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Abstract: The subsea clamp connector is susceptible to sealing and locking failures over its lifetime
in harsh marine environments and complex loading conditions, posing a serious challenge to the safe
development of subsea oil and gas fields. Accurately predicting the reliability of the subsea clamp
connector under realistic and complex operating conditions is therefore an important guarantee of its
safe operation. Considering the main structural characteristic parameters of the subsea clamp connec-
tor, this paper conducts a reliability analysis using finite element numerical simulation combined
with multiple response surface methodology (MRSM), based on the seal failure and yield failure
criteria. The applicability has been verified through the application of subsea clamp connector in
the Bohai Sea. The results show that the failure probability of the system is mainly affected by the
radius of the seal, the contact angle of the upper and lower flanges and internal pressure. Considering
the influence of various factors, the reliability of the connector was calculated to be 98.73%, and the
reliability was verified by the sealing performance test. This paper provides a practical method for the
reliability analysis of the subsea clamp connector structure under the comprehensive consideration
of multiple factors, and provides a new technology to ensure the safe operation of subsea oil and
gas fields.

Keywords: subsea clamp connector; reliability; failure criteria; multiple response surface methodology

1. Introduction

With the rapid development of the world’s industry, the demand for oil and gas
resources is constantly increasing, and the exploration and exploitation of offshore oil and
gas has become the main development direction of the petroleum industry [1–3]. In the
development of offshore oil and gas fields, subsea connectors are important connecting
components for subsea production system, such as the Christmas tree and manifold [4].
Subsea clamp connectors (as shown in Figure 1) are widely used due to the advantages
of simple structure, rapid connection, and wide applicability, and their reliability directly
affects the safety of subsea oil and gas field development.

At present, research on subsea connectors is mainly focused on the theoretical re-
lationship between the load transfer of the contact surface, the locking force and the
pre-tightening force, the optimization of the sealing ring structure, and related experi-
ments [5–8]. In terms of sealing and leakage research, Yun et al. [9] established the contact
mechanics model of the metal lens-type sealing gasket at the macroscopic scale based on
the Hertz theory. They also analyzed the contact characteristics between the metal lens seal
and the flange structure at the microscopic scale by equivalently replacing the peak cutting
coefficient of a one-dimensional sinusoidal wave. Li et al. [10] analyzed the influence of
pre-tightening force, contact width, preloading compression, and operating pressure on
contact stress through theoretical calculations and finite element methods. Liu et al. [11]
derived a calculation expression for the size ratio of a spherical sealing groove based on the
spherical structure of the connector’s sealing ring. They determined the width and depth
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of the groove, and used finite element methods to study the influence of different pressures
and compression ratios on the sealing performance of O-ring seals from various aspects,
such as von mises stress, contact pressure, and contact width of different contact surfaces.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 2 of 15 
 

 

on contact stress through theoretical calculations and finite element methods. Liu et al. 
[11] derived a calculation expression for the size ratio of a spherical sealing groove based 
on the spherical structure of the connector’s sealing ring. They determined the width and 
depth of the groove, and used finite element methods to study the influence of different 
pressures and compression ratios on the sealing performance of O-ring seals from various 
aspects, such as von mises stress, contact pressure, and contact width of different contact 
surfaces. 

 
Figure 1. Subsea clamp connectors (https://www.fogt.com/subsea-connector (accessed on 3 May 
2023)) 

In the field of subsea connector reliability research, the main approaches are fault tree 
analysis and dynamic Bayesian network analysis. Wan et al. [12] analyzed the failure 
modes and causes of the subsea connector drive ring, and established a fault tree model. 
Zhang et al. [13] obtained the failure probability magnitude of subsea connector installa-
tion through fuzzy quantitative analysis of the fault tree. Chen et al. [14] proposed a fault 
diagnosis method based on a three-layer dynamic Bayesian network to diagnose faults 
and predict failures for the mechanical structure of vertical collet subsea connectors. 
Torfinn et al. [15] applied structural reliability analysis (SRA) to wellhead connectors, fa-
tigue induced by overload and plastic collapse are two failure modes to estimate the fa-
tigue failure probability. Bhardwaj et al. [16] used the first-order second-moment method 
and the Monte Carlo method to evaluate the structural reliability of the pipeline system 
in deep water under high internal pressure and high temperature. Pang et al. [17] pro-
posed a fuzzy Markov method that integrates risk, reliability, availability, and uncertainty 
analysis based on fault tree, fuzzy comprehensive evaluation, and Markov methods. The 
method pre-processes input fault data using fault tree and fuzzy theory to improve the 
reliability of the input fault data. Wang et al. [18] proposed a reliability analysis method 
based on a dynamic Bayesian network using the Monte Carlo simulation to evaluate the 
failure probability of subsea wellhead connectors during their service life. Tsai et al. [19] 
considered wind speed probability, fatigue strength of mast arm base, miner summation, 
and other uncertain factors to perform the Monte Carlo simulation and generate failure 
probability curve. Simon et al. [20] described a verification method for subsea pipeline 
maintenance to confirm that the product design meets DNV standards. 

The MRSM is a reliability analysis method that can simultaneously consider two or 
more failure factors, and it is commonly used in reliability analysis under multi-factor 
coupling by establishing multiple response surface functional functions. Das et al. [21] 
proposed an improved response surface method and applied it to the reliability analysis 
of stiffened plate structures. The response surface functions are formed cumulatively so 
that second-order effects in the response surface are properly taken into account using 
acceptable computational work in the evaluation of state functions. Somdatta et al. [22] 
investigates moving least squares (MLSM) to construct response surface functions. The 
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3 May 2023)).

In the field of subsea connector reliability research, the main approaches are fault
tree analysis and dynamic Bayesian network analysis. Wan et al. [12] analyzed the failure
modes and causes of the subsea connector drive ring, and established a fault tree model.
Zhang et al. [13] obtained the failure probability magnitude of subsea connector instal-
lation through fuzzy quantitative analysis of the fault tree. Chen et al. [14] proposed a
fault diagnosis method based on a three-layer dynamic Bayesian network to diagnose
faults and predict failures for the mechanical structure of vertical collet subsea connec-
tors. Torfinn et al. [15] applied structural reliability analysis (SRA) to wellhead connectors,
fatigue induced by overload and plastic collapse are two failure modes to estimate the
fatigue failure probability. Bhardwaj et al. [16] used the first-order second-moment method
and the Monte Carlo method to evaluate the structural reliability of the pipeline system in
deep water under high internal pressure and high temperature. Pang et al. [17] proposed a
fuzzy Markov method that integrates risk, reliability, availability, and uncertainty analysis
based on fault tree, fuzzy comprehensive evaluation, and Markov methods. The method
pre-processes input fault data using fault tree and fuzzy theory to improve the reliability
of the input fault data. Wang et al. [18] proposed a reliability analysis method based on a
dynamic Bayesian network using the Monte Carlo simulation to evaluate the failure prob-
ability of subsea wellhead connectors during their service life. Tsai et al. [19] considered
wind speed probability, fatigue strength of mast arm base, miner summation, and other
uncertain factors to perform the Monte Carlo simulation and generate failure probability
curve. Simon et al. [20] described a verification method for subsea pipeline maintenance to
confirm that the product design meets DNV standards.

The MRSM is a reliability analysis method that can simultaneously consider two or
more failure factors, and it is commonly used in reliability analysis under multi-factor
coupling by establishing multiple response surface functional functions. Das et al. [21]
proposed an improved response surface method and applied it to the reliability analysis of
stiffened plate structures. The response surface functions are formed cumulatively so that
second-order effects in the response surface are properly taken into account using acceptable
computational work in the evaluation of state functions. Somdatta et al. [22] investigates
moving least squares (MLSM) to construct response surface functions. The advantage
of MLSM over the least square method (LSM) is that it reduces the number of iterations
required to obtain the updated central point of the experimental design (DOE). The final
response surface was constructed for effective structural reliability analysis. Zhang et al. [23]
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conducted a reliability study of aircraft engine blades using the multiple response surface
method by establishing four response surface models for overall deformation, radial
deformation, stress, and temperature of the blade. Lu [24] proposed a structural reliability
analysis method to study the dynamic reliability of turbine disk structures. Liu et al. [25]
used finite element numerical simulation combined with the multiple response surface
method and the Monte Carlo method to analyze the reliability of tunnel structural systems.
Zhai [26] calculated the reliability of the fan connectors according to the MRSM method.

This paper proposed an MRSM by combining the failure criterion of yield and mini-
mum sealing ratio pressure to analyze the reliability of the subsea clamp connector under
multi-factors. The proposed MRSM provides a feasible approach for the reliability predic-
tion of subsea clamp connectors.

2. Structure Characteristics of Subsea Connection System

The subsea clamp connectors are mainly used to connect and fix a variety of subsea
equipment, pipelines, and structural parts, including oil and gas pipelines, subsea oil
wells, isolators, oil-water separators, Christmas tree, etc. The subsea clamp connector
studied in the paper is a kind of structure to ensure the smooth, simple, and fast connection
between the mobile end flange and the fixed end flange. It has the characteristics of simple
operation, low requirements for installation environment, and reduces the influence of
various uncontrollable factors. The subsea clamp connector is a rotary body axisymmetric
structure, mainly including the upper flange, lower flange, clamp jaws, metal seals, and
other components (as shown in Figure 2). The three-lobe clamp form makes the force of
the flange more uniform. When the axial external force is applied, the overall structure is
stressed evenly, and the fixed constraint and load are symmetrical along the central axis.
It should maintain structural locking and sealing performance under axial force, bending
moment and pressure etc.
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The working condition of subsea clamp connection is very complicated. On the one
hand, the sealing structure of the subsea clamp connector should play a sealing role in the
internal oil and gas medium. On the other hand, the external seawater pressure caused
by the water depth of the pipeline should also play a sealing role. Therefore, the lens seal
and O-type composite seal (as shown in Figure 3) are commonly used in subsea clamp
connectors. The metal seal is the primary seal for sealing oil and gas media, and the O-type
is the secondary seal for sealing external seawater. The combination of these two sealing
methods can effectively improve the reliability and service life of the seal.
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3. The MRSM for Subsea Clamp Connector

The MRSM is a reliability analysis method based on the response surface method,
which can consider multiple failure factors of the system by establishing multiple response
surface function functions. The response surface function is transformed into a specific
mathematical polynomial expression by an implicit performance function, which can be
fitted to obtain a global approximation of the output variable, and then goes to replace
the true response surface while proving its correctness. The response surface function of a
quadratic polynomial is often used in practical applications, and its basic expressions are
as follows:

y = a0 +
n

∑
i=1

aixi +
n

∑
i=1

aiix2
i +

n

∑
i>1

aijxixi (1)

The process of the newly proposed MRSM for the subsea clamp connector is shown in
Figure 4 and its main steps include:

(1) Selection of suitable failure criteria;
(2) sensitivity analysis of structural parameters and internal pressure of subsea clamp

connectors after parametric modeling;
(3) acquisition of test points based on initial data using the Latin hypercube

sampling method;
(4) numerical calculations were performed on the test point data, and the response surface

function was obtained by fitting the test point data and the resultant data using the
least squares method;

(5) the obtained response surface function is sampled using the Monte Carlo method linkage;
(6) and the probability curve of the normal distribution of sample data is obtained by

using the kernel density method, and finally the reliability is calculated combining
the stress-strength interference theory.
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3.1. Reliability Failure Criteria
3.1.1. Seal Failure Criteria

In the operating condition, the subsea clamp connector needs the flange to provide
sufficient preload, so that the residual contact force can ensure sufficient sealing, and thus
avoid the occurrence of leakage. A schematic of the preload force transfer is shown in
Figure 5.
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Engineering has found a linear relationship between the sealing pressure and the
contact stress, and defined the ratio of the mean contact stress applied to the unit effective
area to the internal pressure, called the gasket coefficient, denoted by m [27], as follows:

p = mpn (2)

where: p is the sealing specific pressure and pn is the internal medium pressure.
Therefore, to ensure reliable sealing of subsea connectors, it is necessary to satisfy:

pMax ≥ p (3)

where: pmax is the maximum contact pressure on the seal ring.

3.1.2. Yield Failure Criteria

Yield failure refers to the phenomenon that occurs when a material reaches its yield
limit. When the subsea clamp connector is subjected to preload, the seal ring and other
related parts will generate a certain amount of stress to resist small plastic deformation,
when the external force is too large, the parts will undergo permanent plastic deformation,
resulting in structural failure. The yield failure criterion adopts the fourth strength theory.
Therefore, to ensure that no structural failure occurs in each part of the subsea connector, it
is necessary to satisfy:

σε =

√
1
2
(σ1 − σ2)

2 + (σ2 − σ1)
2 + (σ3 − σ1)

2 < [σ] (4)

where: σε is the calculated equivalent stress.

3.2. Kernel Density Estimation Method

The probability density distribution function of equivalent stress and maximum con-
tact pressure needs to be obtained before reliability analysis of the subsea clamp connector.
The sample set of equivalent stress and maximum contact pressure obtained from the Monte
Carlo method of sampling can only be expressed as a histogram. Therefore, the histogram
of the equivalent stress and maximum contact pressure is converted into the probability
density distribution function of the sample set using the kernel density estimation method.

Using the idea of differentiation, the group distance of the frequency histogram is
further reduced. As the group distance decreases, the width of the rectangle becomes
smaller, so that in the limit the frequency histogram becomes a curve, and this curve is the
probability density curve [28]. The formula is as follows:

f (x) =
1

2nh

n

∑
i=1

1x−h≤xi≤x+h (5)

where: f (x) is probability density distribution function; h is bandwidth; and n is the
number of samples.

According to this formula, in the actual calculation, the value of h must be given. The
value of h cannot be too large or too small, too large does not satisfy the condition of h→→0,
too small uses too few sample data points, and the error will be large. Therefore, there
is more research on the choice of the value of h. Bandwidth h is usually selected by the
AMISE rule.

3.3. Stress-Strength Interference Theory

For the subsea clamp connector related parts, when the material strength is greater
than the stress, it is in a safe state. When the material strength is less than the stress, it fails.
As shown in Figure 6, a schematic diagram of stress-strength interference theory, fs(s0),
is the probability density function of stress, and fS(S) is the probability density function
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of strength. The shadow where two normal distribution curves intersect is the subsea
connector failure area.
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Assuming that both strength and stress conform to the law of normal distribution,
when the mean value of stress is less than the mean value of strength, the distribution
area of the two will produce an overlapping interference region. When the stress is greater
than the strength that occurs in this region, the structure is a failure. Therefore, the model
for calculating the probability of failure in the interference region is the stress-strength
interference model [29]. The probability of failure is as follows:

R =
∫

dR =

∞∫
−∞

f (s) ·

 ∞∫
s

f (S)dS

ds (6)

where: R is probability of failure.
When the failure probability of the subsea clamp connector is calculated, its reliability

can be obtained.

4. Case Study of Subsea Clamp Connector Based on MRSM
4.1. Finite Element Model of Subsea Clamp Connector

In the paper, the subsea clamp connector used in the Bohai Sea in China is selected as
the object of study, and its reliability analysis is based on two response surfaces: equivalent
stress and maximum contact pressure.

The structural parameters of metal seals and flanges affect the locking and sealing
performance of subsea clamp connectors, which mainly contain seal ring thickness (x1),
seal ring contact angle (x2), seal ring radius (x3), upper flange thickness (x4), upper and
lower flange contact angle (x5), and lower flange thickness (x6) (as shown in Figure 7).

Its structure is shown in Figure 2, which mainly includes the locking block, flanges,
seal ring, clamp flap, and other parts. Due to the large number of parts and complex
contact relationships, the three core components of the upper and lower flanges and seal
are selected for analysis in this numerical simulation. The one-eighth model is chosen for
its axisymmetric structure for modeling, which can effectively improve the computational
efficiency while ensuring the computational accuracy. In the numerical calculation model
as shown Figure 8, the mesh all use hexahedral mesh, and the seal ring and the upper and
lower flanges contact location of the grid size is set to 1 mm. The upper and lower flanges
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and other parts of the grid size is set to 3 mm, the number of grid is about 170,000. The
constraints of the numerical model are set as follows: fixed constraints are applied to the
lower flange position to limit all degrees of freedom; the upper and lower flange sides
and seal ring sides are set as axisymmetric constraints and normal constraints to simulate
the effect of the 1/8 model as an overall force analysis. The model load is set to apply a
concentrated force on the upper flange end face to simulate an axial preload of 200 kN and
a bending moment of 30 kN·m. A 35 MPa pressure load is applied to the internal surface to
simulate the fluid pressure of the medium inside the connector. The initial sample data are
shown in Table 1.
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Table 1. Initial sample data.

Random Variable
Parameters Symbols Distribution Type Average Value

(mm)
Coefficient of

Variation
Standard
Deviation

Seal thickness x1 Normal distribution 11 0.02 0.22
Sealing ring contact angle x2 Normal distribution 107 0.02 2.14

Seal radius x3 Normal distribution 74 0.02 1.48
Upper flange thickness x4 Normal distribution 26 0.02 0.52

Upper flange contact angle x5 Normal distribution 145 0.02 2.9
Lower flange thickness x6 Normal distribution 38 0.02 0.76

Internal pressure x7 Normal distribution 35 0.02 0.7

The material parameters for each component of the model are set as shown in Table 2.

Table 2. Material parameters.

Part Name Materials Strength Limit
(MPa)

Yield Limit
(MPa)

Elastic
Modulus

(GPa)

Poisson
Ratio

Density
(g/cm3)

Upper and lower flange 12Cr2Mo1 540 340 211 0.29 7.85
Seals 316 515 310 211 0.3 8.0

4.2. Reliability Analysis of Subsea Clamp Connector

The finite element analysis allows the equivalent stress cloud of the subsea clamp
connector (shown in Figure 9) and the maximum contact pressure cloud of the seal (shown
in Figure 10) to be obtained. As can be seen from the graph, the maximum equivalent
stress on the upper and lower flanges is 238.07 MPa and the yield strength of the seal is
330 MPa, both of which are less than the yield strength of the material. The maximum
contact pressure on the seal is 246.96 MPa, which is greater than the minimum sealing
specific pressure of 227.5 MPa (according to the ASME standard, the gasket factor m is
selected as 6.5). Therefore, it is clear from the two failure criteria that the sealing structure
of the subsea clamp connector meets the design requirements. The performance of the
subsea clamp connector is good under the rated conditions. The analysis of the reliability
under the relevant parameters can be continued.
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Figure 10. Maximum contact pressure cloud diagram.

By varying the main structural parameters of the subsea clamp connector, a sensitivity
diagram expressing the effect of different parameters can be obtained, as shown in Figure 11,
identifying the seal radius (x3), the upper flange contact angle (x5), and the internal pressure
of the medium (x7) as the main influencing factors in the subsequent analysis.
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Figure 11. Sensitivity of input parameters to the response surface.

In the paper, the Latin hypercube sampling method was chosen to obtain the test
data. The Latin hypercube sampling technique was a stratified sampling method, which
means that the characteristics of the overall sample can be reflected by a smaller sample
size, which can greatly reduce the number of test points and save calculation time. The test
data obtained from the sampling were then analyzed using finite element software, and the
response surface functions for the equivalent stress S and the maximum contact pressure L
were fitted separately based on the least squares method.

S = −66190.32642 − 375.23899x3 + 929.50191x5+
761.76991x7 − 0.914321x3 · x5 − 5.04020x3 · x7−
2.65118x5 · x7 +4.69174 x3

2 −2.68596 x5
2 − 0.076828x7

2
(7)

L = 105347.587− 108.7357x3 − 1066.17x5 − 1417.9x7
−11.165x3 · x5 − 0.341x3 · x7 + 8.4x5 · x7 + 12.21x3

2

+5.438x5
2 + 3.29541x7

2
(8)
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The response surface function obtained from the above fit was subjected to the Monte
Carlo sampling method to obtain the sampling iterations shown in Figures 12 and 13. The
figure shows that after 2000 cycles, subsea clamp connector equivalent stress and maximum
contact pressure sampling curves gradually plateau, which means that the data sampling
requirements can be met using 2000 sampling cycles.
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Figure 13. Iteration diagram of the response surface L.

The mean value of the response surface S is 276.56 MPa with a variance of 226. The mean
value of the response surface L is 330.03 MPa with a variance of 205. The red line in the figure
is the normal distribution curve obtained by fitting, as shown in Figures 14 and 15.
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First, the probability density expression of the actual response surface is obtained.
Then, the intensity probability density expression is obtained. Finally, the reliability of
subsea clamp connector under each single response can be obtained by using the stress-
strength interference theory:
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Pt(S) and Pt(L) are the failure probabilities obtained from the yield failure criterion
and the seal failure criteria. The combined probability of failure is:

P(S ∪ L) = P(S) + P(L)− P(S) · P(L) = 0.0127 (11)

Therefore, the reliability of the subsea clamp connector is:

1− P(S ∪ L) = 98.73% (12)

The reliability is the reliability performance of the subsea clamp connector in the initial
state of production. According to a literature study [30], this reliability belongs to the
low-level fault and meets its working requirements.

5. Model Test Verification

The test system shown in Figure 16 is used to check the sealing reliability of the subsea
clamp connector studied in this paper. The test system is mainly composed of connector
model, intelligent pressure test machine, internal sensor, and fixed brackets, etc. The test
was carried out using a stepwise pressurization method, where the internal pressure of the
connector model was gradually increased to 52.5 MPa. The pressure is loaded in 12 steps
with a 5-min holding operation at each stage and 15 min at the last step. During the holding
period measure, if the pressure drop is less than 5% of the test pressure, observe for leaks
and abnormal sounds.
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Figure 16. Reliability performance verification test model.

The pressure drop rate formed from the measured pressure drop data is shown in
Figure 17. The maximum pressure drop rate during the whole pressurization process is 2%,
which is lower than the standard requirement of 5%. As pressure increases, the pressure
drop rate decreases and the internal pressure retention performance becomes stable. After
the first pressurization step, the pressure is released and then re-pressurized in two steps to
verify the accuracy of the above test procedure. The results of the model tests show that the
subsea clamp connector has good sealing performance to meet the design requirements
during both the pressurization and pressure-hold periods. It validates the applicability of
the MRSM for the safe design of subsea clamp connectors.
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6. Conclusions

The paper proposes a reliability prediction method based on the multiple response
surface method for subsea clamping connectors and provides a specific analysis process
for the structural characteristics and load bearing of subsea clamping connectors. The
reliability analysis and model test validation are carried out with a model of subsea clamp
connector, and the main conclusions are formed as follows:

(1) The multiple response surface method can accurately predict the reliability of un-
derwater clamp connectors under different structural characteristic parameters and
load conditions due to its advantages of simultaneously considering multiple failure
factors of the system.

(2) The reliability of the subsea clamp connector analyzed in this paper is mainly affected
by the radius of the sealing ring, the contact angle of the upper and lower flanges, and
the internal pressure of the medium, and the reliability is 98.73% by calculation.

(3) The maximum pressure drop rate of the internal pressure test of the underwater
clamp connector analyzed in this paper is 2%, the pressure drop rate decreases with
increasing pressure, and the internal pressure retaining performance tends to be stable.
The applicability of the MRSM in the safety design of subsea clamp connectors is
verified.
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