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Abstract: In complex marine environments, underwater images often suffer from color distortion,
blur, and poor visibility. Existing underwater image enhancement methods predominantly rely on
the U-net structure, which assigns the same weight to different resolution information. However,
this approach lacks the ability to extract sufficient detailed information, resulting in problems such
as blurred details and color distortion. We propose a two-branch underwater image enhancement
method with an optimized original resolution information strategy to address this limitation. Our
method comprises a feature enhancement subnetwork (FEnet) and an original resolution subnetwork
(ORSnet). FEnet extracts multi-resolution information and utilizes an adaptive feature selection
module to enhance global features in different dimensions. The enhanced features are then fed into
ORSnet as complementary features, which extract local enhancement features at the original image
scale to achieve semantically consistent and visually superior enhancement effects. Experimental
results on the UIEB dataset demonstrate that our method achieves the best performance compared
to the state-of-the-art methods. Furthermore, through comprehensive application testing, we have
validated the superiority of our proposed method in feature extraction and enhancement compared
to other end-to-end underwater image enhancement methods.

Keywords: underwater image enhancement; adaptive feature selection; two-branch network; original
resolution information enhancement

1. Introduction

The quality of underwater images is significantly diminished by light absorption, and
scattering [1], such as color distortion and contrast decrease. For ocean engineering [2], and
underwater archaeology, acquiring high-vision underwater images is crucial [3].

Many techniques based on image enhancement, image restoration, and deep learning
have been thoroughly investigated to enhance the visual effects of single underwater
images. Image pixel values are directly processed using enhancement approaches [4,5]
to improve particular image qualities, such as color, contrast, and brightness. Image
quality enhancement is treated as an inverse problem using physical imaging models and
prior restrictions in image restoration-based approaches [6,7]. Deep learning has recently
achieved exceptional performance [8–10] and image processing [11–14] benefits from the
robust modeling capabilities of neural networks and the rich feature information extracted
from enormous amounts of training images. Many deep learning-based techniques [15–17]
are designed to draw vital information for improving the visual performance of underwater
images.
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At present, the underwater image enhancement methods with better performance
mostly use the U-net structure as the main framework, and the U-net structure gives the
same weight to the multi-resolution information, ignoring the importance of the original
resolution, but the image enhancement largely relies on the representation of original
resolution pixels, which prompts us to propose a multi-resolution information enhancement
network (MIEN), which contains a feature enhancement subnetwork (based on Unet)
and an original resolution subnetwork. The feature enhancement subnetwork branch
comprehensively uses the characteristics of the Unet structure to focus the network on
multi-resolution features and extract the features of different objects in different scenes.
FEnet facilitates subsequent image recovery. The original resolution subnetwork does not
have any downsampling operations and pays more attention to the dependencies between
pixels to promote detail enhancement. Compared with other enhancement methods, we
not only consider the global information of different scales when performing feature
enhancement but also pay attention to the detailed information of the original size, which
makes the enhanced image better visual effects and provides better help for subsequent
work such as object recognition. The main contributions are as follows:

(1) To enhance the extraction ability of detailed information, we design an original
resolution subnetwork (ORSnet) to extract scene detail information at the original resolution
without any up-sampling and down-sampling, to retain the scene detail feature information
at the original resolution to the greatest extent.

(2) Our proposed adaptive feature selection module (AFSM) can extract the global
information of underwater images from different scales and allow the network to process
different information. We introduced adaptive coefficients to promote AFSM effectively
fuse remote context information.

(3) To better solve the problem of image blurring, we developed the Semantic Feature
Reconstruction Module (SFRM), which uses different convolutions to obtain semantic
feature information, and then reconstructs the semantic features of the image through the
fusion mechanism to make the visual effect of the image closer to the ground reality.

The remainder of the paper is structured as follows: Section II thoroughly analyzes
learning-based and conventional UIE techniques. The proposed MIEN is then thoroughly
introduced in Section III. In Section IV, we examined several novel methods on various
datasets and ran ablation experiments, and application tests to test the capability of the
MIEN. Section V is where we wrap up our discussion and make recommendations for
further work.

We will demonstrate how our method outperforms existing techniques in terms of
enhancing underwater images. We will provide quantitative metrics such as image quality
assessment scores and subjective evaluations to support our claims. By showcasing the
superior performance of our method, we will illustrate the need for an improved approach.

2. Related works

Many UIE techniques, which can be generally separated into traditional methods [18–35]
and deep learning techniques [2,36–46], have recently been presented to address blurring
and color cast.

2.1. Traditional Underwater Image Enhancement Methods

At that time, visual enhancement of underwater images was mostly achieved by
modifying the RGB space pixel values. The blue channel, which predominates in underwa-
ter images, was stretched toward the lower level following the Rayleigh distribution by
Ghani and Isa [18], whereas the inferior red channel was stretched toward the higher level.
These techniques provide results that look brilliant, but they are prone to overexposure
issues. Additionally, it is unable to effectively resolve the precise content and suspended
materials [18]. As we all know, refraction and absorption lead to deteriorated underwater
image quality. Underwater restoration techniques frequently employ the Jaffe-McGlamery
model [19]. Numerous researchers developed several transmission estimating techniques
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based on Jaffe-McGlamery and inversely achieved the reconstructed findings. To opti-
mize the visual contrast, Liu and Chau [20], developed a loss function based on quadtree
subdivision and found the ideal transmission map. A technique for underwater dehaz-
ing was suggested by Li et al. [21], which included a global underwater light estimating
algorithm and a regression model-based medium transmission estimate algorithm. An
adaptive attenuation-curve prior, created by Wang et al. [22] and based on the statistical
distribution of pixel values, is a non-local prior. To lessen the effects of water interference,
Xie et al. [23] included a forward scattering component in the formulation model together
with the normalized total variation and sparse previous information.

But there is a crucial distinction between the scattering model and the deteriorated
undersea appearance that cannot be overlooked. The complexity of underwater imaging is
increased by its optical characteristics. Other widely used conventional techniques take
advantage of the statistical patterns in the unique look of underwater images. In [24]
it is initially suggested to use a dark channel before disclosing the statistics of outside
images. To accomplish visual enhancement, Chiang and Chen [25] enhanced the dark
channel and coupled the wavelength-dependent compensatory techniques. After that,
by examining the applicability of the absorption in underwater images, Drews et al. [26]
created the underwater dark channel. Before anticipating a more reliable transmission,
Liang et al. [27] introduced the underwater dark channel. Before underwater image restora-
tion, Peng et al. [28] proposed the generalized dark channel and included an adaptive color
correction in the construction.

Moreover, Carlevaris-Bianco et al. [29] suggested a straightforward prior that estimates
the transmission using the stark differences in attenuation across the RGB color channels
in water. Ref. [29] discovered that the red wavelength attenuates more quickly than the
green and blue ones. A red channel technique that restores the color connected to the
short wavelength was created by Galdran et al. [30]. Li et al. [31,47] developed a unique
histogram distribution prior based on the minimal information loss assumption. To rectify
the image color, Akkaynak and Treibitz [32] included the depth information and altered
the underwater image creation.

Although the usual model-based approaches mentioned above have some influence
on solving the color cast problem, traditional underwater image enhancement methods are
only helpful for a particular kind of underwater image because of the influence of lighting.
Additionally, because of the fixed formations and models, image restoration approaches
are challenged by the exact assessment of the degradation concerns.

2.2. Learning-Based Underwater Image Enhancement Methods

Deep learning has advanced significantly in a lot of low-level vision missions. A
growing number of researchers are beginning to apply it to the enhancement of underwater
images [36]. Researchers have put much effort into developing novel sample generation
techniques, more efficient learning techniques, and network topologies in recent years.

Because image transfer techniques have succeeded, Fabbri et al. [37] suggested using
CycleGAN [38] to create synthetic underwater images. Then, GAN-based deep models
are extensively investigated, including FGAN [39], DenseGAN [40], MLFcGAN [41], and
FUnIE-GAN [42]. A real-world underwater image enhancement benchmark (UIEB), made
up of 890 paired real-world underwater images, was later created by Li et al. [45]. According
to the subject’s preferred visual style, the associated enhancement references are manually
chosen among enhancement candidates. The reference-based performance evaluation [48]
and the investigation of deep learning-based techniques for UIE [2,43] both benefited
considerably from the work of UIEB.

Researchers also looked at novel learning techniques and network topologies to make
the most of the few highly visual underwater images available. Li et al. [45] proposed the
WaterNet gated fusion network with the UIEB dataset, which fuses the inputs with three
projected confidence maps to provide an improved result. When Qi et al. [44] introduced
correlation feature matching units to transmit the mutual correlation of the two input
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branches, [44] suggested the Underwater Image Co-Enhancement Network (UICoE-Net).
Li et al. [43] proposed learning rich feature information from various color spaces and
attention weights through transmission maps. As a result, [43] designed the Ucolor encoder-
decoder enhancement network.

Combined with the characteristics of underwater imaging, Wu et al. [49] proposed a
novel two-stage underwater image convolutional neural network (CNN) based on structure
decomposition (UWCNN-SD), the first stage is designed to design a preliminary enhance-
ment network containing high-frequency and low-frequency enhancement networks to
achieve the initial enhancement of underwater images, and the second stage proposes a
refined network to further optimize the color of underwater images to obtain underwa-
ter images with higher visual quality. Ding et al. [50] proposed an efficient dual-stream
method to improve the quality of underwater images, in which a significant area refine-
ment algorithm is designed to solve the problem of chromatic aberration of the image,
and a global appearance adjustment algorithm is designed to improve the clarity of the
image and obtain a clearer enhanced image. Yan et al. [51] proposed an attention-guided
dynamic multi-branching neural network (ADMNNet) to acquire high-quality underwater
images, in which attention-guided dynamic multi-branching blocks are used to combine
attributes under different RF into a single-stream structure to improve the diversity of
feature representations. Fu et al. [52] proposed a two-branch network to compensate for
global distortion and local contrast reduction, respectively. The use of a global-local net-
work greatly simplifies the learning problem, allowing a lightweight network architecture
to be used to process underwater images. Lin et al. [53] proposed a new two-stage network
for underwater images, which divides the recovery process into two stages, horizontal and
vertical distortion recovery, so that the network can effectively solve the scattering and
absorption problems. In the first phase, they propose a model-based network that embeds
underwater physical models directly into the network to deal with horizontal distortion. In
the second stage, they propose a new Attenuation Coefficient Priority Attention Block (AC-
PAB) to adaptively recalibrate the RGB channel feature map of images affected by vertical
distortion. Yu et al. [54] proposed a new multi-attention path aggregation network (APAN),
which uses a path aggregation network structure with a backbone network and bottom-up
path extension features to enhance semantic features, enhance feature extraction capabil-
ities, and improve the visual effect of underwater images. As the existing underwater
image enhancement methods primarily rely on the U-net structure, which emphasizes the
extraction of global information, it often results in the loss of image details. To address this
limitation, we propose a multi-resolution information enhancement network that enhances
features at various resolutions, with particular emphasis on the original resolution. This
approach aims to mitigate the loss of image detail information.

3. Proposed Method

The proposed MIEN is divided into two branches: the feature enhancement sub-
network and the original resolution subnetwork. The feature enhancement subnetwork
focuses on the drawing of global information, AFSM is used to enhance the extraction of
global features of underwater images to solve the problem of color casting. To emphasize
the preservation of detailed information, we devised the original resolution subnetwork,
which focuses on retaining the feature details of the original resolution layer in underwater
images. As a result, our MIEN can produce excellent results for image recovery. The MIEN
frame is shown in Figure 1.
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Figure 1. The structure of MIEN. MIEN contains two branches, the upper branch is the feature
enhancement subnetwork for extracting features of different resolutions, and the lower branch is the
original resolution subnetwork for extracting local information.

3.1. Feature Enhancement Subnetwork

We develop a feature enhancement subnetwork (FEnet) based on the Unet structure,
which focuses on multi-resolution features. In FEnet, we propose the adaptive feature se-
lection module to extract the various scenes in the underwater image and extract the global
features in the low-resolution. As a result, FEnet can obtain better feature representation
for high-quality image reproduction.

Adaptive Feature Selection Module

The enhancing feature selection module, the adaptive channel selection module,
and the adaptive spatial selection module make up the adaptive feature selection mod-
ule(AFSM). These three branches work together to extract global information and provide
our network the capacity to handle various information kinds in various ways. Addi-
tionally, we can tackle the issue of information overload and enhance the effectiveness
and precision of task processing by incorporating an adjustable coefficient to force AFSM
to concentrate on the essential information of the present task among the various input
information. Thus, for high-quality image restoration, our AFSN obtains improved feature
representations. The module framework is shown in Figure 2.

(1) ASSM
The UIE task relies heavily on context relationships in space, so to further enhance

the spatial information of features, we introduce ASSM. Additionally, we incorporate an
adaptive parameter (α) in the ASSM to dynamically adjust the weighting of the entire
ASSM branch. The initial value of α is set to 0, and its optimal value is gradually learned
during the training process. By incorporating this adaptive parameter, our AFSN effectively
integrates long-range spatial contextual information, thus enhancing its learning capacity.

First, we compress channel features with convolutional layers and use Softmax to
obtain spatial attention weights:

ωs
j =

exp
(

As
j

)
∑N

m=1 exp(As
m)

, (1)

where N = H ×W is the number of pixels. As
j represented squeeze channel-wise, j

represents the j-th pixel. The input features are reshaped into RHW×1×1 after a convolution,
and then softmax to generate spatial attention weights ωS

j ∈ RHW×1×1. The ωS
j is then

multiplied by the input features to generate spatial long-range contextual features DS ∈
RC×1×1.
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Figure 2. The overall architecture of AFSM. The AFSM is divided into three branches: ASSM, ACSM,
and EFSM.

Attention weights and raw characteristics are multiplied in a matrix to acquire infor-
mation about the distant spatial context:

Ds =
N

∑
j=1

ωs
j Bs

j , (2)

where we reshape an input X ∈ RC×H×W to obtain Bs ∈ RC×HW , Ds ∈ RC×1×1 represents
spatial features.

Finally, α is used for feature transformation and feature fusion. As in Formula (3):

OutASSM =

(
αWs2(Ws1

N

∑
j=1

exp(WkXj)

∑N
m=1 exp(WkXm)

Xj)

×1
2
[1 + er f (Ws1

N

∑
j=1

exp(WkXj)

∑N
m=1 exp(WkXm)

Xj

/
√

2)]

)
,

(3)

where Ws1 stands for a 1× 1 convolutional layer, Ws2 represents a GeLU activation layer, and
a 1× 1 convolutional layer, α for an adaptive learning weight, Wk represents a convolutional
layer to squeeze channel-wise features: As = WkX, As ∈ R1×H×W , and OutASSM ∈ RC×1×1

represents the output of ASSM.
(2) ACSM
The underwater image color recovery task relies heavily on the context relationship

in the channel, so to further enhance the channel information of the feature, we introduce
ACSM. Besides, We also have introduced an adaptive parameter(β) in ACSM to adjust
the result weighting of the entire branch of ACSM, the initial value of β is set to 0, and
the optimal value is gradually learned. AFSM efficiently fuses long-range channel-wise
contextual data owing to its adaptive learning weight.
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First, the spatial features are compressed with average pooling, and the channel
attention weights are obtained using Softmax. As in Equation (4):

ωc
j =

exp
(

Ac
j

)
∑c

m=1 exp(Ac
m)

, (4)

where C is the number of channels, Ac
j indicates squeeze spatial-wise, j represents the

j-th pixel, c represents the channel dimension, ωc represents the channel-wise attention
weights.

Attention weights and raw characteristics are multiplied in a matrix to generate remote
channel context data. similar to Formula (5):

Dc =
c

∑
j=1

ωc
j Bc

j , (5)

where we reshape an input X ∈ RC×H×W to obtain Bc ∈ RC×HW , Ds ∈ RC×1×1 indicates
channel features.

Finally, we introduce an adaptive weight for feature transformation and feature fusion.
As in Formula (6):

OutACSM =

(
βWc2(Wc1

N

∑
j=1

exp(PoolavgXj)

∑c
m=1 exp(PoolavgXm)

Xj)

×1
2
[1 + er f (Wc1

N

∑
j=1

exp(PoolavgXj)

∑c
m=1 exp(PoolavgXm)

Xj

/
√

2)]

)
,

(6)

where Wc1 represents a 3× 3 convolutional layer, Wc2 represents one GeLU activation layer
and one 3× 3 convolutional layer, β represents an adaptive learning weight, OutACSM ∈
R1×H×W represents the output of ACSM.

(3) EFSM
To enhance the global information of the image, we introduce EFSM to aggregate

them with the other two branches to ensure that the main information of the input image is
retained while obtaining the context features of space and channel.

The main features are first extracted using convolutional layers, and the weights of
the extracted features are obtained using Sigmoid. As in Formula (7):

ωP
j =

P

∑
j=1

σWp2(Wp1(Xj ×
1
2
[1 + er f (Xj

/√
2)]), (7)

where X ∈ RC×H×W indicates the input, P = C × H ×W is the number of pixels. Wp1
represents one GeLU activation layer and one 3× 3 convolutional layer, Wp2 represents
a 3× 3 convolutional layer, σ represents a Sigmoid activation layer, ωP

j represents the
detailed features weights.

Finally, the corresponding element point multiplication operation is performed be-
tween the weight and original feature to get the global feature. As in Formula (8):

OutEFSM =
P

∑
j=1

ω
p
j Bp

j , (8)

where B ∈ RC×H×W , OutPSM ∈ RC×H×W represents the output of EFSM.
By combining the three branches of the ASSM, ACSM, and EFSM, our proposed

method achieves a more comprehensive enhancement of both global and local information.
This enables the FEnet to effectively process different types of features, ensuring that the
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network prioritizes the extraction of global information while addressing the color bias
issue in images. AFSM can be formulated as follows:

OutAFSM = OutASSM + OutACSM + OutEFSM. (9)

3.2. Original Resolution Subnetwork

Most of the existing methods [40,41,43] adopted the Unet architecture to extract image
information of different resolutions of images through downsampling, but underwater
enhanced images strongly rely on the features of the original resolution space, and Unet-
based methods process the original resolution image features and low-resolution features
to the same extent. According to the characteristics of image enhancement, we have added
an original resolution branch based on the Unet-based method, which can directly process
the original resolution image, and better preserve the details and features, avoiding the
loss of detail features resulting in reducing the resolution. To keep the feature resolution
fixed, ORSnet does not use any upsampling or downsampling operations, so that the
network can retain spatial details to the greatest extent. It is composed of Semantic Feature
Reconstruction Groups (SFRG).

Semantic Feature Reconstruction Module

The SFRG comprises a Semantic Feature Reconstruction Module (SFRM) and AFSM,
under the premise of unchanged original resolution, retaining the global feature information
from the input map to the output map to generate high-resolution underwater images. We
introduce the multi-scale structure, which can solve the problem of loss of detail features
caused by a single convolution. The module frame structure is shown in Figure 3.

Firstly, 3 × 3 and 5 × 5 convolution kernels are used to extract essential features,
respectively. Such as formula (10), where k ∈ {3, 5}.

Fc =
N

∑
j=1

Wk(Xj ×
1
2
[1 + er f (Xj

/√
2)]), (10)

where X ∈ RC×H×W indicates the input, Wk represents one GeLU activation layer, and one
k× k convolutional layer.

Figure 3. The overall architecture of the Semantic Feature Reconstruction Module. We use 3× 3 and
5× 5 to obtain different ranges of sensory fields, and then enhance the features by obtaining weights.

The generated feature map is convoluted to achieve fusing features:

G f = W3(cat(F3, F5)), (11)

where W3 represents one GeLU activation layer and one 3× 3 convolutional layer, F3, F5
represent the characteristic map convolved by a convolution kernel of 3× 3 and 5× 5,
respectively. The cat denotes a concatenate operation.

Extract features from the fused feature and utilize Sigmoid to obtain the weights of
important features:

ω f = σ(W3(G f ×
1
2
[1 + er f (G f

/√
2)])), (12)

where σ indicates the Sigmoid, ω f represents the weight of extracted features.
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Finally, the point multiplication operation is performed between the weights and the
original features to preserve the global feature information:

OutSFRM =
N

∑
j=1

ωN
j BN

j , (13)

where N is the number of pixels, and OutSFRM represents the output of SFRM. Input the
feature map generated by SFRM into the AFSM module and output the feature map.

3.3. Loss Function

Underwater images suffer from limitations such as low brightness, image blurring,
and color deviation. Previous approaches to underwater image enhancement that rely
solely on a single loss function may not yield satisfactory results in image restoration. We
comprehensively consider the absolute error loss L1 and the minimization of the perceived
loss Lp, and the loss function suitable for underwater images is designed. L2 loss is often
used in previous image recovery tasks, but its flaws can overly penalize more significant
errors and reduce the quality of image recovery. We use the minimization of total error
losses. It is defined as follows:

LI1 = ‖Iout − Ilabel‖1, (14)

where Iout and Ilabel represent enhanced images and labeled images from UIEB, respectively.
L1 loss calculates absolute values by comparing them pixel by pixel.

Another loss is perception loss, which compares the features obtained from the en-
hanced image with those obtained from the original image, bringing high-level information
closer. Referential perceived loss helps improve the performance of our network, resulting
in images with better visual effects. The perceived loss defined on a pre-trained VGG-19
network on ImageNet can be expressed as:

LP =
1

H∗W

H

∑
i=1

W

∑
j=1

[
ϕ(Iout)i,j − ϕ(Ilabel)i,j

]2
, (15)

where the feature map of the pool-3 layers of a VGG-19 network trained on ImageNet is
represented by ϕ(). The height and width of the feature map are denoted by H and W.

The total loss function is as follows:

Lt = λ1LI1 + λ2LP, (16)

where λ1 and λ2 are hyperparameters set empirically to 1 and 0.2, respectively.

4. Experiments and Analysis
4.1. Preparation
4.1.1. Data

In contrast to other computer vision applications, obtaining clear underwater images
is complicated since the small amount of publically available data. The training data set
was only just suggested in UIEB [45]. It includes 890 image pairings that include both
distorted and ground-truth underwater images. The remaining 90 images are utilized for
validation after we randomly choose 800 image pairings to use as the training set.

4.1.2. Training Settings

Our method trains 500 epochs using batch learning techniques during training. There
are 8 batches in each. The network is optimized using AdamW, and the learning rate is set
at 0.0001. The training images have a resolution of 256× 256× 3. The UIEB validation [45],
UIEB_test60, MABLs [55], UFO120 [56], EUVP [42] and the U45 [57] were chosen for testing
throughout the testing phase.
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4.1.3. Methods for Comparison

We investigated seven comparison techniques on UIEB, including IBLA [58], SMBL [55],
GDCP [28], HLRP [59], Ucolor [43], and WaterNet [45], to confirm the improvements and
outcomes obtained by our method. For the deep learning-based comparison method, we
retrained using a partitioned dataset.

4.2. Evaluation of Underwater Images
4.2.1. Objective Evaluation Metrics

We use the non-reference underwater image quality measure (UIQM) [60], CCF [61],
naturalness image quality evaluator (NIQE) [62], contrast enhancement image quality
(CEIQ) [63], Shannon (SH), mean-square error (MSE), feature similarity index measure
(FSIM) [64], peak signal-to-noise-ratio (PSNR) [65], and structural similarity (SSIM) [66] to
evaluate the underwater image quality quantitatively. This CCF is a feature-weighted com-
bination of the colorfulness index, contrast index, and fog density index, which are used to
predict the color loss caused by absorption, the blurring caused by forward scattering, and
the foggy caused by backward scattering. In addition, for CCF we also removed the color
component. The MSE is a measure that reflects the degree of difference between an estima-
tor and an estimated amount. The FSIM uses feature similarity for quality evaluation. The
PSNR calculates the average error between the input and output based on error-sensitive
image quality evaluation. The three components of an image—illumination, contrast, and
structure—are often assessed using the SSIM. The underwater image colorfulness measure
(UICM) [60], underwater image sharpness measure (UISM) [60], and underwater image
contrast measure (UIConM) [60] are the three underwater image attribute measures that
make up the UIQM. The UIQM formula is as follows:

UIQM = c1 ×UICM + c2 ×UISM + c3 ×UIConM, (17)

where c1, c2 and c3 are the coefficients. We set their values to: c1 = 0.0282, c2 =0.2953, and
c3 = 3.5753.

4.2.2. Underwater Image Evaluation of Different Scenarios

The proposed method is tested using actual underwater images with three color
deviations. Figure 4 displays a few subjective sample outcomes from various techniques. In
Figure 4b, the IBLA enhances contrast but is unable to enhance the yellow- and green-toned
underwater images. GDCP introduces reddish or greenish hues based on the findings
in Figure 4c. In Figure 4d, the improvement produced by WaterNet was darker than the
outcomes of other techniques, indicating poor visual contrast. This may also result in
color bias as the WaterNet approach creates a white balance channel, which is sometimes
inaccurate for enhancing images. The estimated transmission map is dependent on the
information from the red channel, thus while SMBL considerably improves the yellow-
toned images, it fails to work with images that have high red channel attenuation, as seen
in Figure 4e. Ucolor employs a multi-color spatial encoder to enable enhanced image colors
to be more authentic, however, as the subjective results image shows, Ucolor does not solve
the problem of blurred edges. From a color-correction standpoint, Ucolor’s enhancing
outcomes produce greater visual quality. The enhanced image is closer to GT and has
outstanding aesthetic effects when using the HLRP approach in blue-green situations, but
in green scenarios, the improved image’s color darkens and makes it difficult to detect finer
details, as illustrated in Figure 4g. The explanation might be that these physical model-
based methods require a precise prior model, which is very challenging to get. In contrast,
our approach efficiently eliminates the greenish, blue, and bluish-green tones without
adding any artificial colors. This result demonstrates the effectiveness of the proposed
approach in generalizing across various underwater scenarios. Additionally, the technique
suggested in this paper may eliminate the majority of the haze-like effects and raise the
clarity of the features in the image.



J. Mar. Sci. Eng. 2023, 11, 1285 11 of 21

Haze-like underwater images are more impacted by effects, which are brought on by
different wavelength attenuation, than underwater images with distinct color deviations.
As seen in Figure 5, these contrast methods are not very effective in dehazing, and some
methods can even cause overexposure problems. Contrarily, our technique successfully
enhances the visibility of underwater images by removing haze while restoring true color.

Figure 4. Results of qualitative comparison of 90 random images in UIEB. The contrast methods are
(a) Raw, (b) IBLA [58], (c) GDCP [28], (d) WaterNet [45], (e) SMBL [55], (f) Ucolor [43], (g) HLRP [59],
(h) Ours, (i) Ground-Truth.

Figure 5. Comparisons of results on the haze-like dataset. At the bottom of this image are the scores
for PSNR and SSIM.

In Figure 6, we can see that GDCP and HLRP still exhibit color casts and water
retention when processing images, and GDCP methods are overexposed. The enhanced
image of the IBLA method will have a reddish cast, which will affect the visual effect. The
image enhanced by the SMBL method appears overly shadowed, resulting in some blurred
details. The WaterNet and Ucolor methods enhance the visual effect of the image, and our
method can achieve this effect.
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Figure 6. Visual comparisons on images. (a) represents the original image from UIEB_test, (b–h)
showcases the results obtained by IBLA [58], GDCP [28], WaterNet [45], SMBL [55], Ucolor [43],
HLRP [59], and our proposed method, respectively.

Figure 7 shows a subjective comparison of our method with the comparative method
on the UFO120 dataset. In Figure 7, IBLA, GDCP, and HLRP all over-enhance during image
enhancement, making the image shadow too heavy, resulting in unclear image edges. The
image enhancement results of the WaterNet method in the third row of Figure 7 still retain
some water effects. Ucolor visualizes better than other methods but still causes some fog
effects, resulting in blurry images that are not sharp enough. Our method, both in terms of
eliminating the effects of water and color recovery, is superior to other methods, and our
method does not cause other post-enhancement effects.

Figure 7. Visual comparisons on images. (a) represents the original image from UFO120, (b–h)
showcases the results obtained by IBLA [58], GDCP [28], WaterNet [45], SMBL [55], Ucolor [43],
HLRP [59], and our proposed method, respectively.

In Figure 8, we compared it in the MABLS dataset, and compared to other methods,
we eliminated the water effect when processing, making the image closer to the GT effect
and sharper than other methods.
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Figure 8. Visual comparisons on images. (a) represents the original image from MABLs, (b–h)
showcases the results obtained by IBLA [58], GDCP [28], WaterNet [45], SMBL [55], Ucolor [43],
HLRP [59], and our proposed method, respectively.

In Figure 9, the IBLA and Ucolor methods are better preserved during the enhancement
process but do not eliminate the influence of water, which directly affects the visual effect.
The GDCP method causes a blue-green color cast during the enhancement process, and
excessive enhancement leads to the loss of some detailed information. The SMBL method
enhances images with overexposure and loss of detail, while WaterNet and our method
solve these problems very well and have good visual effects.

We assessed the proposed strategy using both full-reference and non-reference ob-
jective metrics in our objective tests. As shown in Table 1, our technique performed well
in terms of PSNR and SSIM measures, but the UIQM indicators showed only moderate
performance. As discussed in Table 1, the objective indicators currently being developed
for underwater images sometimes conflict with visual perception. This is because human
vision has not evolved to match the conditions of aquatic environments. Using human
visual perception as the sole method for color-correction of underwater images can be
entirely unreliable since when people view an underwater image, humans tend to focus on
the center of the scene or anything that appears vivid or interesting. Although this approach
may work well for images with good aesthetic appeal, it does not consider attenuation and
backscattering. Furthermore, Table 1 demonstrates that our strategy is more advantageous
than the alternatives. In previous studies on underwater image enhancement, our proposed
approach, which enhances contrast and corrects color casts in underwater images, showed
competitive performance.
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Figure 9. Visual comparisons on images. (a) represents the original image from U45 and EUVP,
(b–h) showcases the results obtained by IBLA [58], GDCP [28], WaterNet [45], SMBL [55], Ucolor [43],
HLRP [59], and our proposed method, respectively.

Table 1. Objective comparison of different enhancement techniques. Red in the table denotes best
performance, blue denotes inferior performance.

Dataset Method IBLA GDCP WaterNet SMBL Ucolor HLRP Ours

UIEB_val

PSNR 17.9884 13.3856 17.3488 16.5970 20.9615 16.4516 23.1424
SSIM 0.8048 0.7474 0.8132 0.7950 0.8635 0.6720 0.9119
MSE 0.0891 0.2281 0.1445 0.1601 0.0972 0.1650 0.0729
FSIM 0.9326 0.8988 0.9185 0.9229 0.9395 0.8464 0.9556
CEIQ 3.2835 3.2076 3.1008 3.3067 3.2090 3.2763 3.3734
UIQM 2.4900 2.6697 2.9165 2.5430 3.0495 2.1772 2.9566

Average 4.2350 3.4468 4.1589 4.0008 4.8210 3.8764 5.2112

UIEB_test
CEIQ 3.1802 3.1207 2.9826 3.1425 3.0533 2.7885 3.1624
UIQM 1.8344 2.1100 2.3986 1.9039 2.4813 1.9850 2.5254

Average 2.5073 2.6154 2.6906 2.5232 2.7673 2.3868 2.8439

U45
CEIQ 3.2491 3.1914 3.1863 3.2491 3.2826 3.2986 3.3178
UIQM 2.3877 2.2750 2.9570 2.3877 3.1481 2.7960 2.9153

Average 2.8184 2.7332 3.0717 2.8184 3.2154 3.0473 3.1166

In addition, we chose Ucolor, the method with the highest UIQM among the compari-
son methods, and subjectively compared it with our method. It can be seen in Figure 10,
although our method is inferior to Ucolor in terms of UIQM indicators, our visuals are
superior to the Ucolor method.
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Figure 10. In the UIEB dataset, Ucolor is subjectively compared with our method.

4.3. Ablation Experiments

In Table 2, we perform ablation research using the following experiments to better
manifest the function of enhancement models in the MIEN architecture:

1. MIEN removes AFSM operation (w/o AFSM);
2. MIEN removes SFRM operation (w/o SFRM);
3. MIEN deleted FEnet operation (w/o FEnet);
4. MIEN deleted ORSnet operation (w/o ORSnet).
The scores of PSNR, SSIM, MSE, FEIM, CEIQ, and UIQM when removing different

modules are given in Table 2. It can be found that the quantitative results are significantly
reduced by removing different components, while MIEN has the best performance and
quantitative results.

Table 2. Qualitative comparison of the different components of the proposed method. The bold font
indicates the best.

Metric w/o FEnet w/o ORSnet w/o AFSM w/o SFRM Ours

PSNR 20.7856 21.2991 22.8955 23.0597 23.1424
SSIM 0.8582 0.8711 0.9066 0.9037 0.9119
MSE 0.1025 0.0963 0.1141 0.1138 0.0729
FSIM 0.8912 0.8943 0.9465 0.9480 0.9556
CEIQ 3.2510 3.3271 3.3097 3.3540 3.3734
UIQM 2.8512 2.9375 2.9009 2.9148 2.9566

Average 4.7558 4.8721 5.1409 5.1777 5.2112

Inside AFSM, we did w/o ASSM, w/o ACSM, w/o EFSM, and w/o α, β corresponding
ablation experiments to prove the effectiveness of the AFSM module. Table 3 demonstrates
how we configured w/o ASSM to exclusively remove ASSM and the associated option α.
Similarly, we create w/o ACSM, which solely removes ACSM and the associated option β.
We created the w/o EFSM option, which eliminates EFSM. As evidence of the efficacy of
the ACSM, ASSM, and EFSM, the relevant indicators of AFSM, w/o ASSM, w/o ACSM,
and w/o EFSM all decreased. The adaptive learning weights α and β are then removed
using the proposal w/o α, β. The correlation of indicators for adaptive learning weights
w/o α, β is also reduced when compared to AFSM, demonstrating their efficiency. As a
result of a few more settings, our AFSM significantly improves image restoration.

Inside SFRM, we set w/o 3× 3, w/o 5× 5, w/o one layer multiscale, w/o two layers
multiscale, and w/o AFSM corresponding ablation experiments to prove the effectiveness
of the AFSM module. We configured w/o 3× 3, which removes the 3× 3 convolution in
the multiscale part, as shown in Table 4. Similar to this, we created the w/o 5× 5 algorithm.
We came up with w/o two layers of multiscale, which removes the multiscale part. The
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relevant indicators of w/o 3 × 3, w/o 5 × 5, w/o one layer multiscale, and w/o two
layers multiscale all decreased when compared to the SFRM, demonstrating the efficiency
of the multiscale section. In addition, we suggest the deletion of the Adaptive Feature
Selection Module, abbreviated as w/o AFSM. The fact that w/o AFSM has fewer than the
corresponding indicators of SFRM shows how effective the Adaptive Feature Selection
Module is. In conclusion, our SFRM significantly improves image color restoration.

Table 3. Ablation study in AFSM. The bold font indicates the best.

Metric w/o
ASSM

w/o
ACSM

w/o
EFSM

w/o
SAM

w/o
CAM

w/o
α

w/o
β

w/o
α, β

Ours

PSNR 22.4899 22.5163 22.6754 23.0010 21.9513 22.0468 22.8911 22.8080 23.0597
SSIM 0.8794 0.8990 0.8987 0.8115 0.9010 0.8905 0.8872 0.9024 0.9037
MSE 0.1257 0.1191 0.1209 0.1300 0.1257 0.1180 0.1140 0.1148 0.1138
FSIM 0.9169 0.9254 0.9447 0.9351 0.9194 0.9267 0.9099 0.9418 0.9480
CEIQ 2.9867 2.9987 3.1182 3.0081 2.9971 3.1007 3.2016 3.2004 3.3540
UIQM 2.8927 2.9001 2.8871 2.8775 2.9068 2.9111 2.9081 2.9051 2.9148

Average 5.0067 5.0201 5.0672 5.0839 4.9250 4.6411 5.1140 5.1072 5.1777

Table 4. Ablation study in SFRM. The bold font indicates the best.

Metric w/o 3 × 3 w/o 5 × 5 w/o OLMS w/o TLMS w/o AFSM Ours

PSNR 22.8857 22.6449 21.9864 22.3551 22.0011 22.8955
SSIM 0.9030 0.9022 0.8816 0.8927 0.8993 0.9066
MSE 0.1187 0.1253 0.1307 0.1220 0.1146 0.1141
FSIM 0.9305 0.9129 0.9317 0.9188 0.9092 0.9465
CEIQ 3.2774 3.2835 3.0943 3.1742 3.1904 3.3097
UIQM 2.6421 2.3569 2.9004 2.8928 2.8803 2.9009

Average 5.0867 4.9959 4.9440 5.0186 4.9610 5.1409

We contrasted the suggested enhancement framework and the two enhancement mod-
ules using actual underwater images. Figure 11 displays the outcomes of the comparison.
The underwater image improved by the Adaptive Feature Selection Module retains some
detailed information when the original resolution subnetwork is removed, and only Unet
containing the Adaptive Feature Selection Module is used, as shown in Figure 11.

Figure 11. Comparison of ablation experimental results of different components. The yellow and red
boxes in the figure correspond to the enlarged image below the image, respectively.
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The image has normal colors, but the image background still has some underwater
color styles. Underwater images enhanced by the Semantic Feature Reconstruction Module
showed greater contrast and clarity when the Adaptive Feature Selection Module was
disabled, and just the Original Resolution subnetwork was employed.

Nonetheless, as seen in Figure 11, the image still has some hazy effects in addition
to a distinct underwater color pattern. Our technique makes use of the Adaptive Feature
Selection Module for image color correction and the original resolution subnetwork for
texture detail restoration. This significantly raises the caliber of underwater images.

4.4. Application Test

The edge of the image is the essential feature of the image, and the so-called edge
refers to the discontinuity of the local characteristics of the image. Mutations in information,
such as grayscale or structure are called edges. For example, mutations in grayscale, color
mutations, texture structures, etc. An edge is the end of one area, and the beginning of
another, and the feature can be used to extract features and segment the image. To show
that our method works well in feature extraction, we compare edge detection with different
technologies, as shown in Figure 12. In Figure 12, it is clear that our method can depict
the outline and details of the objects in the figure in greater detail than other comparison
methods and is closer to the ground truth. MIEN-enhanced images can recognize the
contour and feature information of the target, which manifests that MIEN has demonstrated
superior performance in feature extraction.

Figure 12. Plot of results of edge detection on UIEB. From left to right are (a) Raw, (b) IBLA [58], (c)
GDCP [28], (d) WaterNet [45], (e) SMBL [55], (f) Ucolor [43], (g) HLRP [59], (h) Ours.

We measured the number of essential feature matches from the underwater image
and the output image by MIEN. The algorithm we use is Scale Invariant Feature Transform
(SIFT), that is, the description vector of the same local features is the same under different-
size images. In Figure 13, we can see that the enhanced image group has significantly more
critical feature-matching points than the original image group, which can prove that MIEN
can make the enhanced image acquire more detailed information.



J. Mar. Sci. Eng. 2023, 11, 1285 18 of 21

Figure 13. Significance detection of the result of feature matching. The first line is the feature-
matching result of the original image group, and the second line is the feature-matching result of the
enhanced image group.

5. Conclusions

In this paper, we present the multi-resolution information enhancement network
(MIEN) for UIE. Our proposed MIEN uses two-branch to enhance the global and local
information of underwater images, especially the design of the original resolution subnet-
work, which specifically solves the problem of insufficient attention to original resolution
information in the Unet structure. Compared to the current network architectures, MIEN
extracts more scale-specific information, and global and low-level data are combined on
each scale. Many tests are carried out, and quantitative and qualitative comparisons with
cutting-edge methods are undertaken, demonstrating that our design delivers considerable
gains. At the same time, how to effectively solve the trade-off problem in intensity value
and detail, enhance image details while eliminating the overexposure problem of enhanced
images, optimize our methods more accurately, and produce clearer images is the direction
of our future development. Our approach might also be investigated for other computer
vision subjects like segmentation and salient object recognition, as feature aggregation is
crucial for solving computer vision problems using deep learning.

Future research should focus on addressing the limitations of paired datasets and the
scarcity of reliable ground truth in underwater image enhancement. Innovative methods
need to be developed to generate realistic and effective ground truth data specifically tai-
lored for the underwater domain. This will improve the training and evaluation of models,
leading to more accurate and reliable performance in underwater imaging applications.

6. Discussion

We evaluated the performance of our proposed MIEN in classical underwater image
datasets, using both referenced and unreferenced metrics to verify that our approach
outperforms other advanced methods. In future work, we will focus on optimizing the run
time of our approach and improving the accuracy of the enhancement effect.
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The following abbreviations are used in this manuscript:

UIE Underwater Image Enhancement
FEnet Feature Enhancement Subnetwork
ORSnet Original Restoration Subnetwork
MIEN Multi-resolution Information Enhancement Network
AFSM Adaptive Feature Selection Module
ASSM Adaptive Spatial Selection Module
ACSM Adaptive Channel Selection Module
EFSM Enhancing Feature Selection Module
SFRG Semantic Feature Reconstruction Group
SFRM Semantic Feature Reconstruction Module
UIQM Underwater Image Quality Measure
NIQE Naturalness Image Quality Evaluator
CEIQ Contrast Enhancement Image Quality
MSE Mean-square Error
FSIM Feature Similarity Index Measure
PSNR Peak Signal-to-noise-ratio
SSIM Structural Similarity
UICM Underwater Image Colorfulness Measure
UISM Underwater Image Sharpness Measure
UIConM Underwater Image Contrast Measure
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