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Abstract: This paper realizes the simultaneous optimization of a vessel’s course and speed for a
whole voyage within the estimated time of arrival (ETA), which can ensure the voyage is safe and
energy-saving through proper planning of the route and speed. Firstly, a dynamic sea area model with
meteorological and oceanographic data sets is established to delineate the navigable and prohibited
areas; secondly, some data are extracted from the records of previous voyages, to train two artificial
neural network models to predict fuel consumption rate and revolutions per minute (RPM), which
are the keys to route optimization. After that, speed configuration is introduced to the optimization
process, and a simultaneous optimization model for the ship’s course and speed is proposed. Then,
based on a customized version of the A* algorithm, the optimization is solved in simulation. Two
simulations of a ship crossing the North Pacific show that the proposed methods can make navigation
decisions in advance that ensure the voyage’s safety, and compared with a naive route, the optimized
navigation program can reduce fuel consumption while retaining an approximately constant time to
destination and adapting to variations in oceanic conditions.

Keywords: ship routing; artificial neural network; speed configuration; A* algorithm

1. Introduction

With improvements in ship intelligence, big data technology, and navigation-related
sensors, Maritime Autonomous Surface Ships (MASS) have attracted significant attention.
At the same time, safety and energy-saving issues related to maritime navigation have grad-
ually become the focus of attention in this new low-carbon era. In 2018, the International
Maritime Organization adopted the IMOInitial Strategy for Greenhouse Gas Emission Reduc-
tion from Ships, sending a strong signal to the international community that the shipping
industry is changing to a low-carbon industry [1]. Reducing fuel consumption through
proper route planning is an important means to respond to the requirement for a low-
carbon strategy. However, due to the length of ships’ transoceanic voyages, which can
range from two weeks to more than a month, weather and sea state forecasts cannot be
accurately made, and the accuracy of these forecasts decreases as the time increases. There-
fore, it is required that the ship route optimization should fully consider the dynamically
meteorological marine environment, and the route needs to be re-evaluated and updated
when forecast data are updated [2].

Weather routing can be defined as finding an optimum route in consideration of
the ETA, sailing waypoints, sailing speed, and fuel consumption based on the weather
forecast data and ship performance [3]. According to this definition, some researchers
mainly extract and analyze sailing records to find the association of vessels to routes [4] or
summarize a data-driven optimal route in a specific navigation region [5]. Others focus on
solving a path-finding problem at the operation level. The main goal of this operational
problem is to plan a navigation route from one port to another based on a predefined
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purpose [6], in which conditions (weather, waves, and other environment variables) are
along the route.

Since the ship’s navigational task often has complex influences, planning a ship route
is often regarded as a pathfinding problem, which assumes that the ship’s speed or main
engine power is maintained at a fixed value and only the ship’s geographical path is
considered as a variable. In this way, route optimization has been researched based on
various methods or algorithms, such as the modified isochrones method [7], dynamic
programming [8–10], Dijkstra’s algorithm [11], and the A* algorithm [12], and some evo-
lutionary algorithms such as the genetic algorithm [13,14] and the swarm algorithm [15]
have also been used. However, for ocean-going ships, the meteorological and marine
environment changes rapidly, and it is not easy to maintain a stable and uniform speed for
a long time on the route. The above research ignores many constraints of the meteorological
environment and the ship itself. Thus, it is difficult to ensure the result is the globally
optimal solution [2].

In order to solve such problems, some 3D algorithms have been developed, in which
the time variable is considered as the third dimension. Taking minimal fuel consump-
tion as the goal, some scholars have used genetic algorithms to optimize meteorological
routes under the premise of ensuring the ships’ safety in adverse sea conditions [16–18].
Evolutionary algorithms, such as genetic algorithms, have the potential to balance local
searches and global searches. However, when the ocean voyage is so long that it has
many feasible routes, the limited search capability in the optimization process may fail to
obtain the optimal global solution. Another research interest is to add a time variable to
an existing two-dimensional route searching deterministic algorithm so that it becomes
a three-dimensional path searching deterministic algorithm, such as the modified three-
dimensional isochrones method with weighting factors [19] and three-dimensional dynamic
programming algorithms that include meteorological factors [20–24]. These algorithms
mainly use the idea of staged optimization in dynamic programming. In each stage of the
optimization process, only a few nodes with the best results can enter the next stage, while
the other sub-path nodes are eliminated to reduce the computational effort [6]. Meanwhile,
in each stage of the recursion process, the discarded nodes may be associated with the
optimal global solution with deterministic constraints. In contrast, the A* algorithm has
the advantage of retaining all nodes in each recursion and finding the optimal nodes in
stages; thus, it increases the possibility of finding the optimal global solution. However, it
also results in an exponential increase in the number of search nodes with each stage of
the recursion process, which makes it difficult to add a time-like dimension to the route
optimization problem.

With the continuous development of artificial intelligence technology, its use to achieve
ship weather route optimization has become a new research interest. The idea is to generate
recommended routes after summarizing and analyzing a large amount of ship navigation
data. Some scholars process AIS data to recognize key turning regions and connect these
turning regions via cluster similarity measuring to generate reasonable routes for different
types of ships [25,26]. Others try to use artificial neural networks and machine learning
algorithms to predict the fuel consumption of a ship under different sailing conditions
to achieve the goal of determining the expected duration or saving energy [27]. For ex-
ample, artificial neural networks have been used to optimize a ship’s speed based on
large amounts of ship operation data to reduce fuel consumption [28,29]. Three different
statistical models have been used to forecast and optimize the speed of container ship
routes with the goal of improving navigational safety and determining expected duration
by integrating meteorological information such as wave height, wave period, wind speed,
and other information [30]. From the above research, it can be shown that different weather
route optimization methods often require different applicable conditions and generally
need to assume some ideal conditions, such as a more stable ship navigation state, fewer
optimization nodes or dimensions, etc.
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For a voyage’s safety and economy, ship course and speed are the two key variables in
saving energy and controlling arrival time. In an actual navigation situation, distinct course
and speed choices may cause a vessel to encounter radically different sea states, so a ship’s
course and speed should be planned according to the dynamic sea environment, and most
commercial software do so, such as the Bon voyage system, Seaware enroute, SPOS, and
so on [31]. Normally, some environmental factors, like the resistance of calm water [32],
waves [33], and winds [34], can significantly affect a ship’s speed. Calculating the values of
ship dynamics is extremely complex because of the consideration of hull shape, seakeeping
characteristics of the ship, the sea spectrum, and other parameters. Thus, it is too laborious
and time-consuming for ship weather routing. In addition, under severe sea conditions,
fuel consumption can be reduced exponentially by properly reducing a ship’s speed, thus
the ship can adjust its speeds in different sea states to reduce its fuel consumption [27].

Therefore, this paper proposes a ship route planning method under a sailing time
constraint, which introduces speed as a variable in the ship route optimization process
to realize the co-optimization of ship course and speed. In the next section, a three-
dimensional sea environment model is constructed, which can load weather data in real
time to inform the route optimization process. Section 3 builds an ANN-based model that
relates ship parameters to fuel consumption rate and RPM for use in the optimization
process. Section 4 introduces a speed variable to the route optimization process to jointly
optimize ship course and speed, to design the voyage route, and to plan for deceleration
or acceleration to effectively reduce fuel consumption. As a result of adding a variable,
it can be understood from the above description of the 3D deterministic algorithms that
the number of sub-paths increases exponentially as the algorithm iterates [35,36]. For ship
route planning oriented towards transoceanic voyages, this will increase the searching time
significantly. Thus, to compute a navigation strategy under the sailing time constraint in an
acceptable computational time, Section 5 proposes a customized A* algorithm, which uses
ETA to constrain the search space and a suitable heuristic function to guide the direction
of the search. Two simulations are performed in Section 6 to test and highlight the main
features of the method, followed by conclusions in Section 7.

2. Dynamic Sea Environment Model
2.1. Three-Dimensional Sea Environment Model

In current navigation situations, route optimization should comply with the following
restrictions:

1. The ship should navigate in an area with sufficient water depth.
2. The ship should not sail in dangerous wind and wave conditions.
3. The route plan should consider dynamic meteorological and sea conditions for long-

distance and long-term navigation.

To satisfy the above constraints, a three-dimensional sea environment model is es-
tablished for ship route optimization. Most of the forecast data and reanalysis data of
the current meteorological and sea state are in “GRIB” format, and this type of data is
used to divide the ocean area into a sequence of dense grids. Each grid cell has uniform
meteorological and oceanographic properties; hence, grid cells can be taken as the route
nodes and discretize ship routes into sequences of waypoints.

The environmental grid data in this paper include meteorological and oceanographic
data from the European Centre for Medium-Range Weather Forecasts [37] and ocean
bathymetry data from the General Bathymetric Chart of the Oceans [38]. Each two-
dimensional grid datum at a single time is read from the environmental data and recorded
in the form of a matrix. These multiple time matrices are stored in a 3D matrix, as shown in
Figure 1, where t1, t2, . . . tn represent the meteorological and oceanographic information
in the grid cells at discrete times t, and the time interval between them is generally fixed.
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Moreover, the environmental data in row x and column y at time t are defined by E(x, y, t).
The environmental effect on a ship can be expressed as follows:

E(x, y, t) = f (ϕ, λ, v, t0) (1)

Here, (ϕ, λ) is the ship’s location, v is the ship’s speed, and t0 is the ship’s departure
time. After the calculation of the waypoints sequence and the corresponding speed config-
uration from the departure time t0, the goal grid (x, y) will be found to arrive at time t. In
addition, the index (x, y) is also related to the range and accuracy of the environmental data.

t1

t2
tn

Figure 1. Three-dimensional marine environmental model.

2.2. Binarization of Navigation Area

After reading and storing the environmental data, the data representation is shown in
Figure 2. The white contour lines in the figure are contours of wave height, the direction of
the arrows indicates the wind direction, their length indicates the value of the wind speed,
and the elevation is represented by the isosurface.

Sketch map of terrain and wind wave field in the North Pacific
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Figure 2. Marine environment visualization.

As can be seen in Figure 2, there are obstructive conditions in the map, including static
obstacles such as islands and shoals in the marine environment, and dynamic restricted
navigation zones corresponding to areas of strong winds and high waves (e.g., the contour-
dense area in Figure 2 has wave heights above 6 m). Grid cells with obstructive conditions
should be marked as unnavigable cells through which the route is forbidden to pass, while
others marked as navigable, in which the ship can sail through unconstrained. Significantly,
the classification and marking of the cells should be pre-processed considering the ship’s
characteristics and performance factors.
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A binary method is used in grid pre-processing to divide the navigation area, and the
navigable cells are set to 1; unnavigable cells are set to 0, which are also called restricted
grids. The grid pre-processing is shown in the Formula (2). Combining the ship draft and
elevation information, when the water depth of the grid (x, y) is not sufficient to ensure the
safety of shipping, it is set as unnavigable and expressed as Navi(x, y) = 0. Also, when the
wind and wave of the grid (x, y) exceeds the ship’s anti-wave ability at time t, it is set as
unnavigable and expressed as Navi(x, y, t) = 0.

Navi(x, y, t) =


0, insu f f icient water depth,
0, wind and waves over the threshold,
1, meet the ship′s navigation conditions.

(2)

In this way, the marine environment in Figure 2 can be binarized, and the restricted
grids are filled with black while the free grids are filled with white. Thus, the restricted and
free grids can be distinguished. And the accuracy of grids is often the same as the acquired
environment data, which is set to 0.5◦ × 0.5◦ in this paper, as shown in Figure 3. In this
figure, a sea area with wave heights over 6 m is set as a unnavigable area, as framed in the
red box.

Strong wind 

and wave area

Land

Island

Figure 3. Binary image of the raster marine environment.

3. Predictive Model for Ship Parameters

Since the sea status during the voyage is not always static, the relevant parameters
of the ship will constantly change (e.g., fuel consumption rate, speed, course, etc.), which
affects the corresponding sailing decisions. Therefore, establishing a reliable and effective
model to predict these effects is necessary for accurate route optimization. Artificial neural
networks can be used for modeling complex systems. They are highly adaptable, robust,
fault-tolerant, and surface-fitting and are well-suited to predictive analysis. Since the
prediction model needs to be continuously invoked in route planning, a prediction model
with a relatively simple structure and high prediction accuracy is required, and an artificial
neural network model with a single hidden layer can meet such needs [39].

3.1. Pre-Processing of Data

To accurately predict the ship’s sailing state under various external factors, a large
amount of sailing data and an artificial neural network-based ship parameter prediction
model are needed. In this work, the training and testing data are from actual navigation
records of one container ship’s voyages from 1 January to 28 February 2021. The details of
that container ship are shown in Table 1.
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Table 1. Ship parameters.

Parameter Value

Ship type Container ship
Displacement (t) 169,700
Length (m) 348
Beam (m) 51.2
Draft (m) 13.5
Pitch (mm) 8668

A total of 36,440 consecutive records were collected during the voyages. Each record
has required data types, such as date, latitude, longitude, speed over ground (SOG), course,
draft, fuel consumption, and RPM, etc. Due to errors in equipment and instruments,
network signals, and other factors, there are noisy and erroneous data in the records.
The predictions of the model may have large errors compared with the actual values if all
records are directly used for model training, making it difficult to reflect the actual fuel
consumption under many influencing factors. So, a data cleaning method proposed by ISO
based on the idea of removing track anomalies was designed to filter the data and eliminate
useless data [40]; the major steps are shown below:

1. Remove anomalous records in which data are incomplete, such as missing latitude
and longitude data.

2. To reduce the complexity of the artificial neural network mentioned later, the absolute
directions of weather are converted to the directions to the ship reference frame:

dirwr = |180◦ − |(dirc − dirwa) mod 360◦|| (3)

where dirwr represents directions of weather components (wind and wave) to the ship’s ref-
erence frame, dirc is the ship’s course, and dirwa is the absolute directions of weather com-
ponents.

3. According to this method [40], extract sequential records of approximately 10 min
and combine them into one segment.

4. Calculate the mean value µ of each type of data di in a segment.

For data that are not measured as angles, the mean µ for the N data points in a
segment with values di is computed by

µ =
1
N ∑N

i=1 di (4)

For data that are measured as angles, the mean µ is computed by

µ = arctan

(
∑N

i=1 sin di

N

/
∑N

i=1 cos di

N

)
(5)

5. Calculate the standard error of the mean σ of each type of data in a segment. The stan-
dard error of the mean σ is computed by

σ =

√
1
N ∑N

i ∆2
i (6)

For data not measured as angles, the difference ∆i is computed by

∆i = |di − µ| (7)
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For data measured as angles, the difference ∆i is computed by{
∆i = 360◦ − ri, ri = mod(|di − µ|, 360◦) > 180◦

∆i = ri, ri = mod(|di − µ|, 360◦) ≤ 180◦
(8)

6. Two thresholds are used to delete segments in which the standard error of the mean
of certain data is too large. In particular, if the σ of RPM is greater than 3 min−1 or the
σ of SOG is greater than 0.5 kt, then all records in that segment are deleted. After this
operation, several uniform sailing segments are obtained.

7. We use Chauvenet’s criterion to determine if data are anomalous in each uniform
sailing segment. Once a data point is identified as an outlier based on the criterion, it
is removed. A new mean and standard error of the mean can be calculated based on
the remaining values and the new sample size.
The probability for the occurrence of any di is computed by

P(di) = erfc
(

∆i

σ ·
√

2

)
(9)

where P(di) is the probability of occurrence of di and erfc is the complementary
error function.
A datum is considered an outlier if Formula (10) is fulfilled.

P(di)× N < 0.5 (10)

This method cleans the original voyages’ records to obtain several navigation segments
with a duration of about 10 min and a uniform speed. The mean values of these
segments’ data can be used for subsequent training and prediction of the model.

8. The different types of input data have different units. It would reduce the performance
and convergence of the predictive model if the filtered data of the segments were
input into the neural network directly. Therefore, the z-score standardization method
is adopted to standardize the data:

d∗ty =
dty − µty

σty
(11)

where d∗ty is one type of data in a segment after the standardization, dty is this type of
data unprocessed in the segment, and µty and σty are the mean and standard error
value of this type of data in all segments.

3.2. Predictive Model for Ship Parameters

An artificial neural network (ANN) has good nonlinear mapping capability, adaptive
learning capability, and parallel information processing capability. Compared with tra-
ditional system identification methods, ANNs do not require knowledge of the physical
causal relationships between the observed system variables, providing a way to model
the system without information about the internal state of the system. In this paper, an
ANN with a single hidden layer is used as a prediction tool for fuel consumption rate
and RPM because of its simplicity, robustness, and ideal prediction effect [39,41]. In ad-
dition, the ship’s sailing performance also changes as time passes, and the ANN can be
reconstructed quickly based on more recent sailing data when necessary.

3.2.1. Structure of the Predictive Model

An artificial neural network consists of several connection layers, which can be divided
into an input layer, hidden layer, and output layer according to their position and function.
All neurons in the network are connected to adjacent neurons located in different hierarchies.
The structure of an ANN with a single hidden layer is shown in Figure 4.
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Here, wij is the connection weight from the ith neuron in the input layer to the jth
neuron in the hidden layer. vjl is the connection weight from the jth neuron in the hidden
layer to the lth neuron in the output layer. θj is the bias of the jth neuron in the hidden
layer. γl is the bias of the lth neuron in the output layer. f is the activation function of the
hidden layer, and g is the activation function of the output layer.

An ANN establishes a mapping from N-dimensional to Q-dimensional data through the
above process, and the functional relationships can be expressed by the following formulas:

bj = f
(
∑n

i=1 wijai + θj

)
(12)

cl = g
(
∑p

j=1 vjlbj + γl

)
(13)

…

…

Input Layer

neurons

Hidden Layer

neurons

Output Layer

neurons

= 1~
= 1~

Figure 4. Multiple-layer ANN with a single hidden layer.

The activation function of the hidden layer f (x) must be a bonded nonlinear function
that is continuous, smooth, and monotonically increasing. So, the Relu activation function
is used for its advantages of simple computation, simple derivatives, fast convergence,
one-sided inhibition, and broader boundaries.The activation function of the output layer
g(x) does not necessarily need to be nonlinear, so a linear function is used. The relevant
activation functions are shown as follows:

f (x) = max(0, x) (14)

g(x) = x (15)

3.2.2. Error Back-Propagation Algorithm

The error back-propagation algorithm [42] is a method that uses the difference between
the actual output and the desired output to correct the weight parameters layer by layer
from back to front, which applies to supervised learning. When learning samples are
provided to the network, if there is a gap between the desired output and the output
based on current weights and biases, the error function of the current output and the
desired output is calculated, and then the error signal is back-propagated along the original
connection path to update the neuron weight parameters of each layer.

Assuming that M learning samples are provided to the network, the error function of
the network for each learning sample is constructed as follows.
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The goal of learning is to minimize a given error function, and network training is
generally stopped when the error function value terminates a downward trend and starts
to rise:

Ek =
1
2∑P

l=1

(
yk

l − ck
l

)2
(16)

where k is the learning sample number (k = 1 ∼ M), l is the dimension of the output
layer (l = 1 ∼ Q), Ek is the error function of the kth learning sample, yk

l is the expected
output in the lth dimension of the kth learning sample, and ck

l is the actual output of the lth
dimension of the kth learning sample.

The network calculates the global error after obtaining all M samples and updates the
parameters uniformly based on the global error E. The global error E of the network is the
sum of all the learning sample errors:

E = ∑M
k=1 Ek (17)

This work uses the Levenberg–Marquardt (LM) algorithm to update the parameters.
The LM algorithm combines the advantages of the gradient descent method and the Newton
method, as its error function decreases faster at the beginning, and provides the ideal search
direction when the error function is near the optimal value [43]. The parameter updating
formula of the LM algorithm is as follows:

ω(i + 1) = ω(i)− (H + λI)−1 ∂E
∂ω

(18)

Here, ω represents the neural network parameters, including connection weights
between different layers and the offsets of each layer; i is the number of learning times; H
is the Hessian Matrix of the error function; and I is the unit matrix.

The parameter λ is updated by taking larger values in the early stages of learning
so that the parameters are updated along the inverse direction of the gradient, while the
direction of iteration of the step is shifted to the direction of the Newton method as λ
gradually decreases to zero in the later stages [43]. Compared with other iterative methods,
the LM algorithm has a relatively good convergence rate for training networks of medium
size [44].

3.3. Selection of Model Variables

The two essential criteria for evaluating the utility of a sailing route are sailing time
and fuel consumption. Except for voyage distance, the variables most closely related to
these two criteria are the speed over ground (SOG) and fuel consumption rate. SOG is
affected by the navigation environment in a natural sea state, and differs from the calm
water speed due to added resistance from waves, winds, and currents, as well as the
reduction in propulsive efficiency caused by waves and increased resistance, which is often
known as ship speed loss. Ship speed loss is a critical parameter in route planning for
voyage time and fuel consumption evaluation, and it is calculated based on the calm water
speed and the actual sea state in the general route optimization process; then, the ship’s
actual SOG is obtained. But in voyage records, it can be noted that the expected calm water
speed is not recorded, so the traditional way to calculate speed loss using calm water speed
and the SOG in natural sea state is no longer practical. Fortunately, there is the real-time
RPM data in the voyage record, which is a measurement closely related to the expected
calm water speed.

So, the actual SOG is taken as one optimization variable in this work, and once the
SOG is assigned, the sailing time can easily be calculated, and the recommended value of
RPM can be predicted through the ANN model, as shown in Figure 4, which can make the
ship sail at the assigned SOG. In this way, the output variables of the ANN model are RPM
and fuel consumption rate, and they are used to calculate the total sailing time and fuel
consumption in the ship route optimization procedure.
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To meet the route optimization task, the calculation and prediction of ship-related
parameters, which generally need to be updated frequently to serve the route planning
algorithm, should not occupy too much running time. Thus, the input variables of the
ANN should have the following characteristics:

1. They can represent the current navigation state or navigation environment of the ship.
2. They can be obtained or predicted in some way in the route planning process.
3. How the data are obtained or predicted cannot be too complex or take up too much

running time.

Thus, eight input variables which meet the above characteristics have been selected to
establish an ANN-based model for fuel consumption rate and RPM prediction, including
ship data such as the SOG, ship course, fore draft, aft draft, and sea environment data
such as relative wind direction, relative wave direction, wind speed, and wave height.
The relevant variable mapping relationship is shown in Figure 5.

Course

Fore draft

Aft draft

Speed over ground 

Wind speed

Relative wind direction 

Wave height

Relative wave direction

ANN

Fuel 

consumption 

rate

Rpm

Figure 5. Variable mapping.

4. Co-Optimization of Ship Course and Speed

The route between the starting node and end node consists of several rhumb lines,
and each rhumb line connects two adjacent nodes, as shown in Figure 6. Each node includes
three variables: position, time, and speed. Then, a sequence of n nodes can represent the
whole voyage, including the speed along each leg.

Figure 6. Related variables of the ship.

The course is represented by the orientation of the rhumb line connecting two adjacent
nodes; by adjusting the position of the nodes, the course is changed. The time when the
ship arrives at the next node is determined by the course and speed, and the meteorological
and sea conditions that the ship encounters vary as time goes by. So, the route and its speed
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are the keys to ship route decision, and by adjusting the position of nodes and the speed
between them, the whole route can be optimized.

Figure 7 shows the process of route generation. The centers of grids marked with 83,
67, 45 indicate nodes where the ship is located; the surrounding arrows refer to alternative
courses from one node to the next; and t1, t2, t3 are the times when the ship reaches these
nodes in sequence. When the ship chooses different courses and sails with different speeds,
the nodes and their arrival times are different too, so the ship will encounter different
wind and wave states, and the sailing time and fuel consumption may differ accordingly.
The wind and wave state the ship encounters can be obtained using the 3D sea environment
model in Section 2.1, while the fuel consumption can be calculated using the predictive
model in Section 3.

 
!

 
"

 
#

Figure 7. The process of route generation.

Thus, node selection and speed configuration are the two key methods in ship voyage
optimization, and optimizing ship course as well as speed is an efficient way to plan a
voyage, so a method for the co-optimization of a ship’s course and speed is proposed in
this work.

4.1. Speed Configuration

Usually, the speed during the voyage will be maintained in a range according to the
ship’s performance. To ensure safety and economic efficiency, the ship will sail at a suitable
speed in a certain sea area, and the set of permissible speeds is presented as follows:

v = [vmin, vmin + vcd, vmin + 2vcd, . . . , vmax] (19)

Here, v is a row matrix vector including n permissible speeds, its interval is vcd, vmin
is the minimum value in v, and vmax is the maximum value in v.

Accordingly, since there are multiple permissible speeds in each node, a leg from one
node to an adjacent node is expanded from 1 to n. Alternatively, one node i is extended to
n “ext-nodes” iw, described as follows:

iw = {P(i, vw)|vw ∈ v} (20)

Here, iw means the ship sails from node i to the next adjacent node with fixed speed
vw, and P contains all navigation states at node i. In addition, one sailing node is expanded
into a row matrix. Thus, this method can be used to achieve parallel computation and
speed up the algorithm operation.
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Therefore, a speed configuration can be a part of an optimized route, as shown in
Figure 8. The expression form of the optimized route from the starting node S to the end
node T evolves from the original S− A− B− C− D− E− T to S13 − A12 − B13 − C14 −
D12 − E15 − T. That is, the ship sails from the origin node S to node A at 13 kt, from node
A to node B at 12 kt, and continues sailing until from node E to the end node T at 15 kt.
With this method, the optimized route not only contains the optimized route (Figure 9)
but also includes the optimal speed in each segment (Figure 10) to realize the synergistic
optimization of the ship’s course and speed.

Figure 8. Diagram of the nodes after adding sailing speed.
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5. Weather Route Optimization for Ships with Sailing Time Constraints
5.1. A* Algorithm

The A* algorithm is based on Dijkstra’s algorithm, with an added heuristic function
for predicting the future cost of movement to influence the search direction and narrow the
search space, so that it can find the shortest path in a certain sense in a short time.

The main process of the A* algorithm is to build an “Openlist” node set to store nodes
to be checked and a “Closedlist” node set to store checked nodes, and iterate continuously
to select the node with the lowest movement cost to obtain the shortest path. The basic
form of the function to evaluate the movement cost is shown in the following formula:

F(i) = G(i) + H(i) (21)

Here, i is the current node. F is the estimated total movement cost from the starting
node to the end node. G is the minimum movement cost recorded from the starting node
to the current node, and the heuristic function H is the estimated movement cost from the
current node to the end node.

The A* algorithm calculates and iterates the node selection according to this evaluation
function. Its basic process is as follows: the total movement cost of surrounding nodes is
calculated from the starting node. The node with the minimum movement cost is selected
in each iteration until the end node is found. The process is shown in Figure 11.

The A* algorithm has characteristics of fast calculation speed to an optimal solution,
but there are several problems that need to be solved for route optimization tasks, as follows:

1. The two-dimensional A* algorithm takes distance as the evaluation criterion. At the
same time, ship fuel consumption and navigation time are the main factors to evaluate
the navigation cost of a route, and taking distance as the evaluation criterion cannot
accurately quantify the navigation cost.

2. The two-dimensional A* algorithm does not consider speed. In contrast, the ship
does not sail at a fixed speed over the whole voyage; dynamically adjusting speed
according to the sea state is desirable.

3. The two-dimensional A* algorithm does not consider dynamic unnavigable areas
with heavy winds and waves, which will affect the safety and efficiency of the voyage.

Thus, the A* algorithm needs to be modified to meet the actual needs of ship navigation.
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Figure 11. The search process of the A* algorithm.

5.2. Evaluation Functions Concerning Time and Fuel Consumption

The Estimated Time of Arrival (ETA) is the time when a ship or vessel is expected
to arrive at a specific destination. An accurate ETA can make entire supply chains more
efficient and reliable, and it also helps to determine the expected duration of a vessel’s route.

Generally, as the two most important factors in evaluating a route, voyage time and
fuel consumption need to be fully considered in the evaluation function. In fact, the voyage
schedule is the crucial constraint for merchant vessels, and in the scope of reducing gas
emissions, the effect of an increased sailing speed could be enhanced by the waiting time
for a free berth, therefore accounting for even more emissions. The ship must arrive
at the specific destination at a time close to the ETA, and thus the expected duration is
taken as a constraint in the route design process, and minimum fuel consumption is the
optimization objective.

In order to meet the above description, two evaluation functions for sailing time and
fuel consumption are proposed:

FTiw = GTiw + HTiw (22)

FFiw = GFiw + HFiw (23)

Here, GTiw and GFiw are the actual time and fuel consumption of the route from the
starting node to the current ext-node iw, described as follows:

GTiw =
n

∑
i=1

di
vw

(24)

GFiw =
n

∑
i=1

di
vw
× qiw (25)



J. Mar. Sci. Eng. 2023, 11, 1242 15 of 25

Let hw and iw describe two adjacent ext-nodes and hw be the previous node; then, di is
the distance between hw and iw, and di

vw
refers to the sailing time from hw to iw at the speed

vw. qiw refers to the fuel consumption rate when the ship sails from hw to iw. The value
of qiw can be calculated using the fuel consumption rate model in Section 4.1.

In addition, it is well-known that since the heuristic function H affects the search
efficiency of the A* algorithm, a suitable H function can guarantee a faster search speed
and the quality of the route [45]. To ensure the solution quality with a short running
time, heuristic functions with suitable search efficiency, named HT and HF, are proposed
as follows:

HTiw = dEi/vw (26)

HFiw =
dEi
veco
· fq(veco) (27)

where dEi is the distance from node i to the end node; HTiw is the estimated time when
the ship reaches the end node from the current ext-node iw at the speed vw; HFiw is the
estimated fuel consumption from the current ext-node iw to the end node at speed veco; veco
is the economic speed of the ship, usually artificially set; and fq is a function of the fuel
consumption rate and speed.

The relationship of fuel consumption rate with speed is generally a cubic relationship,
as shown in the Formula (28):

fq(v) = av3 + bv2 + cv + d (28)

where a, b, c, and d are fitting coefficients that vary with the ship’s characteristics.

5.3. Customized A* Algorithm with Time Constraint

After reconstructing the evaluation function, the process of the A* algorithm is also
customized accordingly. The process is as follows, which is shown in Figure 12:

1. Initialize Openlist (the set of ext-nodes to be checked) and Closedlist (the set of ext-
nodes checked).

2. All ext-nodes belonging to the start node S are added to the Openlist, and their GT
and GF are set to 0, while the HT and HF are calculated and recorded.

3. If it is judged that the Openlist is not empty, the operation goes to Step 4; otherwise,
there is no solution to this problem, which means no available path exists between S
and T, and the procedure is terminated.

4. The total navigation time FT of each ext-node in the Openlist is calculated. If the
total navigation time FT of one ext-node is greater than the pre-set ETA, the node
is retained in the Openlist but will not be executed in the rest of this step. Then,
the ext-node iw with the minimum fuel consumption of the whole voyage is found in
these nodes which meet the time limit. And the ext-node iw will be removed from the
Openlist and added into the Closedlist, setting the SOG record to vw.

5. Traverse all the adjacent nodes of the navigation node i. There are two situations for
the ext-nodes of these adjacent nodes:

• If there is no ext-node of the adjacent node j in Openlist and Closedlist, all ext-
nodes of node j are added to Openlist, the G and H value of these ext-nodes are
calculated and recorded, and the parent node of these ext-nodes is set as node iw.

• If there is an ext-node jw of the adjacent node j in the Openlist, and the GT
and GF values of jw calculated in this step are both smaller than those stored
in the Openlist, the G and H values of jw in the Openlist will be updated corre-
spondingly in this step. Also, the ext-node jw’s parent node is set as node iw.
Conversely, all information of the ext-node jw stored in Openlist will remain
unchanged.
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6. Check whether there is any ext-node in Openlist that is subordinate to the end node
T. If not, repeat Step 3; if it already exists, a path composed of ext-nodes is found
by querying the parent node of the current ext-node step by step until the starting
node. The sailing route and speed configuration are obtained after mapping like in
Section 4.1.

7. The weather forecast data and navigation data at each ext-node on the route are
extracted based on the waypoint sequence and speed configuration. Then, the RPM
prediction model is called, and the above data are modified as the input of the
prediction model to calculate the recommended RPM of each ext-node on the route.
Then, the RPM recommendation scheme is output for the whole voyage.
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Initialize ������ ! and 
"�# �$�� !

Put ext-nodes of the 
starting node into the 

������ !

Filter out the ext-nodes 
that meet the time limit in 

������ !

Calculate the % and & of all 
ext-nodes of adjacent nodes '

Is there an 
ext-node of the 

endpoint 
in ������ !?

Is there any 
ext-node '(

in ������ !?

Update its % and parent 
node

The algorithm is completed, 
output the path and speed 
configuration. Output the 
recommended scheme of 

Rpm.

No

Yes

Yes

No

Move the node �( into 
"�# �$�� !

Is ������ !
an empty set?

No solution, unable to 
find the path

No

Is the % of '(
smaller than that 

in ������ !?

Yes
No

Traverse the adjacent nodes 
of navigation node �

Add these ext-nodes to the 
������ !, and record their 

parent nodes, % and &

Select the node �( with the 
minimum fuel consumption 

among these ext-nodes

Figure 12. Flow chart of the customized A* algorithm.

5.4. Overall Optimization Flow

The weather route optimization method proposed in this paper consists of four parts:
ship historical data processing, the ship parameter prediction model, ship navigation data
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processing, and ship route optimization. Briefly, the work flow is as follows, which is
shown in the Figure 13:

1. The historical data processing part uses historical ship voyage records and correspond-
ing meteorological historical data, etc. These data are standardized by pre-processing
data methods, and the pre-processed data are used as input for the ship parameter
prediction models.

2. The ship parameter prediction model part is used to build two artificial neural network
models with the same frame. The input contains eight variables: SOG, fore draft,
aft draft, course, wind speed, wind direction, wave height, and wave direction; the
output is fuel consumption rate or RPM. The trained models are used for calculating
fuel consumption rate and RPM in the voyage afterward.

3. The ship navigation data processing part obtains and divides the ship’s characteristics
and the weather forecast data into eight input variables which meet the require-
ments of the ship parameter prediction model and are used in the route planning
process afterward.

4. The ship route optimization part is based on the customized A* algorithm, using the
ship fuel consumption rate prediction model and the current sailing data to calculate
the fuel consumption for all nodes to be checked in order to find the node with the
minimum fuel consumption that satisfies the ETA constraint and thus obtain the
optimal ship route. Finally, the RPM recommendation scheme for the whole range is
obtained based on the sailing data and the generated route.

Notably, the ship route can be frequently updated during the voyage. The frequency
of calculation during the sailing voyage would depend on the fleet’s will and the updating
frequency of the forecast weather data. If the voyage is too long to acquire the forecast data
at the later part of the voyage, this method would find the optimum route based on the
current weather information. In addition, the updated route may have great difference
with the prior one. But both routes are planned based on the assurance of sailing safety and
economy, which can be identified as the optimal sailing strategy at their respective states.

Historical 
data of ship

Historical data 
of weather

Data 
Processing

Weather 
forecast data

Ship 
characteristics

Improved A* 
algorithm

Data 
processing

Prediction 
models of ship 

parameters

Optimized 
route

Figure 13. Diagram of the overall optimization process.

6. Simulation Experiment and Results Analysis
6.1. Performance Analysis of Ship Parameter Prediction Models

In order to evaluate the prediction effect of the artificial neural network model de-
signed in this paper, the data set is divided into a training set and a test set. The training
set is used to train the model, and the test set is used to test the generalization ability of
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the model. Each ten-minute segment (extracted in Section 3.1) is taken as a data point
by calculating its average value. A total of 1976 data points are obtained from the data
set, of which 1580 data points are randomly picked and used as the training set, and the
remaining 396 data points are used as the test set. The parameters of fuel consumption rate
model and RPM model are shown in Table 2. The prediction effect of the two models’ test
sets are shown in Figures 14 and 15, and the blue dots are the actual value of the test set.

Table 2. ANN parameters.

Parameters Value

Number of neurons in hidden layer of fuel
consumption rate model 45

Number of neurons in hidden layer of
RPM model 140

Activation function of the hidden layer Relu
Optimizer Levenberg–Marquardt

100 200 300 400 500 600 700 800 900

True value (10L/h)

100

200

300

400

500

600

700

800

900

P
re

d
ic

ti
v
e 

v
a
lu

e 
(1

0
L

/h
)

Observed value

Perfect prediction

Figure 14. Effect of the fuel consumption rate model.
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A perfect predictive model should have a predicted value equal to the true value,
which means the points would lie on the black diagonal line. The vertical distance from
the line to any point is the prediction error for that point. A good model has minor errors,
as Figures 14 and 15 show; all the blue dots surround the black lines, and the average
relative error of the fuel consumption rate model and RPM model are 0.0594 and 0.0101,
respectively. Thus, the above models can meet the navigation requirements in practice and
can be used in the ship route optimization process to calculate fuel consumption and RPM.

6.2. Simulation Experiment of Ship Weather Route Optimization System

The proposed ship route optimization method under the sailing time constraint,
described in detail in Section 5, has been validated and verified in a series of computer
simulations based on actual voyage records. Two scenarios have been selected with different
passages (voyage departure and destination points) and times (different weather conditions,
having a direct impact on the optimization process). The simulations are programmed using
MATLAB, and the accuracy of the relevant meteorological data is 0.5◦ × 0.5◦, as mentioned
in Section 2.

6.2.1. Scenario 1: Voyage from Osaka to Los Angeles on 3 February 2021

In this scenario, a voyage from Osaka with a departure on 3 February 2021, at 18:00
UTC with a destination of Los Angeles has been simulated; its expected duration is 370 h,
and its economic speed is set to 13.5 kt. The primary purpose of this simulation is to verify
the ability to avoid wind and wave areas.

The experimental parameters are listed in Table 3, in which the threshold values are
set according to the actual demand of the ship’s voyage.

Table 3. Experimental parameters.

Parameters Value

Start 35.5◦ N, 141◦ E
End 34◦ N, 120◦ W
SOG range (knot) [8, 19]
Maximum allowable wind speed (m/s) 20
Maximum allowable wave height (m) 6
Minimum draught (m) 14

The ship’s course and speed were optimized using the methods proposed in this work,
and an optimal route was generated. As shown in Figure 16, the optimal route (red curve)
is compared with a great circle (GC, green curve) with SOG of 13.5 kt for the whole voyage.
For Figure 16, the wave heights are represented by the isosurface and the wind speeds are
represented by contour lines. The four charts describe the wind and wave conditions and
the routes at different times (80 h, 165 h, 230 h, and 367 h, referring to the time after the
ship departs).

From Table 4, it can be concluded that when the ship sails along the great circle route,
there are 26.26 h of sailing time in heavy wind and wave areas, accounting for about 7.27%
of the total sailing time, which is very unfavorable to the ship’s navigational safety, while
the optimized route generated by the proposed method in this work avoids the dangerous
sea area with heavy wind and waves.

Table 4. Comparison of routes.

Time (h) Danger Time (h)

Optimized route 367.15 0
Great circle route 361.38 26.26
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Figure 16. Comparison of ship routes at different moments.

The distribution of and variation in the wind and waves during the voyage are
demonstrated in Figure 16, where “80 h” refers to the situation that the optimized route
chooses to sail to higher latitudes in advance based on the analysis of meteorological
information; at about 165 h and 230 h, there are heavy winds and waves on the great circle
route, and the optimized route avoids this area in advance; “367 h” is the comparison of
the two routes after reaching the destination point.

The speed distribution is shown in Figure 17, and the wave heights on the two routes
are shown in Figure 18. Define the route between each two adjacent nodes as a “segment”,
and the segment numbers from the starting node to the end node increase in sequence.

It can be seen from Figure 18 that the optimized route encounters a significantly lower
incidence of high significant wave heights compared with the great circle route, and the
maximum wave height is also smaller. Therefore, the algorithm can handle the upcoming
navigational risks in advance. The speed configuration is also more reasonable than the
case of uniform speed for the whole voyage.
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Figure 17. Ship speed configuration for the whole range.
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6.2.2. Scenario 2: Voyage from Tainan to Los Angeles on 17 January 2021

In this scenario, a voyage from Tainan (23◦ N, 120◦ E) with a departure on 17 January
2021 at 07:00 UTC with a destination of Los Angeles (34◦ N, 120◦ W) was simulated, and its
expected duration is 410 h. The primary purpose is to compare the optimized route with
the historical route to evaluate the effectiveness of the algorithm. Some experimental
parameters of the ship are the same as in Scenario 1.

As shown in Figure 19, the optimized route (red curve) is compared with the historical
route (green curve). The economic speed of the optimal route is set to 13.5 kt. It is known
that the ship’s safety was not compromised on the historical route, so the comparison
focuses on the sailing time and fuel consumption (FOC).
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Figure 19. Comparison of routes under wind and wave fields.

As seen from Table 5, compared with the historical route, the optimized route saves
about 130.93 tons of fuel consumption (7.25%) within the specified sailing time. And the
increase in voyage time is by 4.35 h (1.08%), which is tolerable for the route planning. Thus,
it achieves the purpose of saving energy by designing the optimal route and reasonably
configuring speeds. In addition, the speed configuration (Figure 20) and required RPM
(Figure 21) for the whole voyage are also generated. Moreover, the output RPMs of the
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whole voyage will also guide the ship to reach the planned SOGs, which provides more
assistance for real-time ship navigation.

Table 5. Comparison of routes.

Time (h) FOC (t)

Optimized route 408.69 1674.27
Historical route 404.34 1805.20
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Figure 20. Ship speed configuration for the whole range.
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Figure 21. RPM configuration for the whole range.

6.2.3. Computational Complexity of This Method

This paper adds one dimension about the SOG to the route planning method, which
may cause a exponential increase in the computational cost. But with the rational design of
the customized A* algorithm’s evaluation function and operation process, the computa-
tional cost is significantly reduced, as Table 6 shows. When the optimal route is output,
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the computation times for the two scenarios are 991.917 s and 731.639 s, which is tolerable
in the practical application. In addition, the storage sizes of the data (includes Openlist and
Closedlist) are 1.10 MB and 1.04 MB. Given all the above, the computational complexity of
this method is acceptable.

Table 6. Computational cost of two scenarios.

Computational
Time (s) Data Size (MB)

Scenario 1 991.917 1.10
Scenario 2 731.639 1.04

7. Conclusions

As the main influencing factor of navigation efficiency in the process of ship route
optimization, speed control gives ample space for optimization and should be fully consid-
ered in ship route design. Based on this, this paper proposes a ship route planning method
under a sailing time constraint that designs the ship course and speed simultaneously to
realize an optimal navigation strategy, including route and speed configurations for the
whole voyage. This navigation strategy can ensure that a ship arrives at its destination
close to its ETA. Such an optimized navigation program can not only avoid the navigational
risks brought by a heavy sea state but can also generate an optimal route with minimized
fuel consumption while arriving at the required ETA.

In this paper, a rasterized dynamic sea area model was constructed by processing
meteorological information, and speed configuration was added to the route optimization;
then, single nodes were extended to collections of “ext-nodes” for optimization. Based on
the actual voyages’ records, an artificial network model was modeled to predict the fuel
consumption rate and RPM to assist the route optimization. Then, the evaluation function
and operation process of an A* algorithm were designed to achieve the simultaneous
optimization of vessel course and speed based on the premise of arriving at ETA. The results
of two optimization simulations of the winter route in the North Pacific Ocean showed
that the algorithm proposed in this paper could not only guarantee navigational safety
but could also reduce fuel consumption by 130.93 tons or about 7.25% compared with
the historical route. Therefore, the methods in this paper can help ships reduce their fuel
consumption while avoiding windy and stormy areas and still arrive at their ETA, which
has particular practical significance in accomplishing complex transoceanic tasks.

In the future, we will consider more specific complexities of the sailing environment
(such as currents, ice-covered waters, etc.) by obtaining and analyzing data from more
voyages or different types of ships. In addition, while an ANN with a single hidden layer
has great performance, there is space to optimize the prediction of the fuel consumption
rate, which can be further investigated. We have up to now only used the three-dimensional
A* algorithm to plan a low-fuel-consumption route under a time constraint, while the needs
of ship navigation may be very diverse, and future attempts will be made to use such
three-dimensional algorithms to solve multi-objective ship navigation tasks and further
improve the computational speed.
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