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Abstract: This article discusses the Brazilian maritime authority’s efforts to monitor and control
vessels in specific maritime areas using data from the naval traffic control system. Anomalies in
vessel locations can signal security threats or illegal activities, such as drug trafficking and illegal
fishing. A reliable Maritime Domain Awareness (MDA) is necessary to reduce such occurrences.
This study proposes a data-driven framework, CV-MDA, which uses computer vision to enhance
MDA. The approach integrates vessel records and camera images to create an annotated dataset for
a Convolutional Neural Network (CNN) model. This solution supports detecting, classifying, and
identifying small vessels without trackers or that have deliberately shut down their tracking systems
in order to engage in illegal activities. Improving MDA could enhance maritime security, including
identifying warships invading territorial waters and preventing illegal activities.

Keywords: maritime domain awareness; data integration; computer vision

1. Introduction

The Maritime Domain Awareness (MDA) concept and solutions were reformulated
after the 9/11 terrorist attacks [1]. The MDA concept can be described as understanding
the elements, mainly vessels and other assets, in a given region.

The expansion of the MDA is necessary for maritime authorities to monitor and control
the strategic planning of maritime traffic and to support naval actions. These actions are
mainly related to safety, security, and economic activities such as oil extraction, fishing, and
freight transport.

Several solutions can be related to MDA activities. In summary, the main activities of
trajectory analysis used to increase the MDA are vessel density [2], waterway, maritime
waypoint [3], maritime route extraction [4], anomalous vessel detection [5], vessel collision
avoidance [6], and others. In almost all solutions, vessel data is the central resource.
Furthermore, the challenges found in extracting data knowledge lead to the use of multiple
data sources to reach the maritime domain. Handling the challenges encountered in
acquiring data knowledge and using multiple data sources is crucial for obtaining better
insights [7,8].

In recent years, the maritime authority has faced several MDA challenges related to
the knowledge and intelligence needed for maritime security [9]. Increasing automatic,
self-reported, and computational vision data leads to a data-driven solution that increases
maritime knowledge and provides intelligent solutions. Furthermore, many countries
have proposed specific MDA frameworks to improve the MDA, such as Greece [10],
Canada [8], and the Philippines [11]. On the other hand, the literature presents exhaustive
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and unreliable MDA solutions using generic methods, such as movement extraction, data
aggregation, data analysis, computer vision, and deep learning, through automatic or
synthetic data [12].

In 2021, the United States and Brazil signed a cooperation agreement to best bid for
addressing regional and global threats. The maritime domain threats can be hitched to
various scenarios, such as drug trafficking, illegal fishing, piracy, oil spills, and illegal
immigration [13–15]. Bad actors can also falsify AIS messages to cover illegal activities [16].

This research identifies several challenges related to the absence, veracity, and com-
pleteness of the navigation records in monitoring and controlling the activities of vessels in
territorial waters. Detection and classification of ships in MDA are crucial, but it requires
data integration to feed the Convolutional Neural Network (CNN). The absence of veracity
and data completeness in monitoring and controlling the activities of vessels in territorial
waters, and an interest in regional cooperation and interoperability presented in this new
scenario, motivated this work [17,18]. Our research contributes to the advancement of the
field and helps push the boundaries of knowledge and foster innovation.

The objectives of this work are related to the creation of datasets of vessel images using
navigation records from various data sources. The aim is to increase data labeling integrity
and accuracy while supporting the development of neural network models for vessel
detection solutions. Additionally, we cover different approaches, methods, technologies,
and definitions presented in the literature related to this work. Therefore, this work aims at
creating a navigation dataset and vessel records through the integration of heterogeneous
data sources, the formation of an automated structure for the annotation of identified
objects through the integration with navigation and vessel records, and the creation of
a data-driven model for the classification of vessels that are present in Brazilian inland
waters using a solution based on computer vision.

2. Vessel Detection Issues

The vessel-detection problem refers to identifying and locating maritime vessels
in large bodies of water using various remote sensing techniques. This problem has
gained increasing attention in recent years due to the growing importance of maritime
transportation and the need for effective surveillance and monitoring of sea traffic. Various
methods have been developed to address this problem, including satellite imagery, radar
systems, and acoustic sensors. However, vessel detection remains a complex task due to
factors such as adverse weather conditions, vessel size and speed, clutter, and other sources
of interference. Advances in computer vision are helping to improve the accuracy and
efficiency of vessel detection systems, but this remains an ongoing area of research and
development.

Figures 1 and 2 present images captured from the Tactical Image Console with
Augmented Reality (Console de Imagens Táticas com Realidade Aumentada—CITRA).
CITRA [19] is a system developed by the Brazilian Navy that allows an operator to visualize
real images captured by a video surveillance camera combined with synthetic elements
from sensors in the maritime Command and Control systems, using Augmented Reality
techniques. In this visualization, CITRA combines the real images from the connected cam-
eras with metadata obtained from a Command and Control system, functioning as a video
situational awareness module. However, CITRA has limitations related to inconsistent
data between the live feed from the camera and the vessel’s last known position in the
Command and Control system.
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In Figure 1, we highlight the limitation of a vessel that appears in the camera and is
missing in the command and control system. In contrast, in Figure 2, we highlight a record
in the command and control system representing an absent vessel—probably due to the
latency of the positioning update. Therefore, this work proposes key steps for creating a
data-driven framework to support increasing MDA detection and classification of vessel
types using a computer vision-based solution, detecting and reducing these inconsistencies.

3. Maritime Domain Awareness (MDA)
3.1. Data Integration in MDA

Information on the behavior of vessels is the main situational element maritime
authorities use to increase domain awareness. Several data sources provide the vessels’
movement records, including records from Automatic Identification Systems and other
sources, such as Long-Range Identification and Tracking (LRIT) [20]. In general, movement
records are self-reported by vessels or automatically identified using satellites. Maritime
data integration aims to consolidate vessels’ movement data and information [21]. The
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importance of integrating data sources to increase the MDA is represented in the works of
Bannister and Neyland [7] and Battistello et al. [8].

Consolidating movement and vessel data involves multiple data-processing activi-
ties [22]. The main activities are data collection and movement records associated with the
various vessel identifiers, organization, temporal alignment, and data smoothing [23].

The heterogeneous data from multiple sources can provide a more complete picture
of vessel movements and a better understanding of their behavior. A more complete
understanding of vessel trajectory can overcome errors in vessel movement records, such
as data loss, self-information error, malfunctioning radar systems, and problems that can
occur while processing the data from these maritime traffic systems [24].

Developing heterogeneous data is geared towards developing domain, situation, and
impact analysis strategies. Integrating and combining different maritime data sources
create an efficient system of responding to the various data sources [11]. Table 1 presents
the data sources in the Brazilian Maritime Area.

Table 1. Data sources in the Brazilian Maritime Area.

Data Source Description Sensor Type Privacy

AIS Automatic Identification System used for short-range coastal
monitoring on ships Terrestrial Public

SISTRAM Information Systems on Maritime Traffic in Brazil Information System Private
SIMMAP Maritime Monitoring System to support oil-related activities Terrestrial Private

LRIT Long-Range Global Monitoring System Satellite Public
PREPS Program for Tracking Fishing Vessels via Satellite Satellite Private

VRMTC (TRMN) Virtual Regional Maritime Traffic Terrestrial Private
MSSIS The Maritime Safety and Security Information System Terrestrial Private

PRENAV
Program for Tracking Vessels operating in navigations regulated by

the National Waterway Transport Agency (Agência Nacional de
Transportes Aquaviários—ANTAQ)

Satellite Private

CRTAMAS Regional Traffic Center for the South Atlantic area (Brazil,
Argentina, Uruguay, and Paraguay) Terrestrial Public

MILITARES Brazilian Navy Ships Radio Private

ORBCOMM Orbcomm’s second and third generation of satellite constellation,
operating in Low Earth Orbit Satellite Private

Tietê-Paraná AIS Tietê-Paraná for navegable rivers. Terrestrial Public

We aim to use computer vision on the CITRA camera view, which extracts potential
vessels in the field of view. Then, the detected vessels are combined with the suitable data
source (listed in Table 1) to increase the MDA.

3.2. Computer Vision in MDA

Computer vision appears as a solution to support human visual tasks to interpret and
understand the maritime domain using Deep Learning Neural Network (DNN) models.
The DNN models accurately identify and classify objects [12,25]. Yet, the DNN solutions
have been used in several MDA challenges, including detecting and classifying vessel types
using synthetic or real-world images.

A specific type of DNN, the Convolutional Neural Network, has revolutionized the
art of object detection and recognition, achieving faster and more accurate results [26].

CNN uses far fewer weights in our deep network, allowing for significantly faster
training. One of the most accurate, fast, and precise CNN available is the state-of-the-art
framework You Only Look Once (YOLO) [27]. The YOLO meets the requirements in some
proposal works (Redmon et al. [28] and Redmon and Farhadi [29]) as real-time processing
and is robust to changes in lighting in images and, in non-synthetic images, keeping a
simple neural network, using a single GPU with a smaller mini-batch size to train a model.
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The literature presents other object detection algorithm ancestors and alternatives
of the YOLO framework, such as Histogram of Oriented Gradients (HOG) [30], Fast R-
CNN [31], Faster R-CNN [32], Single Shot Detector (SSD) [33], and RetinaNet [34].

CNN can adopt an approach based on transfer learning [35]. It starts with a pre-trained
model for generic feature detection, usually using a generic dataset such as the Microsoft
Common Objects in Context (MS COCO) [36]. The model is specialized with a fine-tuning
strategy using a data-driven perspective.

4. The MDA Problem in Brazil

In Brazil, the need to monitor vessels and assets in territorial water such as the Blue
Amazon (Amazônia Azul), shown in Figure 3, has also motivated the development of novel
and specific solutions intended to increase the MDA [37]. In Figure 3, the lighter blue region
represents Brazil’s Exclusive Economic Zone of 200 nautical miles. In contrast, the darker
blue represents Brazil’s proposal to the UN, which extends the zone to the Continental
Shelf, up to 350 nautical miles [38].
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Monitoring territorial waters is necessary for efficient maritime policymaking. Mar-
itime policymaking encompasses military and economic actions related to national se-
curity [37]. The maritime authority expresses great concern regarding incidents related
to foreign vessel intrusions, drug trafficking, protected biological areas, oil spills, search
and rescue operations, and illegal fishing. These situations highlight the importance of
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implementing effective monitoring protocols within the maritime domain. Tracking vessel
activities across various maritime zones is crucial to protect marine environments.

Bunholi et al. [39] explained Brazil’s biological importance in summarizing its data
collection system for all of its fisheries. In Brazil, more information is needed for the
expansion of policies and actions in order to inspect illegal fishing activities, where the
current lack of data makes it difficult to control the maritime domain better [40].

From a Brazilian maritime perspective, the security environment in the South At-
lantic focuses on threats such as piracy, drug trafficking, and other forms of transnational
crime [41,42]. In the military domain, the disclosure of information regarding maritime
security is subject to restrictions and limitations due to the classified nature of military
information. However, the intrusion of foreign entities into territorial waters remains a
constant concern for maritime authorities [43].

5. CV-MDA: A Computer Vision-Based Framework to Improve Maritime
Domain Awareness

This section proposes three layers in an architectural framework for broad MDA,
called CV-MDA, presented in detail in Figure 4. The Data Acquisition Layer conducts
a unique vessel identification parameter and the vessel’s motion image data acquisition.
The Integration Layer establishes the vessel movement dataset, and the Detection and
Classification Layer proposes a fine-tuned transferred learning approach to a detection and
classification solution. The following subsections describe the tools chosen for developing
the framework.
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5.1. Data Acquisition Layer

This work used traffic open data sources from Brazilian Maritime Traffic and tracked
image data from Console Tactical Images. A heterogeneous data source can adopt specific
vessel identification parameters in such sensor systems. We conducted a study with
25,618,290 navigation records from eight data sources in a 60-day horizon in order to
understand and establish a unique vessel identification parameter.

The three main identifiers used for vessel identification are International Maritime
Organization Number (IMO) [40], International Radio Call Sign (IRIN) [44], and Mari-
time Mobile Service Identity (MMSI) [45]. In our data, several vessels had more than one
identifier, as shown in Figure 5. However, 82.6% had all three identifiers. Furthermore, we
associated them in order to obtain a unique vessel identification.
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We collected images of the Brazil vessel registry and integrated them using the new
vessel identification to provide some ground truth input to our object-annotated dataset.
We also developed a specific tool to capture the vessel images from the maritime area,
presented in Figure 6. The main objective was to capture and store real-world vessel images
in a specific Brazilian area to build a dataset and train our CNN model.
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We were able to use a data augmentation solution to improve our object-annotated
dataset. Data augmentation is a strategy that enables slight variations to improve the
diversity and volume of the image dataset [46].

5.2. Data Integration Layer Based on Computer-Vision

In this section, we propose correlating vessel registry, movement data, and real mar-
itime images to label a training dataset to build a fine-tuned CNN approach model to
detect and classify vessels and support a wide MDA. The proposed model—shown in
Figure 7—provides a maritime data integration solution to build an automatically an-
notated Brazilian vessel dataset. Once the images were captured, we applied different
computer vision approaches for enhancing the detection and pre-classification of vessels
on the sea. We proposed using YOLO in the current implementation with an open-source
CNN framework architecture called Darknet.
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After submitting the images to the model, the pre-trained CNN returned an object’s
detection boundary box properties (location) and a class (boat) confidence result in a found
object, as presented in Figure 8.
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On the other hand, we correlated the movement data sources (self-automatic and
automatic) with vessel registries. We created stay points corresponding with the move-
ment spatial coordinates and built a boundary box around them. Therefore, vessel type
information was associated with delimited boxes.

Both boundary boxes, from image and movement data, were used to create an an-
notated dataset. We compared the bounding boxes in a specific time window using an
Intersection over Union (IoU) approach to label the images with vessel type from a move-
ment data source. The IoU model is shown in Figure 9.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 15 
 

 

Both boundary boxes, from image and movement data, were used to create an anno-
tated dataset. We compared the bounding boxes in a specific time window using an Inter-
section over Union (IoU) approach to label the images with vessel type from a movement 
data source. The IoU model is shown in Figure 9. 

An IOU threshold determined a correspondence between the boundary boxes to cre-
ate an annotated image with vessel type. The flow of successful correspondent boundary 
boxes of a specific vessel was used to build a sequenced ground truth vessel labeled da-
taset in the Brazilian area. As a result, the accuracy of the combination could provide ve-
racity and completeness to vessel label images. This data was used as an input source for 
a fine-tuned CNN approach to discovering and classifying vessel data in the next step. 

This section may be divided by subheadings. It should provide a concise and precise 
description of the experimental results, their interpretation, and the experimental conclu-
sions that we can draw. 

 
Figure 9. IoU Boundary Boxes. 

5.3. Detection and Classification Layer 
In this subsection, we propose transfer learning by using a fine-tuning strategy, 

shown in Figure 10. We chose this strategy to improve CNN generalization and speciali-
zation to build a fully connected layer to classify the object (vessel). 

 
Figure 10. CNN Transfer Learning by Fine-tuning Approach. 

Figure 9. IoU Boundary Boxes.

An IOU threshold determined a correspondence between the boundary boxes to create
an annotated image with vessel type. The flow of successful correspondent boundary boxes
of a specific vessel was used to build a sequenced ground truth vessel labeled dataset in
the Brazilian area. As a result, the accuracy of the combination could provide veracity and
completeness to vessel label images. This data was used as an input source for a fine-tuned
CNN approach to discovering and classifying vessel data in the next step.

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that we can draw.

5.3. Detection and Classification Layer

In this subsection, we propose transfer learning by using a fine-tuning strategy, shown
in Figure 10. We chose this strategy to improve CNN generalization and specialization to
build a fully connected layer to classify the object (vessel).

A generalization in transfer learning implies that we are taking the generic feature
learned from a pre-trained network and applying it to another similar network. In the
initial phase, we addressed this approach choice using image data consisting of patterns,
common inputs, and generic feature detections. On the other hand, specialization referred
to a fine-tuning phase to specialize the detection and obtain specific features.

In transfer learning, we used a pre-trained CNN to acquire low-level features. We
could also use the CNN YOLOv5 with a trained vessel MS COCO dataset to obtain the
basics proprieties (such as color, patterns, shapes, and edges), results of detection, and
classification tasks. Next, in fine-tuning, we froze these low-level trains on the MS COCO
and only retrained the high-level features with our labeled dataset. Finally, we replaced the
classification layer with our vessel type classes.
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We were able to measure the model’s performance using a mean Average Precision
(mAP) metric. A threshold determined if the object detection and classification task was
valid or not and was used to evaluate the performance of an object detection model. After
all stages, we started the final classification step for enhancing the real-time captured
images into a CNN.

6. Experiment

To showcase the outcomes of our framework, we conducted a straightforward ex-
periment. Firstly, we employed vessel registry images and a pre-trained model to detect
and outline the boat class within these images, as shown in Figure 8. Subsequently, we
integrated the outlined images with the corresponding navigation records, incorporating
the spatial coordinates and timestamps as parameters. This process is depicted in Figure 11,
showcasing the integration.

Performing this integration, as demonstrated in Figure 12, we successfully assigned
specific classes to the objects. Utilizing the model derived from annotated images using
navigation records, we obtained images from a camera and subjected them to the vessel
detection model. The labels “Ship1, . . . , ShipN” represent the identified vessel types. Upon
examining the image, it becomes evident that the proposed model cannot detect certain
vessels, while others may be misclassified.

Figure 13 presents an instance illustrating the process of automatic annotation used
for labeling vessel classes. Some vessels could not be visually detected, resulting in their
exclusion from the labeling process due to insufficient data sources. The colors assigned to
the classes represent the various data sources employed to label each vessel. A challenge
arises when attempting to detect vessels lacking sensor data, hindering the automatic
annotation process.

We can address these limitations by incorporating a crowdsourcing layer into the CV-
MDA framework. This additional layer aims to evaluate the detection results and assist in
annotating the classes of objects that lack vessel records and, therefore, cannot be annotated
based on navigation records, such as small vessels. By introducing crowdsourcing, it
becomes possible to gather collective insights and annotations, improving the accuracy and
completeness of the vessel classification process.
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Using multiple integrated navigation data sources for automatically annotating ves-
sel images in the Brazilian maritime region is a novelty and a significant contribution to
the field. Combining navigation data from different sensors and navigation identifiers
allows for more precise and efficient automatic annotation of vessel images. This automatic
annotation surpasses the manual or semi-automatic approach commonly found in the
literature, where human experts annotate. Automating the annotation process reduces the
dependency on manual annotations, which can be time-consuming and prone to errors.
Additionally, integrating multiple sources of navigation data provides a more comprehen-
sive view of maritime activities in the region, enabling a more accurate understanding of
the context and navigation patterns.

Our approach also considers the reality in the Brazilian maritime context, which is a
relevant contribution. Each maritime region has its specific characteristics and challenges,
and adapting the solution to the local needs and particularities is crucial for obtaining
more effective results. Integrating sensor data, such as AIS, radar data, and other relevant
sources, allows for obtaining more comprehensive and reliable information about vessels in
the Brazilian maritime region. This data integration has many practical applications, such
as maritime traffic monitoring, border control, maritime security, and strategic planning.
The automatic annotation approach for vessel images, combining navigation data from
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multiple sources, represents a significant advancement compared to previous works focus-
ing on manual or semi-automatic annotation. Our approach can provide higher efficiency,
scalability, and accuracy in the detection and annotation of vessels.
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7. Final Remarks

In conclusion, the Brazilian maritime authority relies on vessel monitoring and con-
trol activities to detect anomalies in the maritime domain, which could signify potential
security risks or illegal activities such as drug trafficking and illegal fishing. This issue is
particularly pressing in the Blue Amazon. In response, we have proposed a novel solution
for Maritime Domain Awareness (MDA) based on computer vision. The maritime authority
has deemed our technique efficient and valuable for detecting and classifying vessel types,
thus supporting a comprehensive MDA.

This work has presented a solution to enhance Maritime Domain Awareness (MDA)
by developing a framework for creating datasets of vessel images using navigation records
from various data sources. Creating datasets is an important step in increasing the com-
pleteness and accuracy of data labeling. The proposed approach strengthens the capability
to develop models applied in neural network solutions for vessel detection. Navigation
records as the foundation for labeling make obtaining precise and comprehensive infor-
mation about vessel types and movements possible. This precise information improves
the efficiency of detection models, provides a solid foundation for decision-making, and
enhances maritime domain awareness. By integrating diverse data sources, a more com-
prehensive and reliable understanding of the maritime scenario can be achieved, aiding in
detecting anomalies, preventing illegal activities, and ensuring the security and surveillance
of territorial waters. We have focused on computer vision applied to near-shore camera
data. However, we can extend the framework with a few adaptations to real-time satellite
images to achieve similar results in a larger area.

Moreover, we can adapt the proposed approach for monitoring other objects, sup-
porting autonomous driving, detecting wildlife, and facilitating intelligent drone surveil-
lance. However, creating annotated datasets can be challenging for small vessels such
as fishing and sports vessels with limited movement records. In these cases, manual or
semi-automatic labeling is still necessary to create annotated datasets.

In summary, incorporating multiple data sources alongside AIS offers several advan-
tages over relying solely on AIS for ship-related information. These advantages include
enhanced redundancy, as incorporating diverse data sources mitigates limitations and
improves ship information’s reliability and availability. Additional data points from var-
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ious sources provide supplementary information beyond AIS, enabling a broader range
of ship-related data for more detailed analysis and decision-making. Moreover, different
data sources capture information from unique sensors and technologies, offering diverse
perspectives on maritime activities and facilitating better situational awareness. Special-
ized data streams cater to specific needs, such as environmental monitoring or security
assessments, while cross-verifying and validating data from multiple sources improves the
accuracy and reliability of data analysis. By leveraging these advantages, organizations
can comprehensively and accurately understand maritime operations, improving safety,
security, and efficiency.
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