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Abstract: Obtaining ship navigation information from maritime videos can significantly improve
maritime supervision efficiency and enable timely safety warnings. Ship detection and tracking are
essential technologies for mining video information. However, current research focused on these
advanced vision tasks in maritime supervision is not sufficiently comprehensive. Taking into account
the application of ship detection and tracking technology, this study proposes a deep learning-based
ship speed extraction framework under the haze environment. First, a lightweight convolutional
neural network (CNN) is used to remove haze from images. Second, the YOLOv5 algorithm is used
to detect ships in dehazed marine images, and a simple online and real-time tracking method with
a Deep association metric (Deep SORT) is used to track ships. Then, the ship’s displacement in
the images is calculated based on the ship’s trajectory. Finally, the speed of the ships is estimated
by calculating the mapping relationship between the image space and real space. Experiments
demonstrate that the method proposed in this study effectively reduces haze interference in maritime
videos, thereby enhancing the image quality while extracting the ship’s speed. The mean squared
error (MSE) for multiple scenes is 0.3 Kn on average. The stable extraction of ship speed from the
video achieved in this study holds significant value in further ensuring the safety of ship navigation.

Keywords: ship speed extraction; image dehaze; ship detection; ship tracking

1. Introduction

Currently, the Automatic Identification System (AIS) serves as the primary platform
for exchanging navigation information, including ship speed, between ships and between
ships and the shore [1]. However, the rapid growth of the shipping industry has led to an
increased number of ships, resulting in AIS signal interference in busy waters. Meanwhile,
the system’s weak ability to combat data defects, system instability, and environmental
interference often causes data delays or losses [2]. Additionally, some ships either lack AIS
equipment or turn it off in monitored waters, thereby preventing the maritime supervision
department from obtaining timely navigation information [3]. In this situation, both the
supervisory authority and ships in the same waters are unable to obtain accurate and
timely speed information of other ships, posing a hidden danger to navigation safety.
Maritime videos, which provide rich information at a low cost, are widely used in maritime
supervision. Techniques such as image processing, target detection, and target tracking
are employed to identify obstacles at sea [4] and extract navigation information, such as
ship trajectories, from maritime images [5]. These approaches have positive implications
for enhancing maritime supervision efficiency and ensuring ship safety.

While several studies have been conducted on ship detection and tracking in maritime
images [5–7], the related research has not sufficiently explored the application of ship
detection and tracking technology, nor has it fully extracted the navigation information
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from maritime images. Zhao et al. [8] proposed a ship speed extraction framework based
on UAV airborne video. In this study, the advantages of optical image data were fully
utilized to realize the visual extraction of ship speed information. However, this study does
not consider the influence of complex weather on the accuracy of ship speed extraction and
lacks research on processing low-quality marine image data.

In this study, we propose a ship tracking and speed extraction framework based
on deep learning under hazy weather conditions. Our approach utilizes cost-effective
optical data while considering environmental impacts. We achieve ship speed information
extraction from video data using ship tracking algorithms, as illustrated in Figure 1. The
contributions of this study can be summarized as follows:
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Figure 1. Frame diagram of the method.

• To address the issue of the image becoming dark after haze removal, thereby obscuring
the ship’s target features, we improved AOD-Net [9] at the pixel level. After haze re-
moval, the mean peak signal-to-noise ratio (PSNR) of multiple maritime scenes reached
23.86, and the mean structural similarity index (SSIM) was 0.96, thus improving the
quality of maritime images.

• We extract ship speed from the images based on the image mapping relationship. The
average accuracy of ship speed extraction using this framework across multiple scenes
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is approximately 95%. Furthermore, the mean squared error (MSE) of the speed values
extracted from the dehazed images is approximately 0.3 Kn lower than that extracted
from the images before haze removal.

• Provides ideas for the application of advanced vision tasks such as haze removal
from maritime haze images and ship tracking in maritime scenarios, improving the
efficiency of maritime supervision.

2. Related Work
2.1. Image Haze Removal

Image processing for hazy weather is a significant research direction in the field of
computer vision. Haze removal methods based on image enhancement primarily aim to
enhance image contrast and highlight image details. These methods include the adaptive
histogram equalization method [10], Retinex theory [11], etc. While these methods are
simple, easy to implement, and widely applicable, they may lead to loss of details or over-
enhancement. He et al. proposed a method of combining the dark channel prior with the
atmospheric scattering model for haze removal [12]. The experimental principle of this method
is simple and has a good effect on most natural scenes, but it is prone to local coloration or
image brightness reduction after removing haze. In recent years, deep learning methods, such
as convolutional neural networks (CNN), have been utilized for haze removal, and numerous
deep networks have been developed for this purpose [9,13–15]; these haze removal networks
have demonstrated improved results in haze removal experiments. However, most of these
methods have been applied to land-based scenes, and there is a need for an improved haze
removal network specifically tailored for maritime haze videos, considering the differences
in sea surface scattering and other imaging characteristics compared to land-based haze.
Therefore, this study enhances AOD-Net for maritime haze scenes to more efficiently remove
haze from maritime haze images.

2.2. Target Tracking

Current methods of multi-target tracking generally employ the TBD (Tracking-by-
Detection) strategy, which involves first detecting the target’s position in the image and
then establishing associations between frames based on appearance consistency or posi-
tional similarity of the same target across frames. In recent years, with the advancement
of algorithms such as deep learning, tracking accuracy has been enhanced by utilizing
techniques such as neural networks to learn the appearance information of targets across
different video frames for precise inter-frame associations [16–18]. However, the study
by [19] demonstrates that when different tracking targets share similar appearance features,
matching errors in target IDs can occur, making reliance solely on appearance features for
inter-frame association unreliable.

Location similarity-based target tracking methods can overcome issues arising from the
appearance similarity of tracked targets. Simple online and real-time tracking (SORT) [20]
performs data association based on positional similarity and first uses a Kalman filter to
predict the position of the track in the next frame and then calculates the Intersection over
Union (IoU) between the detected and predicted frames. ByteTrack [21] matches the frames
with IoU matching below the threshold twice to improve the tracking performance of the
object when it is occluded. Inter-frame matching combining appearance consistency and
location similarity can be sufficient to further improve tracking performance [22–24], and
Deep SORT [25] uses an independent Re-ID model to extract appearance features from
the detected frames to reduce ID matching errors. It is worth stating that the performance
of the current multi-target tracking algorithm using the TBD strategy is closely related
to the results of the detection model, and the performance of the tracking model can be
guaranteed when the detection model reaches high accuracy [20]. In this paper, we adopt
Deep SORT [25], a flexible and robust tracking model, after ensuring that yolov5 can detect
ships with stable and high accuracy in maritime scenes.
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2.3. Techniques for Obtaining Information on Ship Speed

Commonly used technologies for measuring ship speed include AIS [26], radar [27],
lasers [28], and video-based speed measurements [29]. The emergence and advancement
of the AIS system have provided robust technical support for acquiring ship navigation
information [30]. However, as the number of ships at sea continues to increase, AIS signals
are prone to interference. Other ships can only obtain ship navigation information [31] if
the ship has AIS installed and turned on. Ship speed measurements using laser and radar
technologies require specialized and costly equipment. In contrast, marine videos contain a
wealth of ship navigation information, which can be easily visualized and processed in real-
time. Additionally, visual sensors offer a wide monitoring range and are cost-effective [32],
making them ideal for applications in complex marine environments with numerous ships
and various influencing factors [33]. With the advancement of visual sensor technology,
speed measurement methods based on videos hold promising prospects.

3. Materials and Methods
3.1. Remove Haze in Marine Haze Images Using CNN

The first part of the framework is a lightweight CNN, which is used to remove
haze from hazy marine images. To improve the quality of marine images in complex
scenes, marine haze images were used to train AOD-Net [9], which can achieve end-to-end
dehazing in marine scenes. To avoid the darkening of the maritime images after haze
removal by AOD-Net and to solve the problem of not highlighting the structural features
of ships in the images after haze removal, Equation (1) was introduced to highlight further
the structural features of ships in the images.

G(x) = mJ(x) + n (1)

where, J(x) is the image before image enhancement, G(x) is the image after image enhance-
ment, m is the gain parameter, and n is the bias parameter, which is used to adjust the
contrast and brightness of the marine image to further eliminate the impact of background
noise. In this study, the AOD-Net model trained by marine images and can improve the
quality of images after haze removal is called e-AOD-Net. The e-AOD-Net uses a CNN
to remove haze based on the atmospheric scattering model. The traditional atmospheric
scattering model that generates hazy images is described as follows:

I(x) = J(x)t(x) + A(1− t(x)) (2)

t(x) = e−βd(x) (3)

In the Equation (2), I(x) is the hazy image, J(x) is the clear image before image
enhancement, and t(x) is the medium transmission, describing the light without scattering
and transmitted to the visual sensor, which can be expressed by the atmospheric scattering
coefficient β and the distance between the field and the visual sensor d(x).

Equations (2) and (3) can be transformed into:

J(x) = K(x)I(x)− K(x) + b (4)

K(x) =
1

t(x) (I(x)− A) + (A− b)

I(x)− 1
(5)

where, b is the deviation value whose default value is 1. Meanwhile, Equation (4) integrates
1

t(x) and A into K(x). The e-AOD-Net builds an adaptive depth estimation model based on
the physical model of atmospheric scattering and trains the network by minimizing the
error between the pixel values of clear and hazy images.
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As shown in Figure 2, I(x) is entered into the network to estimate K(x) and then input
K(x) into the dehazed image generation module as an adaptive parameter. The function of
the K(x) estimation module is to estimate the depth and haze concentration of hazy images.
At the same time, Equation (1) is used to reduce the impact of noise on an image. Finally,
clear images are synthesized by the multiplication and additional layers, and they can be
output directly after haze removal to realize end-to-end haze removal of images.
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3.2. Marine Shipping Target Detection Using the YOLOv5 Algorithm

The second part of the framework involves shipping detection. YOLO algorithms are
representative of one-stage target detection algorithms, which regard target detection as
a regression problem with a simple network flow. Among them, the YOLOv5 network is
small, stable, and good in terms of network generalization ability [34], making it an ideal
choice for real-time flexible target detection in the offshore environment. Because ships in
maritime images are usually small and ship speed extraction has high requirements for
the computational speed and flexibility of the detection algorithm, this framework adopts
YOLOv5 as the target detection algorithm [35]. Meanwhile, the maritime dataset is used
to train the YOLOv5 network to realize the fast and accurate positioning of small and
medium-sized ships in maritime images and improve the accuracy of ship speed extraction.
The main components of the YOLOv5 network are input, backbone, neck, and prediction,
as shown in Figure 3.
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Among them, mosaic enhancement is used at the input end of the YOLOv5 network
to improve the detection accuracy of small ships. The adaptive anchor frame calculation
and adaptive scaling for different data are performed to improve the calculation speed
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of the network. The neck network integrates the information of the upper and lower
layers to fully extract the features of the ship. At the same time, the cross stage partial
network (CSP-Net) is used to enhance the fusion of the target features of the network and
improve the extraction efficiency of the ship’s features. In the prediction part of YOLOv5,
the anchor frame of the grid is used for target detection on feature graphs of different scales.
The complete intersection over union (CIoU) is used as the loss function of the boundary
frame, which allows the algorithm to converge quickly and make the prediction frame
more consistent with the real frame. Non-maximum suppression (NMS) is used by the
neck network to enhance the detection accuracy of multiple ship targets and overlapping
ship targets.

3.3. Ship Target Tracking with Deep SORT Algorithm

To obtain the pixel displacement of the ships in the images of continuous frames,
the video with the detection frame information is taken as the input of the Deep SORT
algorithm [8] in the third part of this framework. The algorithm first predicts the trajectory
of the next frame using the Kalman filter. IOU matching and cascade matching are then
performed between the predicted value and the detection frame information to track the
trajectory of the target ship between the front and back frames of the video [36].

During the prediction process, xk−1 =
(

u, v, r, h,
.
x,

.
y,

.
z,

.
h
)

represents the motion state
of the target in k− 1 box, where (u, v) is the central point coordinates of the target box, r is
the aspect ratio, and h is the height of the detection box. In xk−1, the last four variables are
the derivatives of the first four variables, representing the transformation rate of the first
four variables. When the standard filter is used to predict the motion state of the target, the
last four values are constants. With xk−1 = (u, v, r, h) as the prediction result, the motion
state prediction of the Kalman algorithm can be expressed as:

x̂k = Ax̂k−1 (6)

where, x̂k−1 is the motion state vector of frame k− 1, and A is the state transition matrix
used to predict the motion state x̂k of frame k.

In the process of data association between continuous frames, Mahalanobis distance,
and cosine distance are introduced to conduct the association of data between connected
frames, and the thresholds between the observation box and prediction box are set, re-
spectively. In the process of data association, when the Mahalanobis distance and cosine
distance are both within the threshold range, the data association of two adjacent frames is
considered successful. The comprehensive associated cost equation is as follows:

ci,j = λd(1)(i, j) + (1− λ)d(2)i,j (7)

where, λ is a hyperparameter, and the influence of Mahalanobis distance and cosine
distance on the association results can be controlled by controlling λ.

In order to enable the targets blocked for a long time to be continuously tracked, Deep
SORT introduced cascade matching to give priority to the targets with more occurrences.
Then, the intersection and union (IoU) between the boundary box and the prediction box
by the Kalman filter is calculated and detected for the newly emerged targets and the
prediction boxes that failed to match. The detection result is recognized if the match value
is greater than the minimum IoU value. The equation for calculating IoU is as follows:

IoU =
|area(A) ∩ area(B)|
|area(A) ∪ area(B)| (8)

where, A is the detection boundary box, and B is the prediction boundary box of the
candidate trajectory.
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3.4. Space Mapping from 2D to 3D and Speed Extraction

In the fourth part, the mapping relation matrix between the ship’s displacement in the
images and the actual displacement is obtained by 2D to 3D space mapping. The actual ship
displacement is calculated according to the trajectory of the ship in the images obtained
by the target tracking algorithm. The ship’s movement in a short time is regarded as the
uniform motion. The average velocity equation is used to estimate the actual velocity of
the ships based on the premise of knowing the time difference and actual displacement of
the ship [37].

The process of 2D to 3D space mapping involves solving the mapping relationship
between objects from the three-dimensional world and points on the two-dimensional
image plane. The process involves four coordinate systems, and the representation methods
of coordinate systems and points in coordinate systems are as follows:

(1) World coordinate system. The coordinate system corresponding to the three-dimensional
world describes the position of the target in the real world. The unit length of the
coordinate axis is m. The points in the world coordinate system are represented by
(Xw, Yw, Zw).

(2) Camera coordinate system. The origin is located in the optical center of the lens,
and its x-axes and y-axes are parallel to both sides of the phase plane. The z-axis is
perpendicular to the image plane and is the optical axis of the lens. The unit length of
the coordinate axis is m. The points in the camera coordinate system are denoted as
(Xc, Yc, Zc).

(3) Image coordinate system. The origin is the intersection of the optical axis of the
camera and the imaging plane, that is, the midpoint of the imaging plane. The unit
length of the coordinate axis is mm. The points in the image coordinate system are
represented by (x, y).

(4) Pixel coordinate system: the origin is the top-left corner of the imaging plane in pixels.
Points in the pixel coordinate system are represented as (u, v).

The object is transformed from the world coordinate system to the camera coordinate
system through translation and rotation, and the transformation equation between the
camera coordinate system and the world coordinate system is:

Xc
Yc
Zc
1

 =

[
R t
→
0 1

]
Xw
Yw
Zw
1

 (9)

where R is a 3 × 3 rotation matrix and t is a 3 × 1 translation vector.
The transformation of the camera coordinate system into the image coordinate system

is based on the projection perspective. The connection between P in space and the camera
optical center O is OP, and the intersection point p between OP and phase plane is the
projection of point P on the image as shown in Figure 4.

According to the projection perspective, the conversion equation of the camera coordi-
nate system and the image coordinate system is:

Zc


x
y
z
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




Xc
Yc
Zc
1

 (10)

where Zc is the scale factor, and f is the focal length. The pixel coordinate system can
coincide with the image coordinate system after translation, as shown in Figure 5.
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where cZ  is the scale factor, and 
f

 is the focal length. The pixel coordinate system can 
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Then, the conversion equation of the image coordinate system and pixel coordinate
system is: {

u = x
dx

+ u0

v = y
dy

+ v0
(11)

Represented by the matrix:u
v
1

 =


1

dx
0 u0

0 1
dy

v0

0 0 1


x

y
1

 (12)

where dx and dy are the scale factors of the two coordinate systems in the directions of the
x-axis and y-axis, and (u0, v0) is the coordinate of the origin of the pixel coordinate system.

As can be seen from Equations (9), (10) and (12), the conversion equation between the
world coordinate system and the pixel coordinate system in which the image is located can
be expressed as:

Zc

u
v
1

 ==


f

dx
0 u0 0

0 f
dy

v0 0
0 0 1 0

[R t
→
0 1

]
Xw
Yw
Zw
1

 (13)

If [
R t
→
0 1

]
= M (14)


f

dx
0 u0 0

0 f
dy

v0 0
0 0 1 0

 = K (15)
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Then

Zc

u
v
1

 = KM


Xw
Yw
Zw
1

 (16)

In Equation (16), the element in K is the configuration parameters of the camera, which
is called the camera’s internal parameter matrix. The elements in M are called the internal
parameter matrix of the camera.

In this paper, the plane where the ship is located is set to the XwOwYw plane of the
world coordinate system, the direction perpendicular to XwOwYw is the positive direction of
the Zw axes, and the camera coordinate system is set to coincide with the world coordinate
system. Under this assumption, the conversion equation of the pixel coordinate system
and the world coordinate system can be simplified as:

Zc

u
v
1

 = K


Xw
Yw
Zw
1

 (17)

In this study, the ship’s movement in a very short time is regarded as uniform linear
motion. Assuming that the ship displacement in the pixel coordinate system in the period
∆t at the moment T can be expressed as (∆u, ∆v), the transformation relationship between
the image displacement and actual displacement is as follows:

Zc

∆u
∆v
1

 = K


∆Xw
∆Yw
∆Zw

1

 (18)

Then the actual displacement of the ship in the time period ∆t is:

∆L =

√
(∆Xw)

2 + (∆Yw)
2 + (∆Zw)

2 (19)

According to the average velocity formula, the velocity of the ship at the moment T
can be expressed as:

vT =
∆L
∆t

(20)

4. Results

The main contents of Section 4 are the experimental details and results. It should be
noted that all experiments were carried out on an Intel I7-11800H@4.6 GHz computer with
a 6 g memory processor, and the experiments were completed in the Windows10 system
using the Pytorch software library.

4.1. Experimental Data

In this study, contrast experiments were conducted on each module of the framework,
and simulation experiments were conducted to verify the robustness of the framework
in the process of extracting the shipping speed. The experimental data of hazy removal
included three shore-based surveillance videos, which contained 5658 images, and three
maritime videos with 8000 marine images. The resolution of the shore-based surveillance
images is 640 × 386, and that of the self-built images is 1920 × 1080.

In the haze removal experiment of marine images, 5000 synthetic hazy marine images
were selected as the training dataset to improve the generalization performance of AOD-
Net on marine scenes, and 600 images were used as the non-repetitive test set. During
the maritime target detection and tracking experiment, 8000 high-resolution images were
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divided into 6400 training datasets, 1000 validation datasets, and 600 test datasets to train
the YOLOv5 algorithm. It should be noted that the training and test datasets do not overlap.
At the same time, the Deep SORT algorithm was selected to combine with the YOLOv5
algorithm to conduct the multi-ship tracking experiment and the simulation experiment of
ship speed extraction in marine scenarios. Shore-based scenes include scenes on cloudy
days (scene 1 in Figure 6), scenes on sunny days [38] (scene 2 in Figure 6), and scenes
with wave disturbance [38] (scene 3 in Figure 6). The self-built dataset includes the scene
of many small target ships (scene 4 in Figure 6), the scene with normal light (scene 5 in
Figure 6), and the scene with low light (scene 6 in Figure 6).
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It should be noted that, when training the haze removal network, this paper [39] is
referred to adding synthetic haze images to improve the generalization performance of
the haze removal network in marine scenes. We synthesized image datasets with three
different haze concentrations, and in this study, T represents the haze concentration. The
images with three different haze concentrations are respectively represented as the images
with T = 0.3, the images with T = 0.5, and the image data with T = 0.7, among which the
images with T = 0.3 has the lowest haze concentration, as is shown in Figure 7.
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4.2. Experimental Results and Analysis
4.2.1. Haze Removal of Marine Images

To verify the performance of the framework on haze removal, Retinex [40], Dark
Channel Prior [12], Contrast Limited Adaptive Histogram Equalization (CLAHE) [41],
AOD-Net [9], and e-AOD-Net adopted in the framework are used to conduct a comparative
experiment on haze removal. The experimental results are shown in Figure 8.
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The images generated by the above methods after haze removal are shown in Figure 8.
Retinex and Dark Channel Prior usually lead to image distortion, and the color of the
images after haze removal is seriously abnormal. CLAHE usually makes the color of
images after haze removal too dark, and maritime ship features are not prominent. After
haze removal by the AOD-Net network, there is still noise remaining in the images. These
phenomena may occur because none of the above competing methods can fully extract
the target structural features from ocean images. By contrast, e-AOD-Net can learn more
structural features of images in marine scenes after generalization training and adaptive
enhancement of marine images. The evaluation results of the dehazed images in multiple
scenes using the PSNR and SSIM are presented in Table 1.

Table 1. Evaluation results of dehazed images. (The best results are highlighted in red).

Method Retinex CLAHE Dark Channel Prior AOD-Net e-AOD-Net

PSNR 1 SSIM 2 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Scene 1 10.86 0.70 9.80 0.67 9.72 0.72 22.81 0.94 23.71 0.95
Scene 2 10.12 0.68 9.06 0.65 9.01 0.67 20.50 0.95 21.86 0.94
Scene 3 10.10 0.65 9.51 0.63 9.09 0.65 20.06 0.95 23.84 0.95
Scene 4 10.73 0.55 9.76 0.52 9.48 0.53 20.59 0.92 21.99 0.95
Scene 5 11.42 0.40 10.46 0.38 11.13 0.39 22.15 0.92 23.69 0.96
Scene 6 11.79 0.50 10.17 0.43 10.82 0.48 19.68 0.94 23.87 0.96

1 PSNR: The peak signal-to-noise ratio [42] is a widely used evaluation index for measuring image quality. 2 SSIM:
The structural similarity index measure [43] can objectively determine the structural similarity of images based on
the human visual system.

As shown in Table 1, the e-AOD-Net adopted in this study has stable and good
performance in multiple marine scenes, indicating that e-AOD-Net achieves better image
enhancement performance. Images after haze removal can highlight more ship information,
which is the basis of ship detection and tracking.
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4.2.2. Multi-Ship Detection and Tracking Experiment after Images Enhancement

In this part, in order to verify the detection performance of the algorithm, SSD [44],
Faster RCNN [45], and YOLO v4 [46] are compared with the YOLOv5 algorithm [47] adopted.
The training comparison chart (Figure 9a), the verification comparison chart (Figure 9b), the
frames per second (FPS) comparison chart (Figure 9c), the training index table (Table 2), the
verification index table (Table 3), the test index table (Table 4) are drawn respectively.
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Figure 9. Comparison of detection methods. (a) Training carve; (b) Validation carve; (c) FPS of
multiple detection algorithms.

Table 2. Train metrics.

p R mAP_0.5 mAP_0.5:0.95

Faster RCNN 0.9446 0.9195 0.9297 0.8835
SSD 0.9154 0.8974 0.9065 0.8548

YOLO v4 0.979 0.9701 0.972 0.8903
YOLO v5 0.9929 0.973 0.989 0. 920

Table 3. Validation metrics.

p R mAP_0.5 mAP_0.5:0.95

Faster RCNN 0.927 0.907 0.916 0.764
SSD 0.90.1 0.884 0.863 0.718

YOLO v4 0.973 0.982 0.995 0.845
YOLO v5 0.989 0.990 0.993 0.880

Table 4. Test metrics.

p R mAP_0.5 mAP_0.5:0.95

Faster RCNN 0.932 0.895 0.937 0.775
SSD 0.903 0.874 0.895 0.738

YOLO v4 0.983 0.979 0.991 0.80
YOLO v5 0.993 0.984 0.994 0.83

As can be seen from the comparison curve, under the same training conditions, the
convergence speeds of the YOLOv4 and YOLOv5 algorithms are fast, and the YOLOv5
algorithm has a faster image-processing speed (in Figure 9c). The test and evaluation
parameters show that the trained YOLOv5 algorithm also performs well in detecting
accuracy in ocean scenes. To verify the performance of images after haze removal by
e-AOD-Net in ship detection tasks, we adopted the stable YOLOv5 algorithm to detect
ships in the synthesized hazy images and images after haze removal and compared the
detection results. The detection results are presented in Figure 10.
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Figure 10 shows that YOLOv5 has high-precision detection performance in multiple
ocean scenarios. However, the degree of recovery of the images after haze removal is high,
and the structural features of the ships are prominent, making it easy for the ship target
in the image to be detected by the YOLOv5 algorithm, such as the small ships in the red
boxes in scene 4. Haze noise in images reduces the accuracy of the target detection. In the
case of high haze concentrations, some ships were not detected, such as those in the red
boxes in scenes 5 and 6.

Considering the accuracy, detection speed, and detection stability of the algorithm
in synthetic haze scenes, the YOLOv5 algorithm is ideal for ship detection in maritime
scenarios. In the evaluation of the tracking algorithms, the YOLOv5 algorithm was used as
the detector in scenarios 4, 5, and 6. In the three scenarios, multi-objective tracking evalua-
tion parameters were introduced to evaluate the tracking performance of the SORT and
Deep SORT algorithms for ships in ocean scenarios. The evaluation results are presented
in Tables 5–7. In the tables, parameters with upward arrows indicate that the evaluated
method performs better when the evaluated value is larger; those with downward arrows
indicate that the evaluated method performs better when the evaluated value is smaller.
And the optimal evaluation values when the hazy concentration is T = 0.3, T = 0.5, and
T = 0.7 have been highlighted in red, yellow, and green, respectively in Tables 5–7.

As shown in Tables 5–7, the Deep SORT algorithm using YOLOv5 as a detector has
higher MOTA and MOTP values as well as lower IDS and ML values in the above scenes.
This indicates that Deep SORT can track ships stably while avoiding the number of ID
transitions. It should be noted that in the same scenario, the evaluation results of tracking
algorithms that use images after haze removal are usually the optimal values, indicating
that images after haze removal can effectively improve the robustness of target tracking
algorithms in maritime scenarios. It is worth noting that the YOLOv5 algorithm combined
with the Deep SORT target tracking algorithm adopted in the framework can maintain
high detection accuracy and stable tracking performance in multi-ship tracking, which is
the basis for accurate ship speed extraction in this study.

4.2.3. Ship Speed Extraction

In this section, AIS data are considered as the ground truth of the ship speed values. The
AIS data of Baosteel Wharf on 5 April 2021 is downloaded from the website http://www.
shipxy.com. To make it easier to compare the ground truth of the ship speed values with
the shipping speed extracted from marine images, the AIS data were linearly interpolated
to match the video image frame by frame after extracting the speed data. To highlight the
effect of this framework on hazy images and the performance of ship speed extraction, this
section selects a ship in scenes 4, 5, and 6 for the speed extraction simulation experiment and
compares the ground truth with the extracted speed of each ship in the scene with different
haze concentrations. The extraction and comparison results for the ship speed are shown
in Figures 11–13. The mean speed of each ship and the MSE and MAE values compared to
the ground truth of the speed are listed in Tables 8–10. In the Tables 8–10, the highlighted in
yellow indicates the speed results and speed evaluation results extracted from the haze videos,
the highlighted in green indicates the speed results and speed evaluation results extracted

http://www.shipxy.com
http://www.shipxy.com
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from the videos after haze removed, and the highlighted in red indicates the true value of
speed extracted from the AIS data.

Table 5. Evaluation results of multi-ship tracking in scene 4.

Scene 4

Data
Type Tracker Haze

Concentration IDF1 1 ↑ MOTA 2 ↑ MOTP 3 ↑ MT 4 ↑ ML 5 ↓ FP 6 ↓ FN 7 ↓ IDS 8 ↓

Hazy
video

SORT
T = 0.3 97.6% 96.7% 85.4% 100.0% 0.0% 18 72 1
T = 0.5 97.3% 95.1% 85.4% 100.0% 12.5% 20 114 2
T = 0.7 89.3% 88.7% 84.2% 75.0% 12.5% 24 292 3

Deep
SORT

T = 0.3 98.5% 97.1% 85.2% 100.0% 0.0% 15 57 0
T = 0.5 97.5% 95.6% 85.5% 100.0% 0.0% 20 92 1
T = 0.7 96.8% 93.8% 84.7% 75.0% 12.5% 23 155 3

Dehazed
video

SORT
T = 0.3 98.6% 97.3% 85.8% 100.0% 0.0% 14 58 0
T = 0.5 97.7% 96.8% 86.0% 100.0% 0.0% 13 70 1
T = 0.7 97.5% 95.9% 85.5% 100.0% 0.0% 17 89 2

Deep
SORT

T = 0.3 98.7% 97.5% 85.7% 100.0% 0.0% 3 44 0
T = 0.5 98.7% 97.3% 86.9% 100.0% 0.0% 9 51 0
T = 0.7 98.3% 96.7% 86.1% 100.0% 0.0% 14 71 0

1 IDF1: The ratio of correctly identified detections over the average number of ground-truth and computed
detections; 2 MOTA (multi-object tracking accuracy): This measure combines three error sources: false positives,
missed targets, and identity switches; 3 MOTP(Multiple Object Tracking Precision): The misalignment between
the annotated and the predicted bounding boxes; 4 MT: The ratio of ground-truth trajectories that are covered by
a track hypothesis for at least 80% of their respective life span; 5 ML: The ratio of ground-truth trajectories that
are covered by a track hypothesis for at most 20% of their respective life span; 6 FP: The total number of false
positives; 7 FN: The total number of false negatives (missed targets); 8 IDS: The total number of identity switches.
(The meaning of the evaluation parameters in Tables 6 and 7 is the same as described above.)

Table 6. Evaluation results of multi-ship tracking in scene 5.

Scene 5

Data
Type Tracker Haze

Concentration IDF1 1 ↑ MOTA 2 ↑ MOTP 3 ↑ MT 4 ↑ ML 5 ↓ FP 6 ↓ FN 7 ↓ IDS 8 ↓

Hazy
video

SORT
T = 0.3 92.7% 85.0% 80.4% 87.5% 0.0% 82 84 2
T = 0.5 90.2% 81.2% 80.8% 87.5% 12.5% 106 248 1
T = 0.7 88.4% 80.3% 77.6% 62.5% 25.0% 631 516 3

Deep
SORT

T = 0.3 98.0% 90.0% 81.5% 75.0% 0.0% 14 191 0
T = 0.5 95.9% 94.0% 81.2% 87.5% 12.5% 39 263 1
T = 0.7 95.3% 89.8% 80.7% 75.0% 12.5% 39 373 2

Dehazed
video

SORT
T = 0.3 97.6% 93.2% 81.8% 87.5% 0.0% 54 149 0
T = 0.5 95.1% 86.6% 81.4% 87.5% 12.5% 299 187 0
T = 0.7 94.7% 88.1% 81.6% 87.5% 0.0% 456 201 0

Deep
SORT

T = 0.3 98.8% 95.7% 83.5% 87.5% 0.0% 16 50 0
T = 0.5 98.0% 94.4% 81.6% 87.5% 0.0% 20 151 0
T = 0.7 98.0% 94.0% 80.9% 87.5% 12.5% 23 177 0
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measurements (T = 0.3); (c) Comparison of speed measurements (T = 0.5); (d) Comparison of speed
measurements (T = 0.7).
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Figure 12. Speed extraction results for ship 2 in scene 5. (a) Scene image; (b) Comparison of speed 
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Figure 12. Speed extraction results for ship 2 in scene 5. (a) Scene image; (b) Comparison of speed
measurements (T = 0.3); (c) Comparison of speed measurements (T = 0.5); (d) Comparison of speed
measurements (T = 0.7).
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Table 7. Evaluation results of multi-ship tracking in scene 6.

Scene 6

Data
Type Tracker Haze

Concentration IDF1 1 ↑ MOTA 2 ↑ MOTP 3 ↑ MT 4 ↑ ML 5 ↓ FP 6 ↓ FN 7 ↓ IDS 8 ↓

Hazy
video

SORT
T = 0.3 85.7% 78.9% 71.9% 85.7% 14.3% 183 3187 11
T = 0.5 85.6% 75.0% 70.7% 85.7% 14.3% 226 4381 14
T = 0.7 80.5% 70.2% 63.5% 71.4% 28.6% 318 4869 20

Deep
SORT

T = 0.3 86.2% 78.8% 74.4% 100.0% 0.0% 179 1356 9
T = 0.5 85.4% 78.1% 72.4% 85.7% 28.6% 186 1267 12
T = 0.7 82.7% 71.5% 65.6% 57.1% 28.6% 295 3741 18

Dehazed
video

SORT
T = 0.3 86.8% 79.7% 75.5% 85.7% 14.3% 164 3171 12
T = 0.5 85.7% 78.2% 71.9% 85.7% 14.3% 189 3469 14
T = 0.7 83.2% 74.8% 68.5% 71.4% 28.6% 233 4715 14

Deep
SORT

T = 0.3 92.7% 82.1% 76.7% 100.0% 0.0% 120 1224 7
T = 0.5 89.6% 79.9% 75.6% 85.7% 0.0% 163 1267 9
T = 0.7 88.2% 79.3% 68.7% 85.7% 14.3% 204 1334 11

As shown in Figures 11–13, the fold line representing the speed value of the ship extracted
from the AIS data is set to red in the figure; the fold line graph representing the speed value of
the ship extracted directly from the haze video is set to yellow, and the fold line representing
the speed value of the ship extracted by our framework after removing the haze from the
maritime haze image is set to blue. According to the extraction results and the mean ground
truth of the ship speed, the speeds of the three ships were at 7.71 Kn, 7.50 Kn, and 7.70 Kn,
respectively. For ship No. 1 in Figure 11, the accuracy of the speed extracted is easily affected
by noise in the images owing to the small sizes of the ships. When T = 0.3, the MSE and MAE
values of the speed are 0.37 Kn and 0.49 Kn due to the slight noise in the images. After haze
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removal, the fluctuation of the velocity image improved. At this time, the values of MSE
are 0.12 Kn, the values of MAE are 0.21 Kn, and the ship’s average speed is improved from
7.54 Kn to 7.73 Kn, which is closer to the average speed of the ground truth of the ship speed.

Table 8. Mean ship speeds.

Haze
Concentration

Mean Speed of Ship (Kn)

Hazy Video Dehazed Video Ground Truth

Ship 1

T = 0.3 7.54 7.73

7.71T = 0.5 8.55 7.75

T = 0.7 8.15 7.62

Ship 2

T = 0.3 7.59 7.50

7.50T = 0.5 7.71 7.54

T = 0.7 7.50 7.58

Ship 3

T = 0.3 7.31 7.63

7.70T = 0.5 7.19 7.63

T = 0.7 7.29 7.96

Table 9. MSE values of ship speed.

Haze
Concentration

MSE Values of Ship Speed (Kn)

Hazy Video Dehazed Video

Ship 1

T = 0.3 0.37 0.12

T = 0.5 1.71 0.33

T = 0.7 3.57 0.41

Ship 2

T = 0.3 0.32 0.13

T = 0.5 0.43 0.13

T = 0.7 0.57 0.18

Ship 3

T = 0.3 0.47 0.14

T = 0.5 0.58 0.16

T = 0.7 0.65 0.22

Table 10. MAE values of ship speed.

Haze
Concentration

MAE Values of Ship Speed (Kn)

Hazy Video Dehazed Video

Ship 1

T = 0.3 0.49 0.21

T = 0.5 1.03 0.41

T = 0.7 1.14 0.43

Ship 2

T = 0.3 0.44 0.23

T = 0.5 0.50 0.26

T = 0.7 0.54 0.30

Ship 3

T = 0.3 0.60 0.27

T = 0.5 0.60 0.31

T = 0.7 0.66 0.38
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When T = 0.5, due to the influence of haze noise in the images, the curve chart of ship
velocity fluctuates wildly, especially in the late video period, and the MSE of ship velocity
is 1.71 Kn, and MAE is 1.03 Kn. Although the extraction value of the velocity after haze
removal still fluctuated, it was significantly improved compared with that before haze
removal. After removing the haze, the MSE and MAE of the ship speed extracted from the
image are 0.33 Kn and 0.41 Kn, and the average ship speed was 7.75 Kn.

When T = 0.7, the velocity fluctuation was more prominent. Currently, the MSE and
MAE of ship velocity are 3.57 Kn and 1.14 Kn. After haze removal, the fluctuation of the
velocity curve chart decreased. Both the MSE and MAE of the ship velocity decreased, and
the mean value of the ship velocity was closer to the ground truth.

The same situation appeared in ship No. 2 in Figure 12. It can be seen from the truth
line chart is approximately 7.5 Kn. According to the MSE and MAE of ship No. 2, the
accuracy of the ship speed extracted can be improved by removing haze.

For ship No. 3 in scenario 6, the curve chart of ship speed fluctuates greatly because
the image brightness is low, and the accuracy of the ship speed extracted is reduced after
the haze noise is superimposed. The MSE of ship speed under different haze concentration
environments was 0.47 Kn, 0.58 Kn, and 0.65 Kn, respectively. The MAE of speed is 0.60 Kn,
0.60 Kn, and 0.66 Kn. The MSE of speed extracted after removing haze is 0.14 Kn, 0.16 Kn,
and 0.22 Kn. The MAE is 0.27 Kn, 0.31 Kn, and 0.38 Kn, respectively. After haze removal,
the average ship speed extracted from the images was closer to the average value of the
ground truth. It shows that the framework adopted in this paper can effectively enhance
the quality of haze images in ocean scenes with low brightness and improve the accuracy
of ship speed extracted from the images.

5. Conclusions

In this study, a framework for ship detection and ship speed extraction from maritime
haze images using deep learning methods is proposed. First, a lightweight CNN was used
to remove haze from hazy marine images. Second, YOLO v5 is used to accurately detect
ships in marine images after haze removal. Moreover, the Deep-SORT target tracking
algorithm is used to track ships. Finally, the ship motion pixels are calculated according to
the trajectory information of the ship between adjacent image frames, and the ship speed is
estimated and extracted based on the mapping relationship between the image space and
the actual space.

Experimental results demonstrate that the proposed framework effectively enhances
the clarity and contrast of marine haze images, as indicated by the mean peak signal-to-
noise ratio (PSNR) and mean structural similarity index (SSIM) values of 23.86 and 0.96,
respectively. The framework achieves high accuracy in extracting ship speed in multiple
marine scenes, with an average accuracy above 95% and strong stability. The proposed
speed extraction framework significantly improves the accuracy of ship speed extraction
in hazy environments, with the mean squared error (MSE) values of ship speed extracted
from the images after haze removal averaging 0.3 Kn lower than those from the images
before haze removal.

In future studies, additional marine scenarios will be considered to further verify the
practicality of this framework in real-world scenarios.
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