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Abstract: Offshore facilities are essential infrastructure systems for many nations because their partial
or total interruption causes diverse consequences in the economic, political, environmental, and
social sectors. With the aim to preserve such structures at acceptable reliability levels, an approach is
proposed to calculate the optimal instant of time in which inspection and maintenance works can be
performed. The optimal time instant is estimated following the cost benefit criterion (CB) considering
the cost of inspection, repair and failure. The inspection cost is given by an inspection quality, while
fatigue crack size at different critical joints is calculated to estimate repair costs. In this paper, the
concept of demand exceedance rates is introduced to evaluate the failure cost. Uncertainties related
to both storm and operational waves are considered. The optimal time instant is associated with
the lowest cost of inspection, repair and failure. For this purpose, the approach is exemplified in
an offshore jacket structure situated in the Gulf of Mexico. The optimal instant of time corresponds
to 6 years after the offshore jacket installation. If maintenance actions are implemented every six
years during the lifespan of the system, an economic reduction of 58% is achieved, compared to the
case in which no inspection and maintenance works are performed over time. The approach helps
decision-makers ensure the best use of economic resources.

Keywords: optimal time instant; offshore structures; demand exceedance rate; maintenance; cost-benefit
analysis

1. Introduction

Energy is an essential factor that represents a significant role in the progress and
development of nations, causing an increase in the human need for transportation, knowl-
edge, and cultural entertainment. The necessity for society to satisfy the energy demand
started with the use of wood, followed by its transformation to coal at the beginning of
the industrial age, when coal became the most used energy source. Nowadays, the most
important fossil fuel sources are oil and gas, with a worldwide extractable amount of
4878.0× 108 tons and 471× 1012 m3, respectively [1]. The main concentration of this source
is in North America, South America, Russia, and the Middle East. In Mexico, offshore oil
exploration started in Tampico Bay, Tamaulipas, with low-level production in the 1950s.
In 1976, Cantarell oil field was discovered in the Bay of Campeche, and the Mexican oil
industry expanded significantly. Several discoveries on the coast of Mexico predict signif-
icant oil production by the 2020s [2]. Therefore, the increase of oil production supports
the need to study offshore systems that are essential to satisfy the energy demand: it is
necessary to maintain offshore structures at acceptable reliability levels, proposing tools or
methodologies that extend their lifespan.

A structure must operate at a serviceability level for a period of time associated with
a certain reliability indicator. The reliability indicator is used as a metric to express the
safety level of the system and is available in the literature expressed as the number of
times when the structural demand is exceeded by the structural capacity considering the
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corresponding uncertainties (confidence factor, index β) [3,4], the number of times that an
interest threshold is exceeded per year (exceedance demand rate) [5,6], or the number of
times per year that structure failure is expected (mean annual failure rate) [7,8]. Reliability
indicators help mitigate risk in the retrofit of existing structures or design of new systems.
Such indicators can be included in the formulation to perform structural optimization.

Structural optimization focuses on finding the best solution that satisfies each specific
condition of the problem. The optimization problem has been used to improve the design of
new systems. Ref. [9] develop an optimization method to design reinforced concrete frames
maximizing structural robustness and minimizing the steel reinforcement requirement.
Ref. [10] propose an adaptive optimization algorithm to minimize construction costs of
reinforced concrete retaining walls. The optimal solutions lead to a cost reduction of up
to 20%. Ref. [11] determine an optimal design for trusses using artificial neural networks.
The optimal design corresponds to the system with the lowest weight. For the case of
existing systems, different optimization techniques have been developed. Ref. [12] propose
an approach to establish an optimal replacement schedule for structural elements in cable-
stayed bridges. Ref. [13] develop a bridge maintenance plan considering performance, traffic
disruptions, environmental impact, and costs. Ref. [14] present an approach to select a
maintenance strategy for a miter gate considering risk and cost. Moreover, the optimization
problem has been used to comply with a pre-established reliability indicator. Ref. [15] present
an optimization approach to obtain a preestablished reliability index in bridge systems exposed
to corrosion. Ref. [16] propose an optimal design of buildings that incorporates damper devices
to minimize the probability of failure. Ref. [17] implement an optimization methodology to
minimize both weight and probability of failure of a long-span steel arch bridge.

In the case of offshore structures, their integrity is reduced due to the effect of different
environmental loads such as wave, sea current and wind. Considering the importance of
offshore systems for the oil industry, it is necessary that they operate in service conditions
for a certain period of time which implies to establish a periodic maintenance. The plan
must consider factors that affect the performance of the marine systems such as fatigue.
Ref. [18] emphasizes the impact of fatigue on the establishment of maintenance plans.
Ref. [19] underline the importance of considering probabilistic methods for fatigue crack
size prediction. With this purpose, different maintenance plans have been proposed using
different techniques. Ref. [20] develop maintenance strategies for offshore systems using
artificial neural networks to identify life extension opportunities. Ref. [21] propose an
approach for establishing maintenance programs of offshore structures based on multiob-
jetive optimization that considers structural reliability, damage index, and cost. Ref. [22]
implement a maintenance plan for offshore jacket structures using Bayesian networks
that consider different factors such as condition, environment, and inspection data. Ref. [23]
develop a maintenance plan for offshore platforms considering system reliability and Bayesian
networks. Ref. [24] defines a procedure to optimize an offshore platform using Markov chains
to maximize safety and cost. In the specific case of proposed maintenance plans based on a CB,
Ref. [25] present a maintenance plan considering initial and damage costs. Ref. [26] estimate
the optimal inspection time interval considering structural components susceptible to damage.
Ref. [27] establish different maintenance scenarios for decision-making, analyzing the impact
of different inspection time intervals. Ref. [28] obtain the optimal time for maintenance works
taking into account three different cases: (a) both the structural capacity and the structural
demand vary over time, (b) only the structural demand changes in time and (c) only the
structural capacity changes in time. Ref. [29] propose a maintenance plan that considers
time-dependent errors in structural monitoring diagnosis. The approach considers different
maintenance strategies such as unnecessary, corrective, and predictive.

The aforementioned literature shows important advances in obtaining an optimal
inspection time for maintenance. However, they have not used the concept of demand
excess rate to simulate demand values. Thus, the present study finds the optimal time of
inspection based on a CB. The quality of inspection calculates both inspection and repair
costs. The cost of failure is estimated using a damage index that relates demand to capacity.
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The approach is illustrated with an offshore system situated in the Gulf of Mexico, Mexico,
in which structural deterioration causes crack growth at different joints. The development
and implementation of maintenance plans for platform systems in the Gulf of Mexico is
important because the systems were installed more than 30 years ago, and many of these
systems present some damage. Figure 1 shows a drilling platform located in the area of
Bacab that corresponds to the Campeche Bay in the Gulf of Mexico.
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Figure 1. Drilling platform (a) profile view and (b) joint damage.

2. Cost-Benefit Approach

Considering that the structural system survives after the instant of time ∆t, Tolentino
and Ruiz [28] propose the following equation to estimate the expected total cost, which
takes into account the inspection cost, CINS(0, ∆t), repair cost, CREP(0, ∆t), and failure cost,
CFAI(0, ∆t) as follows:

CTOT(0, ∆t) = CINS(0, ∆t) + CREP(0, ∆t) + CFAI(0, ∆t) (1)

where

CINS(0, ∆t) =
NI

∑
m=1

CIm |q,∆texp[−γm(∆t)− ηF(0, ∆t)] (2)

CREP(0, ∆t) =
NI

∑
m=1

n

∑
j=1

CRj |q,∆tP
(

Dj,m(∆t) ≥ d
)
exp[−γm(∆t)− ηF(0, ∆t)] (3)

CFAI(0, ∆t) =
NI

∑
m=1

CFm |DI,∆t

N̂

∑
k=1

ηF(tk − tk−1)exp[−γm(∆t)− ηF(0, tk − tk−1)] (4)

where CIm |q,∆t is the cost of inspection at ∆t associated with an inspection quality, q; Crj |q,∆t
is the cost of repairing the j− th element at ∆t for a given q; CFm |DI,∆t is the failure cost at
∆t for a given damage index, DI; ηF represents the expected number of failures at ∆t; n
is the number of critical joints to be repaired; exp[−γm(∆t)] is a factor that converts each
cost at the instant ∆t to the present value for a certain discount rate, γm. N̂ corresponds
to the number of intervals under consideration; NI = DL/∆t represents the number of
inspections to complete during a certain time interval, DL. ηF is estimated as follows [30]:

ηF(0, ∆t) = k
(αT

a

)− r
b exp

[
r2

2b2

(
σ2

lnD|hmax
+ σ2

lnC + σ2
UT

)]
Ω(t, ∆t

)
(5)

Ω (t, ∆t ) = bαT
βT(b−r)

(
αT βT

−αT f+βT αT

)− r
b
[−F(A; B; C; x)

+F(A; B; C; x(∆t))
(

1 +
(

f βT ∆t
βT a

)− r
b
)(

1 +
(

βT ∆t
a

))(
αT+βT ∆t
αT+ f ∆t

)− r
b ( αT

a
) r

b

] (6)

where the median value of capacity, Ĉ(∆t), at the instant ∆t as Ĉ(∆t) = αT − βT∆t; the
median structural demand, D̂(∆t), for a given wave height, hmax, is equal to D̂(∆t) =
(a + f ∆t)hb

max; αT and βT are parameters that fit Ĉ(∆t); k and r are constants that fitted the
shape of the wave hazard curve for an hmax of interest by v(hmax) = khmax

−r; a, f and b are
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parameters of D̂(∆t); σ2
lnC and σ2

lnD|hmax
represent the variances of the natural logarithm of

demand and capacity; σ2
UT = σ2

UD + σ2
UC is the total epistemic uncertainties related with

the structural demand, σ2
UD and capacity, σ2

UC; Ω (t, ∆t ) represents a factor that corrects of
the expected number of failures at the instant ∆t; F(A, B; C; x) is a hypergeometric function
that is solved as follows [31,32]:

F(A, B; C; x) = 1 + AB
1!C x + A(A+1)B(B+1)

2!C(C+1) x2

+ A(A+1)...(A+n−1)B(B+1)...(n+1)
C(C+1)...(C+n−1)n! xn

(7)

where

A = 1− r
b

; B = − r
b

; C = 2− r
b

; x(t) =
f (βT + αT)

f αT − αT β′
; x(t + ∆t) =

f (βT(t + ∆t) + αT)

f αT − αβT
(8)

The inspection quality, q, involves different factors such as crack size, inspection
technique, and equipment used. The inspection quality is associated with a probability to
detect a certain crack size, PoD(x). The probability of finding a certain crack size is related to
a curve constructed for different inspection techniques, described by logistic, exponential, or
lognormal models [33]. It is considered that PoD(x) can be expressed as follows [34,35]:

PoD(x) = 1− exp
(

x− amin
λ

)
, a > amin (9)

where amin is equal to 2 mm [36]; λ is the mean size above amin as λ = 1/q; q takes values
between 0.2 and 0.3 [28]. P

(
Dj,m(∆t) ≥ d

)
is the structural fragility at ∆t in the j − th

element. The local structural deterioration, Dj,m(∆t), is related to the crack size at different
hot spots that appear at each critical joint in the system. Then, the crack size under random
loadings is as follows [37]:

da′

dt
= C(∆Kmr)

mv′ (10)

∆Kmr = YSmr
√

πa′ (11)

where C and m represent the material properties; ∆Kmr represents the mean stress intensity
interval; Y represents a geometric factor [38]; Smr is the mean stress interval of the random
response of the element [39]; ν′ is the rate of positive zero crossings; and a′ represents the
crack size.

An equivalent cyclic load is used to replace the random load in which their dynamic
properties are given as function of expected properties of the random process. After some
mathematical arrangements between Equations (10) and (11) the following is obtained:

a(t) =
∫ a f

a0

da(
Y
√

πa′
)m = CSm

mrv′t (12)

where a0 is the initial crack condition and a f represents the final crack condition after N cycles.
The failure cost, CFm |DI,∆t, involves the structural damage that is expressed in this

study in terms of a normalized damage index, DI, as follows [21]:

DI =
C0 − C(∆t)
C0 − D(∆t)

(13)

where C0 represents the structural capacity without damage; C(∆t) is the structural capacity
at a time instant ∆t, and D(∆t) represents the structural demand at instant ∆t. The concept
of demand exceedance rate, υD(d), is used to estimate the structural demand at the instant



J. Mar. Sci. Eng. 2023, 11, 1348 5 of 18

∆t. υD(d) indicates the number of times per year that the structural demand is exceeding.
Therefore, υD(d) is calculated as follows [40]:

υD(λd) =
∫ ∞

0
v(hmax)P(D ≥ λd|hmax)dhmax (14)

where v(hmax) is the derivative of the wave hazard rate; P(D ≥ λd|hmax) is the fragility for
a given maximum wave height hmax.

3. Cost-Benefit Evaluation

An optimal time instant helps decision-makers to program periodic actions to extend
the lifespan of the system, spending the minimum amount of money, and ensuring ser-
viceability conditions. Thus, Algorithm 1 outlines the process to calculate the optimal
time instant for maintenance and inspection works. The process begins by generating a
structural model of the offshore platform. Then, the critical joints and their hot spots are
identified. Considering operational sea states and storms, the crack size at each hot spot
is calculated. The joint capacity due to fatigue is decreased over time. Both the capacity
and the demand are estimated, considering structural deterioration due to fatigue over
time. Exceedance demand rates are calculated based on structural demand estimation.
The expected number of failures is estimated according to the information of structural
capacity and demand over time. The exceedance demand rates obtained are characterized
by a function with the aim of building n realizations of demand values and waiting times
between events. Based on n realizations, the time at which each demand per realization
appears is identified and associated with the following: (a) an exceedance of a detectable crack
growth threshold for the inspection cost, (b) an exceedance of a crack growth threshold at
which a repair action is suggested, and (c) a damage index, which is calculated to estimate the
failure cost. Then, the expected total cost is calculated. The obtained cost represents a cost that
is updated to present value. The update of the cost is performed by the factor exp[−γm(∆t)]
that is implicit in Equations (2)–(4). Thus, an economic scenario for decision making is given,
and the decision maker has elements for planning the inspection and repair time.

Algorithm 1 The pseudocode to estimate the optimal time instant

1. Begin
2. A structural model of the platform is generated
3. Critical joints are identified through nonlinear static analysis.
4. The crack size at each hot spot of each critical joint is estimated by

fatigue analysis over time.
5. Structural capacity, C, and structural demand, D, are estimated over time.
6. The expected number of failures is estimated.
7. Numerical demand exceedance rates are estimated
8. Number of simulations (n) are defined
9. Initialize counter i = 1
10. while i ≤ n do
11. The i-th realization of waiting times, δt, and demands is generated.
12. Initialize counters j = 1 and k = 1
13. Initialize ∆t = 0
14. while j ≤ number of simulated events do
15. ∆t = ∆t + δtj
16. The j-th damage index DIi,j is estimated
17. if k = 1
18. DIauxk=DIi,j
19. Initialize control variable c = 1
20. else
21. if DIi,j > DIauxk−1
22. DIauxk=DIi,j
23. Initialize control variable c = 1
24. else
25. Initialize control variable c = 0
26. end if
27. end if
28. if c == 1
29. Initialize counter l = 1
30. Initialize CIi,k = 0, CRi,k = 0 and CFi,k = 0
31. while l ≤ number of critical joints do
32. Initialize counter m = 1

33. while m ≤ number of hot spots of critical joint l do
34. Crack size, a, at each hot spot is estimated at time t
35. if a > 2mm
36. if m ≥ 2
37. Inspection cost CI|ql,m is estimated.
38. P(Dl,m(∆t) ≥ d) is evaluated.
39. Repair cost CR|qk,l,m is estimated.
40. Inspection cost CINS(0, ∆t)i,k = CIi,k + CI|ql,m is
calculated
41. Repair cost CREP(0, ∆t)i,k = CRi,k + CR|qk,l,m is
calculated
42. else
43. m = m + 1
44. end if
45. end if
46. end while
47. add one to the hot spots counter, (l)
48. end while
49. Costs associated with damage index, DIauxk , are calculated.
50. Failure costs CFAI(0, ∆t)i,k is estimated.
51. The expected total cost CFAI(0, ∆t)i,k is estimated
52. add one to the simulated events that cause damage counter, (k)
53. end if
54. add one to the simulated events counter, (j)
55. end while
56. add one to the realizations counter, (i)
57. end while
58. Mean of CINS(0, ∆t), CREP(0, ∆t) and CFAI(0, ∆t) are calculated
59. Mean optimal time instant is defined
60. end
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4. Illustrative Example

The optimal time instant based on a CB is estimated for an offshore jacket structure.
The system is situated at Ku zone in the Gulf of Mexico. The system is characterized by a
2D model that represents one of the interior frames of the platform. The structure is 76.66
m high, and it has 500 tons of weight at the deck (see Figure 2); the water depth is 70.1 m.
The model is structured with ASTM A36 steel tubular elements (see Table 1), and the lateral
shear strength of the piles inside the jacket legs is considered.
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51.空空空空 The expected total cost 𝐶̅ி஺ூ(0, ∆𝑡)௜,௞  is esti-

mated 
52.空空空空 add one to the simulated events that cause 

damage counter, (𝑘) 
53.空空空 end if 
54.空空空 add one to the simulated events counter, (𝑗) 
55.空空 end while 
56.空 add one to the realizations counter, (𝑖) 
57.空 end while 
58.空 Mean of  𝐶̅ூேௌ(0, ∆𝑡), 𝐶̅ோா௉(0, ∆𝑡) and 𝐶̅ி஺ூ(0, ∆𝑡) are 

calculated  
59.空 Mean optimal time instant is defined 
60.空 end 

4. Illustrative Example 
The optimal time instant based on a CB is estimated for an offshore jacket structure. 
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2D model that represents one of the interior frames of the platform. The structure is 76.66 
m high, and it has 500 tons of weight at the deck (see Figure 2); the water depth is 70.1 m. 
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Figure 2. Offshore fixed platform.

Table 1. Geometric properties.

Element ID Diameter (m) Thickness (m)

E23 and E32 5.08× 10−1 2.30× 10−2

E39; E40; E42; E43 and E44 6.10× 10−1 2.30× 10−2

E22; E24; E26; E27; E31; E33; E35; E36 and E37 6.10× 10−1 2.86× 10−2

E28; E29 6.60× 10−1 1.91× 10−2

E10; E11; E19 and E20 7.62× 10−1 1.91× 10−2

E04; E05; E06; E08; E09; E13; E14; E15; E17 and E18 7.62× 10−1 2.30× 10−2

E01 and E02 7.62× 10−1 2.86× 10−2

E03; E70; E12; E16; E21; E25; E30; E34; E38 and E41 1.46× 10−1 2.22× 10−2

4.1. Environmental Hazard

Environmental loads such as wind, wave, sea current and other factors contribute to
the progressive structural deterioration of marine structures. The characterization of each
environmental hazard using probability concepts is essential to estimate possible scenarios.
Therefore, the information on environmental loads related to wave, wind, and sea currents
is obtained from the PEMEX code [41] (see Figure 3).
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4.2. Fatigue Assessment

Fatigue is one of the principal phenomena that causes undesirable behavior in marine
structures because it produces cracks at different hot spots of each joint. It is important to
mention that each joint contributes differently to the overall capacity. For example, joints
located in the lower part of the system usually contribute more, while joints located in the
upper part of the system contribute less. It is possible to perform fatigue analysis for all
joints; however, the contribution of some of them is negligible. Based on the above, it is
assumed that fatigue analysis is carried out on those joints that contribute significantly to
the overall capacity (critical joints). Critical joints are selected based on their contribution
to the global capacity. The contribution is determined reducing the capacity of each joint;
then, the global capacity is estimated by nonlinear static analysis. According to the above,
the critical joints that provide the greatest capacity to the system are nodes 1 to 8. Two
hot spots are defined for each end of the tubular element connected to the critical joints.
The zone of hot spots presents both the maximum and the minimum stresses of each
structural element. Several nonlinear dynamic step-by-step analyses are performed in
the system to calculate the stresses of each hot spot using several simulated wave events
related to different return periods. On the other hand, it is assumed that sea conditions have
reached a fully developed state, which implies that wind has blown for a long period over a
considerable distance, which leads to an equilibrium sea state. The spectra commonly used
to describe fully developed sea states are the Jonswap [42], Pierson-Moskowitz [43], and
Bretschneider [44]. In the absence of robust wave height data in the Campeche Bay, some
authors have used the Pierson-Moskowitz spectrum to describe the frequency content of
the waves with reasonable results [45–47]. Thus, the Pierson-Moskowitz [43] spectrum is
used to describe the wave frequency content. It is assumed that a homogeneous Gaussian
stationary process can be followed to describe the sea surface elevation as a superposition
of regular waves considering phase angles between 0 and 2π. Monte Carlo simulation is
employed to calculate the crack size at each hot spot using Equation (12). A set of thirty
thousand simulations for crack growth in which the statistical moments become stable
were considered. It is considered that the arrival times between storms are exponentially
distributed [48]. Table 2 shows the statistical parameters obtained from offshore systems
situated in the Gulf of Mexico.
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Table 2. Statistical parameters utilized for simulating crack growth [49].

Parameter Mean Standard Deviation Distribution

a(t) According to the joint and time According to the joint and time Lognormal
Smr According to the joint and time According to the joint and time Rayleigh
a/c 0.25 - -
M * 3 0.3 Normal

InC * −40.39 −0.69067 Normal
a0 0.00011 - -

* Correlation coefficient = 0.9.

The distribution functions related to both crack growth and mean stress interval
are verified by means of the probability paper technique. Ref. [49] suggest that such
distributions depend on both the joint and the time. Figure 4a shows the probability plot
of the mean stress interval, Smr, at one end of element 1, in which the continuous line
represents the Rayleigh distribution function. Figure 4b shows the probability plot of the
crack size, a(t), at a hot spot of joint 1 for the time instant equal to 12 years. The continuous
line expresses the lognormal distribution function. It is noticed that data of both stress
interval and crack size acceptably fit their respective distribution function suggested in [49].
If the distribution functions used to characterize the crack size and mean stress interval are
not suitable, a bias in the estimation of the cost of inspection and repair can be estimated.
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Crack size at joints affects both the strength and the stiffness of the system. [50,51]
suggest reducing the original capacity of joints using a linear reduction factor. Then, the
reduced capacity of the cracked joint, Pc, is estimated as [50]:

Pc = Pk

(
1− Ac

A j

)
(15)

where Pk is the intact joint capacity; Ac is the cracking area of all elements connected to each
joint, and Aj corresponds to the intact joint area. Figure 5 shows the percentage of capacity
reduction of the critical joint 1 for a set of thirty thousand simulations in a continuous gray
line, while a continuous black line indicates the mean value of the reduction. It is observed
that the joint capacity reduction due to fatigue is about 41.97% after 20 years of the offshore
jacket installation.
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Figure 5. Reduction areas at joint 1.

4.3. Structural Capacity

The structural capacity is obtained through non-linear static analysis employing a set of
twenty lateral load profiles related to the return period of 1431 years [41]. The deterioration
of the structure is given by the capacity reduction at each critical joint due to crack size from
fatigue estimation. The median value of the global capacity due to cumulative damage
caused by fatigue is shown in Figure 6. It is considered that the structural capacity follows
a lognormal distribution function [28,30]. The global displacement at the deck is selected
as indicator of the structural capacity. It is noticed that time instant ∆t = 0 represents the
no damage condition of the system. The median values of the capacity show a reduction
between 0.254 and 0.19 m for a period of 0 to 20 years, which indicates a decrease of 25.19%
after 20 years after the system installation. Figure 6 shows the importance of considering
the effect of the accumulated damage because the reliability of a certain system is commonly
overestimated by assuming that the capacity remains constant over time. The median value
of capacity is fitted by Ĉ(∆t) = αT − βT∆t. Figure 7 shows the standard deviation of the
structural capacity over time. The values of the standard deviation are equal to 0.0302
at 0 years and 0.2478 at 20 years, indicating an increase of 820.52%, which is expected
because the system is exposed to a greater number of storms and operational waves as
time increases.
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4.4. Structural Demand

The structural demand is calculated by employing nonlinear dynamic analyses using
20 simulations of waves related to different wave heights. With the purpose of con-
sidering the identical state of deterioration of the system to evaluate both capacity and
demand at a given instant of time, it is feasible to use the capacity reductions obtained in
Section 4.2, in which the capacity of each critical joint is reduced due to fatigue. The
median value of structural demand, D̂, given a maximum wave height, hmax, at the
time instant, ∆t, is expressed by D̂(∆t) = (a + f ∆t)hb

max; the median values are fitted
as D̂(∆t) =

(
6.10× 10−6 + 3.00× 10−7∆t

)
h3.1

max. The standard deviation of the demand for
a maximum wave height is expressed as σlnD|hmax =

(
2.10× 10−3 + 2.80× 10−5∆t

)
h1.4

max.
Figure 8 shows the median values of the structural demand related to different wave
heights. It is observed that the demand values for wave heights less than 15 m are similar,
demonstrating that the system response is in its linear range. The median value of demand
for instants 0, 3, 6, 9, 12, 15, 18 and 20 years at hmax = 23 m are equal to 0.118, 0.134,
0.147, 0.162, 0.172, 0.193, 0.21 and 0.225 m, respectively. The above values indicate that the
structural demand considering the cumulative damage due to fatigue, presents increments
of 13.98%, 24.31%, 18.89%, 37.17%, 45.54%, 63.15%, 77.77% and 90.63% with respect to
intact conditions (∆t = 0). The above indicates that it is not suggested to omit structural
deterioration because reliability considering demand without deterioration is different
from reliability considering demand in an instant of time. Therefore, both the inspection
and maintenance times of the system result longer, which leads to wrong decisions.
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4.5. Expected Number of Failures

The expected number of failures, η(0, ∆t), are calculated using the statistical values
of structural capacity and demand obtained in Sections 4.3 and 4.4. The parameters k and
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r at hmax = 23 m are equal to 5.8× 103 and 5.2. The epistemic uncertainties related to
demand and capacity are equal to 0.15 [21]. Figure 9 shows the expected number of failures
over time indicating an increase up to a value of 0.0093 at ∆t = 20 years. The expected
number of failures associated to operational behavior (10 years) [41] is equal to 0.0027,
which represents an increment of 1507.8% with respect to the time ∆t = 1 year. Notable
differences are observed between 10 and 20 years, with an increase of 359.63%, which is
attributed to years of operational wave action and storm events that accelerate fatigue
damage, affecting the capacity of each critical joint.
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4.6. Demand Exceedance Rates

The demand exceedance rate expresses the number of times that a demand threshold
of interest is exceeded per year, and its inverse indicates the return period of the demand
threshold. The numerical exceedance demand rate is calculated using Equation (16) with
both the information of Section 4.4 and the wave hazard of Section 4.1. Figure 10 shows
different demand exceedance rates in terms of global displacement considering demand
thresholds, λd, with values of 0.01, 0.02 up to 0.23 m. Figure 10 shows that the operational
condition with a value of hmax equal to 8.7 m [41] is associated with a threshold value of
D̂ = λd = 0.034 (see Figure 8), which presents an exceedance rate equal to 0.4661. The
above implies that the structure could exceed the operational condition 2.15 years after the
system is built. Similar to the operational condition, the maximum wave height associated
to the design condition, hmax = 16.7 m, is equal to 0.08 m. Based on the above, the return
period of design condition is expected to be exceeded after 8.158 years. The ultimate
resistance condition is associated to hmax = 23 m [41] and a value of λd equal to 0.124 m at
∆t = 0 years, representing an exceedance rate equal to 0.0248 with a return period of being
exceeded of 40.32 years.
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where 𝜆ௗ଴ represents the calculated minimum demand value; 𝜆ௗ௠௔௫ corresponds to the 
maximum demand value estimated; 𝜉 and 𝜀 are parameters that fit the shape of 𝜐஽(𝑑). 
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Numerical demand exceedance rates can be fitted by the following expression [52]:

υD(d) =
(

λd
λd0

)−ξ( λdmax − λd
λdmax − λd0

)ε

(16)

where λd0 represents the calculated minimum demand value; λdmax corresponds to the
maximum demand value estimated; ξ and ε are parameters that fit the shape of υD(d).
The inverse transformation method [53], is used to simulate demand values; then, the
cumulative distribution function of υD(d) is equal to F(y) = 1− υD(d)/v0, v0 represents
the exceedance rate associated with the λd considered. In this case, λd equal to 0.01
corresponds to v0 = 0.8. On the other hand, it is assumed that the arrival of demands can
be described by a Poisson process; then, the waiting times of demands follow an exponential
distribution [54]. After some mathematical arrangements, the demand occurrence time
is Ti = −|ln(u)/v0|; where u represents random numbers [55]. Based on the above, two
thousand realizations of demand and waiting times are simulated. Figure 11 shows only
one realization.
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4.7. Optimal Time Instant

The optimal time instant for maintenance works is estimated by means of two thou-
sand realizations of both demand and waiting times. The inspection, repair and failure costs
are estimated per each simulated demand, whose arrival time matches the corresponding
damage due to fatigue obtained in Section 4.2. The inspection cost is assumed in case
that the probability of detecting a crack size of 2 mm [23] represents a secure event. If the
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crack size is detectable, the inspection cost per joint is equal to 3518 USD [56]. The visual
inspection with divers is considered. Divers descend to perform the visual inspection using
flashlights. The joint to be examined is recorded and photographed. Once the inspection
is completed, the divers analyze their notes, photos, and recordings to give an opinion.
The repair cost is applied at the time in which the conditional probability of the crack
size exceeds the threshold of 4 mm [57]. This study considers that repair action is by
welding with divers, and the cost of each hot spot equal to 20,000 USD [58]. Submarine
welding with divers is usually performed as follows: (a) the surface joint is cleaned, and
any coating or dirt is removed, (b) the area is sealed with bags or waterproof coatings,
along with submersible blankets or covers, and (c) anti-corrosion weld is applied with
special electrodes; either arc or pulsed welding technique can be used. If inspection and
repair of the joints is not performed properly, the reliability of the system is affected. The
inspection affects to a lesser degree because if no visible cracks are reported, the damage is
accumulated up to the next inspection. However, if the joint repair has not been performed
correctly, the assumption that the joint recovers its initial capacity is not satisfied. Then,
the reliability of the system decreases, and undesired behavior could occur before the next
inspection and maintenance work. The failure cost, CFm |ID,∆t, considers costs related to
indirect losses, deferred production, and equipment damage. The cost related to indirect
losses considers the consequences of the system presenting structural damage, impacting
directly on other sectors such as power, agriculture, minerals, gas, basic chemicals, textile,
tires and petrochemicals, among others, as follows:

CPID = CFT

(
Pm

Pt

)
DI4 (17)

where CFT is the cost of a loss related to the damaged system with a value equal to
1.086× 1010 USD; Pm is the production of oil barrels per day, equal to 184,000 [41], and Pt
corresponds to the total oil extracted per day in the Bay of Campeche with a value equal to
2,100,000 barrels [41].

The cost of pollution considers the volume of the oil spill over sea due to structural
damage of the system as follows:

CPOD =
COR·SA·E f

1,000,000
(18)

where COR is the cost of oil recovery, equal to 541.57 USD per hour considering an efficiency,
E f , of 0.81 h/km2 [59], and SA represents the affected area [59] as follows:

SA = 0.04∆wPmDI4U4 + 2.27
(

∆wPmDI4
) 2

3 t
1
2 (19)

where ∆w is the difference of densities between water and oil equal to 0.06341; t represents
the time of oil spill with a value of 2400 s and U is equal to 30 m/s.

Deferred production cost is estimated as follows [60]:

CDPC = 365
∫ DL

t
CCPmUCexp [−γm(τ − t)]dτ − 365

∫ DL+TRP

t
CCPmUCexp [−γm(τ − t)]dτ (20)

where DL is equal to 30 years [28]; CC is the price of crude oil, equal to 92 USD/barrel;
UC represents the economic benefit of selling, equal to 12%; TRP is the time to recover the
product, with a value of four years. The annual discount rate, γm, is equal to 6% [21].

The equipment damage cost relates the structural damage in terms of DI to the cost of
equipment as follows:

CEQD = DI·CEQPT (21)

where CEQPT is the cost of the drilling equipment, with a value of 130,000,000 USD [61].
Equation (1) can be evaluated using expected or simulated values. The variables that

influence the simulation of the expected total cost are crack size, demand and capacity
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on the system. Crack size is involved in (a) the inspection quality, q, for the inspection
cost and (b) the probability that a certain crack size in the j-th element at ∆t exceeds a
given threshold, P

(
Dj,m(∆t) ≥ d

)
, in case of repair cost. Demand and capacity modify

the expected number of failures, ηF(0, ∆t), that are found in the cost of inspection, repair,
and failure. The lognormal probability distribution function is used to simulate the crack
size, a(t), and the statistical parameters of crack size depend on the joint and the time
instant of interest, as shown in Table 2. Structural demand is simulated based on the
considerations described in Section 4.6, in which demand and waiting times are simulated
(see Figure 11). Based on the arrival time of each demand, the capacity is simulated with the
help of the statistical values shown in Figures 6 and 7. The damage index, DI, is calculated
over time using the simulated values of demand and capacity. Figure 12a,b show the
damage index and an example of crack size at one hot spot of joint 1 over time for two
thousand simulations.
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Figure 12. (a) Damage index and (b) crack size simulation.

Using Equation (1) and the procedure described in Section 3, Figure 13 shows the
inspection, repair, failure, and expected total cost. Each cost of the inspection is shown
with a gray dotted line, the repair cost in a dashed and dotted gray line, the failure cost
in a dashed gray line, and the expected total cost in a continuous gray line. The mean
values of each cost are shown with the same type of line in black color. Figure 13 shows
that inspection and repair costs present a greater dispersion for shorter periods, while
the failure cost shows dispersion in greater time intervals. Such behaviors are due to the
following: (1) for intervals between 1 and 3 years, the inspection quality influences the
decision of whether to perform inspection actions or not, due to the probability of detecting
a certain value of crack size; (2) for periods of time smaller than four years, the crack size
defines the conditional probability related to maintenance; after four years of time interval,
the conditional probability tends to be an event with a certain probability value; then, the
repair costs are activated until they result in certain to occur event, in which the cost of
repairing all critical joints becomes constant as time increases; (3) the failure cost presents
low dispersion values due to both time intervals less than 6 years with low probability that
a high value of demand occurs and low values of the expected number of failures, η(0, ∆t).
Nevertheless, as the time interval increases, both η(0, ∆t) and the probability of occurrence
of a high demand value increase, resulting in different failure cost values. Moreover, a
reduction of inspection and repair costs is observed as the instant of time increases, while
the failure costs increase with longer time instants. The minimum mean value of the
expected total cost (continuous black line) results in a value of 6 years, indicating the
optimal time instant for maintenance works in the system. Table 3 shows the expected
mean values of inspection, repair, failure, and total cost at different time instants. It is
observed that the cost of inspection and repair increase for short time instants due to higher
number of interventions that are necessary during the lifetime of the system. The cost of
failure is not influenced by short time instants because the expected number of failures
results in a low value. However, as the time interval increases, the value of the expected
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number of failures increases, which directly affects the cost of failure. In the literature,
there are proposals for maintenance plans in which the optimal time instant is estimated in
18 years [62], 10 years [63] and 5 years [64]. Although the proposed approaches consider
different assumptions and the systems are located at different sites, the time instants for
inspection and maintenance actions are consistent with the time instant found in this work.
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Table 3. Expected mean costs at different time instants.

Time Instant
(Years)

Inspection Cost
×106 USD

Repair Cost
×106 USD

Failure Cost
×106 USD

Expected Total Cost
×106 USD

1 0.38 3.48 0.00 3.87
3 0.13 3.31 0.05 3.50
6 0.06 2.13 0.45 2.64
9 0.05 1.75 1.52 3.32
12 0.04 1.35 3.64 5.03

5. Conclusions

A probabilistic approach to calculate the optimal time instant for maintenance works
considering the structural damage due to fatigue over time was proposed. The optimal time
instant is estimated in accordance with a CB, in which different costs, such as inspection,
repair, and failure, are considered. The system reliability is defined in terms of the expected
number of failures. The approach can be applied to any type of offshore system and can be
changed for its use in other structural systems under different environmental conditions.

The approach is illustrated with an offshore jacket structure. The calculated cost of
failure without inspection and maintenance actions in 30 years is equal to 31.74 × 106 USD.
If inspection and maintenance actions are performed at the optimal time instant of 6 years,
five interventions in 30 years are required, with a total cost of 13.20 × 106 USD, which
represents a reduction of 58.4%, compared to the cited failure cost. The optimal time instant
is related to an expected number of failures equal to 0.0014, while at ∆t = 20 years the
value is 0.0093, which represents an increase of 84.94%. The exceedance demand rate
associated with the operational condition (8.7 m of wave height) is equal to 0.034, and
its inverse indicates that such condition is expected to be exceeded 29.41 years after the
jacket installation, which suggests that the optimal time instant is appropriate, and does not
compromise the performance of the system. The above is valid for similar system topology,
wave loads, and sites.

The approach helps decision-making and risk management to maintain the system at
acceptable reliability levels and minimum costs, which help to extend the lifespan of the
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system. On the other hand, the approach requires solving a hypergeometric function, which
makes it impractical for structural engineers, and requires considerable computational time
to obtain the optimal time instant. The approach can be improved to consider multiple
offshore platforms to find a common minimum cost, which would help to reduce costs at
the offshore oil complex. The proposed approach can be compared with other techniques
such as multiobjective optimization to identify areas for improvement. In addition, climate
change can be included in the optimization problem to improve the characterization of
the physical problem. The above represents a challenge because it requires several studies
on the increase of sea level, and occurrences and intensity of hurricanes, among other
aspects that affect the performance of the system. Then, maintenance time instants could
be reduced.
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