemporal graph models outperform the temporal
prediction models. This indicates that the incorporation of graph neural networks indeed
enhances the performance of predictive models in various scenarios and effectively captures
intricate traffic flow patterns. Among the temporal prediction models, Transformer and
WaveNet exhibit significantly superior performance compared to traditional temporal
prediction models and even outperform certain spatiotemporal graph models in specific
scenarios. This highlights the significance of capturing temporal patterns in maritime traffic
flow prediction scenarios, thereby affirming the importance of time features in the field of
traffic prediction.
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Table 2. Results of multi-port dataset.

Rotterdam Boston Antwerp Hong Kong

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

RNN 4.5813 0.6493 23.1354 3.2588 0.6722 6.4718 2.5007 0.6392 4.9709 16.3516 1.0782 33.7049
Auto

Encoder 4.084 1.1835 11.4571 3.2034 0.625 6.3242 2.3923 0.6687 4.4949 18.3066 1.7544 32.9607

Seq2Seq 4.8228 0.6932 24.695 3.3392 0.6943 6.7335 2.4829 0.6209 5.0688 16.6819 0.9056 33.5273
WaveNet 2.5465 0.4315 9.4552 2.2362 0.4396 4.1007 1.8745 0.5385 3.2237 8.6431 0.432 18.5065

Transformer 2.5101 0.4891 8.401 2.1902 0.473 3.79 2.0819 0.5873 3.8074 8.5305 0.4564 17.6556

STGCN 3.2307 0.7186 9.5492 2.2647 0.498 3.9539 2.1825 0.5937 3.6725 13.1973 0.9862 27.4965
AGCRN 3.2396 0.5869 13.6182 2.5493 0.5111 4.7692 2.0179 0.5207 3.6471 9.8796 0.5501 21.5886
DCRNN 2.8718 0.616 9.8986 2.1044 0.4462 3.8234 1.7907 0.4909 3.191 8.9693 0.5549 18.5956

STTN 3.8664 0.6449 12.9845 2.2696 0.4827 4.0493 2.3098 0.5858 4.1153 16.9211 0.9443 33.6544
STMGAT 2.762 0.5231 8.6171 2.2309 0.4816 3.8571 1.7959 0.5038 3.0626 9.0416 0.6927 17.7191
GWNET 2.4831 0.4498 9.0111 2.1861 0.4421 4.0143 1.9133 0.5216 3.4256 8.5496 0.4489 17.6672

GAGW 2.3964 0.4485 8.514 2.0983 0.434 3.7663 1.7669 0.4719 3.0236 8.216 0.4436 17.2679

Shanghai Singapore Incheon

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

RNN 18.1033 1.8698 36.8206 10.1521 0.8326 31.2282 18.4991 1.3141 37.6816
Auto

Encoder 17.5539 1.8645 35.2272 8.5357 0.7448 24.0477 19.6817 1.8012 37.5785

Seq2Seq 14.8196 1.1846 29.9094 10.1913 0.8657 31.0303 19.0404 1.3452 40.7782
WaveNet 7.4423 0.4437 15.98 5.1619 0.5057 14.8807 8.7669 0.4229 19.9683

Transformer 7.5331 0.4567 15.9231 4.3012 0.4288 11.5323 8.5554 0.4245 18.5527

STGCN 11.8722 0.6802 25.1572 7.9983 1.8568 16.0688 11.8275 0.783 26.6319
AGCRN 8.5064 0.6398 17.7152 4.7981 0.5475 12.9965 9.6283 0.5119 20.6766
DCRNN 7.6933 0.6046 16.1944 4.8215 0.5592 12.6221 8.9704 0.5052 19.4997

STTN 14.6455 1.1332 30.7543 9.279 0.8025 25.8419 19.6088 1.2163 40.3185
STMGAT 7.6263 0.4518 15.718 4.9113 0.65 12.3215 9.7628 0.7354 19.699
GWNET 7.525 0.5259 16.2727 4.426 0.5077 11.8064 9.4297 0.4956 22.2984

GAGW 7.306 0.4418 15.6874 4.3781 0.428 11.8228 8.7403 0.4672 19.8435
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In the comparison of spatiotemporal graph models, the overall predictive performance
of the STGCN model is relatively poor, which can be attributed to its use of a coarse-grained
temporal processing strategy. The relatively simple gate convolution structure of STGCN is
unable to fully capture the complex traffic flow variations in maritime scenarios, resulting
in its performance being inferior to that of more sophisticated temporal prediction models
such as Transformer.

In this experiment, the performance of the STTN model, which integrates self-attention
mechanisms in both the temporal and spatial layers, did not meet our expectations. Despite
adjusting certain hyperparameters, we were unable to obtain satisfactory experimental
results. We speculate that the underlying reason for this lies in the spatial feature captur-
ing strategy based on self-attention mechanisms. In the maritime context of this study,
this strategy fails to effectively represent the data-driven, cross-spatial graph correlation
structures, thereby leading to a decline in model performance.

The STMGAT, GWNET, and the proposed model in this paper all employ a time-
convolution-based temporal layer processing strategy. The experimental results demon-
strate that gate-based processing structures centered around causal convolutions can better
capture the long-term variations in traffic flow data, enabling the fine-grained analysis of
temporal features and obtaining more accurate prediction results.

The training curves of the top-performing three spatiotemporal graph models in the
traffic flow scenario centered around the Rotterdam Port cluster are shown in Figure 8.
The proposed model in this paper achieves more accurate predictive performance by
utilizing a multi-head attention mechanism similar to STTN and STMGAT in the graph
convolutional layer. However, this improvement in accuracy comes at the expense of
sacrificing some training speed, resulting in a convergence speed that is not state-of-the-art.
As illustrated in Figure 9, our model’s traffic flow predictions exhibit better adherence to
the actual flow variation patterns compared to other baseline models and demonstrate
good fitting capability for significant flow fluctuation curves.

Figure 8. Comparison of MAE training curves for top three models.
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Figure 9. Comparison of GAGW and other models with ground truth inbound flow.

To further investigate the stability of the model in the small-sample maritime test
scenario, we extracted the traffic flow data from June to September as a specific monthly
dataset for independent testing (Table 3). These four months are characterized by substan-
tial fluctuations in port traffic, without a discernible pattern in the context of international
shipping. Moreover, the navigation relationships among ports during this period are more
intricate, placing higher demands on the predictive capabilities of the models. In this chal-
lenging scenario, the GAGW model stands out among numerous spatiotemporal prediction
models and exhibits exceptional adaptability to the limited coverage of the specific monthly
dataset. This further confirms the effectiveness of the new architecture.

To validate the issue of the unequal treatment of spatial and temporal features, we
conducted ablation experiments by modifying some existing spatiotemporal graph model
architectures to incorporate the proposed gate-based mechanism for spatiotemporal feature
fusion. The experimental results, as shown in Table 4, indicate that the spatiotemporal
graph models with the inclusion of the feature fusion structure generally outperform the
models with the original architectures in the port traffic prediction scenario of this paper.
Among them, since the baseline models AGCRN and DCRNN both belong to iterative
architectures based on RNN, it is difficult to incorporate the fusion module. Therefore, we
introduced the ASTGCN [39] model, which simultaneously uses attention mechanisms and
temporal convolution strategies, as the new baseline model.

To validate the relationship weights between time and spatial features, we conducted
ablation experiments on the temporal and spatial layers of the GAGW model. In Table 5,
“w/o T” represents the removal of all temporal hidden layers in the model, while “w/o S”
indicates the removal of all graph structure processing methods. The experimental results
demonstrate that ablating the temporal layer has a more severe impact on spatiotemporal
graph models, leading to a significant decrease in predictive performance. In comparison,
the performance decline is relatively limited when the spatial layer is ablated, further
confirming the inequality between time and spatial features.
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Table 3. Results of specific month dataset.

Rotterdam Boston Antwerp Hong Kong

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

STGCN 10.0471 3.3148 19.1571 2.7766 0.558 5.0216 2.2405 0.5603 3.7479 21.7833 1.7334 44.5805
AGCRN 4.0285 0.5375 23.3363 2.7057 0.5186 5.118 2.0334 0.5032 3.7522 24.765 1.4236 53.009
DCRNN 6.7308 0.7575 36.2379 3.6936 0.5506 9.0707 3.5909 0.7169 9.1206 23.4573 1.6995 45.0641

STTN 7.3341 0.7816 37.1314 2.8498 0.508 5.6422 3.4785 0.6061 8.2283 25.1063 1.6549 50.5299
STMGAT 4.0649 0.5334 20.0261 2.7224 0.5165 5.0336 2.0679 0.4968 3.6653 18.2011 1.5736 39.1712
GWNET 3.62 0.5294 19.4332 2.7968 0.4875 5.3694 2.2134 0.5158 4.1839 14.0173 0.8861 31.1028

GAGW 3.3688 0.579 15.5115 2.6928 0.4753 5.0081 2.1446 0.5008 4.0861 13.3074 0.8242 29.6616

Shanghai Singapore Incheon

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

STGCN 21.8422 1.7012 45.8386 17.122 3.6693 36.7725 26.8699 1.8365 60.105
AGCRN 23.038 1.5282 47.7465 12.0759 0.9366 34.2086 21.9169 1.3855 44.5575
DCRNN 21.6196 1.8093 41.1723 14.5029 1.2927 39.0149 29.8365 1.6589 65.2048

STTN 22.5262 1.9444 44.5484 16.9381 1.2286 44.5798 23.6124 1.1277 59.0685
STMGAT 24.5565 2.6933 46.0391 6.9351 0.6712 19.7745 13.7049 0.6775 32.9118
GWNET 13.5886 0.9734 29.5113 6.9078 0.797 20.0405 15.5624 0.6453 40.8259

GAGW 11.9513 1.0716 26.2667 6.7402 0.6319 20.937 14.9141 0.6781 39.1262

Table 4. Ablation experiment on spatiotemporal feature fusion module.

w/o Feature Fusion w/ Feature Fusion

MAE RMSE R2 MAE RMSE R2

STGCN 13.7484 23.7532 0.9145 11.9819 21.2891 0.9319
STTN 21.6699 36.0566 0.8089 18.8857 33.1819 0.8384

GWNET 10.2954 20.1326 0.9402 10.3233 19.8169 0.943
ASTGCN 13.0184 22.8163 0.9229 11.3801 21.2428 0.9346
GAGW 10.9752 20.2516 0.9385 10.194 19.691 0.9428

Table 5. Ablation experiment of temporal and spatial layers.

MAE RMSE R2

w/o T 12.5244 21.3558 0.9323
w/o S 10.2882 20.0338 0.9406

GAGW 10.1879 19.9007 0.9412

To demonstrate the superior performance of the proposed model in traffic flow predic-
tion, we also conducted experiments on METR_LA, which is a renowned dataset comprising
urban highway traffic speed data. As shown in Table 6, the GAGW model performs at an
advanced level in the urban traffic dataset as well. This confirms that the phenomenon of
unequal treatment between time and spatial features also exists in urban traffic scenarios.

Table 6. Results of METR_LA.

METR_LA RNN AE Seq2Seq WaveNet Transformer STGCN AGCRN DCRNN STTN STMGAT GWNET GAGW

MAE 4.11 4.53 3.71 3.98 3.81 3.86 3.19 3.12 3.49 4.15 3.17 3.12
RMSE 8.17 8.77 7.19 8.98 8.73 8.34 6.33 6.19 7.92 8.24 6.39 6.11

In summary, the proposed model has demonstrated strong predictive capabilities in
various experiments conducted in the multi-port traffic flow prediction scenario.
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5. Conclusions

In this study, a comprehensive dataset of real port traffic and a port topology struc-
ture were constructed using global AIS data, Lloyd’s ship archive, and port geospatial
data. To explore different modeling approaches, a variety of comparative models were
reproduced using an open-source spatiotemporal graph model training framework [32].

Subsequently, a novel fine-grained multi-port traffic flow prediction spatiotemporal
graph network model called GAGW was designed and implemented. This new model
aimed to address the challenge of imbalanced temporal and spatial hidden features. Draw-
ing inspiration from gate-based structures, the GAGW model processed temporal and
spatial features in parallel, departing from the traditional sequential “time–space–time”
processing pattern. The model incorporated distinct mapping functions for temporal and
spatial feature vectors, placing greater emphasis on the influence of temporal features on
prediction outcomes while reducing the sensitivity to spatial features.

To evaluate the effectiveness of the GAGW model, comparative experiments were
conducted using maritime datasets, special monthly datasets, and urban road datasets.
The results demonstrated the reliability and robustness of the proposed model. The GAGW
model achieved advanced levels of prediction performance and robustness, among other
evaluation metrics.

Overall, this research contributes to the field of port traffic flow prediction by intro-
ducing a novel spatiotemporal graph model that effectively handles imbalanced temporal
and spatial features. The proposed GAGW model demonstrates superior prediction per-
formance and adaptability, making it a promising approach for multi-port traffic forecast-
ing applications.

Although the new framework has demonstrated the inequality of spatiotemporal
features in experiments, there is room for further improvement in the construction of dy-
namic port graph structures. The proposed method for dynamic graph construction solely
considers the spatial correlation between ports based on ship traffic, without incorporating
the objective geographical relationships that exist between ports. In future work, the paper
aims to focus on constructing flow datasets that encompass multi-port scenarios of practical
significance, such as Europe and coastal regions of China.

Additionally, this paper only utilized AIS source data from the year 2019, which
may be considered insufficient in capturing the full variability in port traffic patterns at
a daily level. In future research, the study intends to incorporate AIS data from multiple
consecutive years to augment the volume of data available for model training.

In summary, the future research endeavors of this paper will concentrate on two main
aspects: optimizing the design of dynamic graph structures and refining the strategies for
the processing of temporal layers in the model.
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