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Abstract: Runaway is a common phenomenon in pump-turbines for hydropower and ocean power,
accompanied by strong instability, which can easily lead to accidents. This study reveals the stability
during the runaway process of a pump-turbine, mainly exploring the phenomenon of guide vane
rejection happening in transition conditions when dealing with hydropower or ocean power. Through
model experiments and computational fluid dynamics numerical simulations, the pressure pulsation
when reaching runaway was compared under different guide vane opening angles. The amplitude of
pressure pulsation measured in the experiment increases with the increase in guide vane opening,
but there are also local changes in size and peak. The simulation results show that when the guide
vane opening angle is 12 degrees, the vortex flow in the area between the guide vane and the runner
of the unit increases, leading to instability. When the opening angle of the guide vane is between
12 and 20 degrees, the vortex flow intensity does not change much and the distribution becomes
uniform, resulting in a decrease in the amplitude of pressure fluctuations. The pulsation of the flow
field causes a dissipation of flow energy. Relationships can be found among velocity field, vortex
intensity, and entropy production. This study is of great significance for ensuring the stable operation
of pump-turbines.

Keywords: pump-turbine; runaway; pressure pulsation; guide vane opening; vortex identification

1. Introduction

Turbomachinery is widely used in hydropower and ocean power (including wave
energy, tidal energy, and ocean current power). The runaway condition is one of the most
important conditions of turbomachinery. With the increasing demand for grid stability and
the gradual increase in the use of new energy, water turbines have been used for large-scale
energy storage, forming pump-turbine units [1,2]. They can be used to store hydropower
and ocean power or release power grid demand, playing a role in peak shaving, frequency
modulation, phase modulation, and emergency backup in the power grid [3–5].

For hydro-turbines and pump-turbines, runaway usually occurs after load rejection [6,7].
Load rejection can be divided into active and passive modes [8]. When the power pro-
vided by the power grid exceeds the system requirements, the unit actively unloads some
unimportant loads to improve the power supply quality of the power grid [9]. When a
unit malfunctions or trips, the unit passively disconnects from the power grid, causing the
unit to lose load [10]. If the flow-regulating mechanism of the unit malfunctions, such as
when the guide vanes refuse to close, the speed of the flow passage will continue to rise.
When the hydraulic torque and friction loss torque reach equilibrium, the rotational speed
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reaches its maximum limit, which is called runaway [11,12]. Pump-turbines start and stop
very frequently, and load rejection is also frequent [13,14]. At present, pump-turbines with
a head of 400~600 m have the strongest economic benefits and are most widely used [15].
The proportion of low specific-speed Francis runners with narrow and long blade channels
is the highest. The strong centrifugal force generated by this type of runner during rotation
makes the centripetal flow more unstable during the runaway process [16]. Therefore, the
runaway process and the instability it brings require special attention.

Many researchers have studied the runaway process of pump-turbines. Fu et al. [17]
analyzes the pulsation behavior and mechanism of a pump-turbine during a runaway
transition caused by the pump power’s interruption. Backflow near the runner inlet and
the cavitation in the runner and draft tube would cause instability. Rezghi et al. [18] investi-
gated the unstable behavior of a pump-turbine at runaway. From a systematic perspective,
important influencing factors have been fully explored. The impact of flow pulsation on
the stability of runaway has been fully explained. Zhang et al. [19] studied the influence of
guide vane geometry on the pump-turbine’s runaway instability. The stability is improved
by restraining the bad flow at the runner outlet and draft tube inlet. Nicolet et al. [20]
discussed the transient behavior of a pump-turbine power plant at runaway. They discussed
the impact of rotational inertia on the stability of the unit runaway and analyzed the pres-
sure pulsations related to both the rigid and elastic water column modes. Zeng et al. [21]
studied the runaway instability of pump-turbines in S-shaped regions considering water
compressibility. In-depth research on the instability of the unit caused by the S region
was conducted and proposed new stability criteria. It also demonstrated the hydraulic
instability characteristics in the runaway process.

In general, since runaway is an equilibration under the limit state, the process of
competing between hydraulic torque and frequency loss torque becomes very complex
under the uncertainty of turbulence [22]. The pressure pulsation characteristics of the flow
field become extremely complex and will trigger alternating changes in the force on the
runner and shaft system. At this point, the torque of the runner fluctuates around 0, and
the speed fluctuates around the runaway speed, indicating a strong operational risk [23].
In order to clarify the impact of guide vane rejection on the flow stability of the unit in
the runaway state, it is necessary to further analyze the pulsation characteristics of the
runaway flow field under different guide vane opening angles.

In this study, the runaway hydraulic stability of a model pump-turbine is investigated.
The pressure pulsations are experimentally studied for different guide vane opening angle
cases. To explore the internal flow mechanism, computational fluid dynamics is used to
evaluate the flow pattern and give the reason for the difference in pressure pulsation under
the influence of guide vane angle. This article provides a scientific reference for preventing
runaway-caused damage.

2. Parameters of Pump-Turbine

This study focuses on a reversible Francis pump-turbine, whose prototype unit is
suitable for the head range of 400 to 500 m. At a speed of 375 r/min, the unit provides
approximately 350 MW of output. In this study, a scaled-down model test was conducted
on the unit. At the model scale, the diameter of the high-pressure side of the runner Dhi is
554 mm and the diameter of the low-pressure side of the runner Dlow is 280 mm. The rota-
tional speed is increased to 1100 r/min (nd) and the runaway test speed is 400~630 r/min
(nra). The specific speed nq is calculated as

nq =
nd
√

Qd

H3/4
d

(1)

where Hd is 52.9 m and Qd is 0.62 m3/s in the model scale. Therefore, nq is about 34.6,
which is a relatively low specific speed. The runner blade number is 9, the guide vane blade
number is 22, and the stay vane blade number is also 22.
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3. Model Test Method
3.1. Hydraulic Test Rig and Apparatus

The model scale pump-turbine is tested on the rig shown in Figure 1 for performance
checking before acceptance. We used a closed hydraulic machinery test rig in which the
test section (pump-turbine model) is set between two tanks. A supply pump is used for
the flow circulation. A pressure sensor is used to measure the pressure difference between
turbine inlet and outlet for calculating the head H. The flow meter is set on the loop for
flow rate Q; the electro-magnetic flow meter is used here. The power of pump-turbine P is
measured by a torque meter (M) and a speed encoder (ωr) and calculated by P = Mωr. The
unit rotational speed n11 and unit flow rate Q11 can be determined by

n11 =
nDlow√

H
(2)

Q11 =
Q

D2
low

√
H

(3)

The corresponding guide vane opening angle α is measured using an angle sensor to
accurately determine the working condition.
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3.2. Test Strategy of Runaway Point

The runaway in prototype operation is the automatic increase and stabilization of the
runner speed when the guide vanes refuse to adjust. Unlike this, the runaway in a model
test requires a fixed guide vane opening angle. At the same time, the motor is adjusted
and the runner speed is controlled to monitor the changes in torque. When the torque
approaches 0 N·m, attention is paid to observing its variation. If the torque is positive, the
speed is reduced. If the torque is negative, the speed is increased. When the torque of the
runner fluctuates by no more than ±1 N·m around 0 N·m and remains stable for more
than 3 s, the current parameters such as n, H, Q, and P are recorded, and n11 and Q11 are
calculated based on Dlow. Figure 2 shows the runaway points measured in the model test;
the guide vane opening angles of 1~28 degrees are considered. Table 1 lists the details of
the points.
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Figure 2. Runaway points measured in model test.

Table 1. Details of the runaway points.

Condition No. α [Degrees] n11 Q11 Shaft Torque [N·m]

C01 1 35.598 0.052 −0.85
C02 2 40.526 0.074 −0.37
C03 3 42.849 0.091 −0.52
C04 4 44.724 0.107 0.20
C05 5 46.144 0.120 −0.77
C06 6 47.063 0.134 −0.55
C07 7 47.819 0.146 −0.54
C08 8 48.447 0.157 −0.79
C09 9 48.971 0.170 −0.15
C10 10 49.483 0.181 −0.65
C11 12 50.409 0.206 −0.32
C12 14 51.208 0.231 −0.40
C13 16 52.072 0.256 −0.83
C14 18 52.822 0.283 −0.00
C15 20 53.561 0.310 0.00
C16 22 54.267 0.337 −0.37
C17 24 54.911 0.368 0.00
C18 26 55.481 0.395 −0.32
C19 28 55.94 0.421 −0.32
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3.3. Positions of Pressure Pulsation Measurement

The measurement of pressure pulsation relies on dynamic pressure sensors and PCB
signal amplifiers, both of which have an accuracy of 1%. A total of 7 measuring points are
arranged on the model pump-turbine, including Pvv1 and Pvv2 points between the stay
vane and the guide vane, Prv1 and Prv2 points between the guide vane and the runner, Pdt1
points adjacent to the outlet of the draft tube and the runner, Pdt2 points in the middle of
the straight section of the draft tube, and Pdt3 points in the elbow section of the draft tube.
The specific locations of these monitoring points are shown in Figure 3.
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4. CFD Method
4.1. Fluid Domain and Mesh

To analyze the flow field in a pump-turbine which is not visible in the model test,
computational fluid dynamics (CFD) is used in this study. Figure 4 shows the domain used
in CFD including volute, stay vane, guide vane, runner, and draft tube. The mesh is created
for CFD simulation with size independence check. The residual of pressure difference
between volute inlet and draft tube outlet is used as the criterion. Finally, a mesh scheme
with 9,668,956 elements is chosen because the residual becomes less than 0.001 as shown
in Figure 5. With this mesh solution, it is expected to achieve a good balance between
computing resource consumption and accuracy.
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4.2. Setup of CFD Simulation

In this CFD simulation, it is necessary to seek runaway points under different guide
vane openings. ANSYS CFX, which is stable and widely used as a commercial software, is
used for the CFD code. For turbulence simulation, the Shear Stress Transport model [24] is
used as the turbulence model to close the time-averaged Reynolds-averaged Navier-Stokes
equation. The basic setting remains unchanged; that is, the medium is 25 ◦C water, and
the pressure reference value is 1 atmospheric pressure. Cavitation is not considered in this
case because it does not happen in the model test due to the high-pressure environment.
The speed is set to a value between 400~630 r/min and corresponds to the model test. The
assignment is achieved by setting the runner as the rotational domain. In order to allow
the fluid to enter the computational domain of the unit, the inlet boundary of the volume is
given as a flow-rate-type inlet, which actually specifies the velocity and direction at the
boundary. The outlet side of the draft tube is given pressure, with a relative static pressure
value of 0 Pa. All walls have no-slip wall type boundaries. The data transfer between
different computing domains relies on the interface type of the general grid interface.
In order to compare the magnitude of pressure fluctuations, the CFD simulation adopts
an unsteady type. A total of 1800 steps are calculated for each runner revolution (time
step depends on the actual rotational speed); each step requires 10–20 iterations, and the
convergence criterion is that the residual of both the continuity equation and momentum
equation is less than 0.00001. In this study, the advection scheme is high-resolution and the
turbulence numerics are also high-resolution.

5. Results and Analysis
5.1. Pressure Pulsation Intensity by Guide Vane Opening

According to the common testing and analysis methods for pressure pulsation in
hydraulic machinery [25–27], measurements were based on MICROSENSOR’s MPM489
pressure transmitter; its accuracy is 0.5%, the pressure range is −0.1~100 MPa, the output
signal is 4–20 mA, and the sampling frequency is 800 Hz. The pressure pulsation amplitude
by model test is shown in Figure 6, where the relative pulsation amplitude ∆p* is defined as

∆p∗ =
∆p

ρgH
(4)

where ∆p is the pressure pulsation amplitude at a specific point and can be calculated as
illustrated in Figure 6a. H is the head of the pump-turbine:

H =
pin − pout

ρg
(5)
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where pin and pout are the pressures at the pump-turbine volute inlet and the draft tube
outlet, respectively. This represents the percentage of the pressure pulsation value at this
point relative to the head. In this study, the 97% confidence level was used to analyze the
amplitude of pressure pulsation, removing the influence of accidental factors.
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From Figure 6, it can be seen that at points Prv1 and Prv2 in the vane region between
the guide vane and the runner, the amplitude of pressure pulsation gradually increases
with the increase in the guide vane opening angle α. When the opening angle of the guide
vane increases to 28 degrees, the relative value of pressure pulsation can even reach 60–70%.
At points Pvv1 and Pvv2 in the vaneless region between the guide vane and the stay vane,
the amplitude of pressure pulsation shows a peak at a guide vane opening angle within the
range of 10–12 degrees. At this peak, the amplitude of pressure pulsation can reach about
20%. Then, the amplitude of the pressure pulsation experienced a slight drop and then
rose again, reaching about 25% at a guide vane opening angle of 28 degrees. For the three
points in the draft tube, when the guide vane opening angle is 12 degrees, the amplitude
of pressure fluctuation also has a peak. As the opening angle of the guide vane increases,
the pressure pulsation decreases and then rebounds, but the relative amplitude does not
exceed 10%. In general, the pressure pulsation is strongest in the vane region between the
guide vane and runner, followed by the vane region between the guide vane and the stay
vane, and weaker in the draft tube. In the draft tube, the farther away from the runner, the
weaker the pressure pulsation.

5.2. Reference Plotting Positions

To understand the flow mechanism in the pump-turbine, two reference plotting
positions are set in pump-turbine flow passages as shown in Figure 7. Reference position 1
(RP1) is the mid-section of the volute, stay vane, and guide vane perpendicular to the
rotation axis and mid-span of the runner. Reference position 2 (RP2) is the mid-section
passing through the runner rotation axis.
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5.3. Experimental-Numerical Comparison of Pressure Pulsation Intensity

Four different guide vane opening conditions were compared, including the α cases
of 4, 12, 20, and 28 degrees, covering the cases of weak, medium, strong, and local peak
of pressure pulsation. Figure 8 shows the comparison of pressure pulsation amplitude
between experimental values and CFD values at Prv1, Prv2, Pvv1, Pvv2, Pdt1, Pdt2, and Pdt3
points, respectively, and the 97% confidence level was still used. It can be seen that CFD
simulation accurately predicts the amplitude of pressure pulsation, which can assist in the
analysis of subsequent sections.
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5.4. Internal Flow Pattern in Pump-Turbine

Figure 9 shows the flow pattern distribution rule in the pump-turbine, which can
reveal the local flow pattern and judge whether there are vortex, back flow, and secondary
flow structures. When the guide vane opening angle is 4 degrees, the flow pattern in
the volute, stay vane, and guide vane on RP1 is smooth. There are uniformly distributed
large eddies inside the runner. The flow inside the volute on RP2 is symmetrical along the
centerline, and there are many large vortexes inside the draft tube. The velocity between
runner and guide vane is relatively high, reaching a maximum of 19.3 m/s. When the
guide vane opening angle is 12 degrees, the flow pattern in the volute, stay vane, and guide
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vane on RP1 is still good. There are vortexes inside the runner, but their distribution is
uneven, occupying a portion of the flow channel. The flow inside the volute on RP2 is
symmetrical along the centerline, and there are many large vortexes inside the draft tube,
which is similar to that at 4 degrees. The velocity between runner and guide vane is still
high, and the maximum velocity increases to 20.5 m/s. When the guide vane opening
angle is 20 degrees, the vortex flow inside the runner on RP1 becomes the flow dominated
by the transverse secondary flow. The flow inside the volute on RP2 is symmetrical along
the centerline, and there are many large vortexes inside the draft tube, which is similar to
that at 4 degrees and 12 degrees. The maximum velocity between runner and guide vane
further increases to 22.6 m/s. When the opening angle of the guide vane is 28 degrees,
the flow inside the runner on RP1 becomes dominated by vortexes, and the distribution
of vortexes is uneven. There is still a large vortex in the draft tube on RP2. The maximum
velocity between runner and guide vane further increases to 27.0 m/s.
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5.5. Vortex Intensity in Pump-Turbine

The Q-criterion is often used for vortex identification and is closely related to the
velocity gradient tensor [28]. The velocity gradient is decomposed into strain rate tensor S
and rotation rate tensor Ω as

S =
1
2

[
∂ui
∂xj

+
∂uj

∂xi

]
(6)

Ω =
1
2

[
∂ui
∂xj
−

∂uj

∂xi

]
(7)

The value of Q is defined as the second invariant of the velocity gradient tensor,
representing the region dominated by vorticity, or vice versa:

Q =
1
2

[
‖Ω‖2

F − ‖S‖
2
F

]
(8)

Figure 10 shows the vortex distribution pattern based on the Q-criterion on RP1 and
RP2. When the opening of the guide vane is at 4 degrees, there are strong positive or
negative Q values at the trailing edge of the guide vane and the leading edge of the runner.
The distribution area is relatively limited. When the opening of the guide vane is at
12 degrees, the strong positive or negative Q value areas at the trailing edge of the guide
vane and the leading edge of the runner expand, and are mainly distributed on the side
with smaller cross-sectional area of the volute, forming strong non-uniformity. When the
opening angle of the guide vane increases to 20 degrees, the strong positive or negative
Q value areas at the trailing edge of the guide vane and the leading edge of the runner
do not change much, but are evenly distributed throughout the circumference. When the
opening of the guide vane is at 28 degrees, the strong positive or negative Q value areas
at the trailing edge of the guide vane and the leading edge of the runner further increase
and have already extended into the runner blade channel. It can be seen that the strength
of vortexes seems to be related to the amplitude of pressure pulsation, and the strong and
uneven distribution of vortexes may be the key to causing pressure pulsation.
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5.6. Entropy Production in Pump-Turbine

Herwig et al. [29] provided an entropy production method for quantitatively calculat-
ing the flow energy dissipation. The energy dissipation is particularly treated as term Eloss
and term Edisp and can be calculated as time-averaged and pulsating terms when using the
RANS method.

E′ = Eloss + Edisp = T
[(

Spc
)
+
(

Spc′
)]

+ T
[(

Spd

)
+
(

Spd′
)]

(9)

where Spc and Spc′ are the sub-terms of entropy production caused by energy loss, and
Spd and Spd′ are the sub-terms of entropy production caused by energy dissipation. These
sub-terms can be calculated based on the turbulent flow field:
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where x, y, z are coordinate components. This entropy production-based method considers
the variation of velocity and temperature during the flow process. It may be helpful in
analyzing the reason for local strong flow-flow and flow-wall interaction [30,31].

Figure 11 shows the Flow energy dissipation in pump-turbine. When the opening of
the guide vane is at 4 degrees, the position with strong energy dissipation is located in the
area between the guide vane and the runner. Among them, the leading edge of the runner
blade is the strongest, and the maximum value of E′ is about 1000 W/(m3K). When the
opening of the guide vane is at 12 degrees, the position with strong energy dissipation is
still located in the area between the guide vane and the runner. The maximum value of E′

at the leading edge of the runner blade can reach over 3000 W/(m3K). When the opening of
the guide vane is at 20 degrees, the energy dissipation in the area between the guide vane
and the runner is still strong. However, the area where the E′ on the leading edge of the
runner blade exceeds 3000 W/(m3K) is actually smaller than when the guide vane opening
is at 12 degrees. When the opening angle of the guide vane increases to 28 degrees, the area
of the E′ on the leading edge of the runner blade exceeding 3000 W/(m3K) significantly
increases. From the perspective of entropy production rate, according to the second law
of thermodynamics, a decrease in fluid mechanical energy transforms into an increase in
internal energy. Therefore, the stronger E′ represents a decrease in flow velocity and an
increase in temperature, which is closely related to the pulsation of the flow field.
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6. Discussion

This study is based on model experiments or model-scale numerical simulation anal-
ysis. In the model scale, experiments were conducted to find a point with a torque of
0 by adjusting the supply pump based on the fixed rotational speed of a rotor given by the
motor. In fact, during the runaway process of the prototype pump-turbine, the fluid enters
the runner uncontrollably, causing the runner speed to increase to a maximum limit value.
At this point, the torque is 0, and the corresponding speed needs to be tested to determine
it. Compared between the two situations, the model scale refers to a relatively stable
state driven by the runner, while the prototype scale refers to a state where the rotational
speed repeatedly fluctuates slightly under the flow’s driving. There may be differences in
dynamics between the two, as shown in Figure 12. The components in velocity triangle [32]
are the rotational linear velocity of runner U, relative flow velocity W, absolute flow velocity
V, and meridional absolute velocity Vm. Vm is equal to Q/A, where Q is flow rate and A is
flow passing area. Both the runner’s acceleration and the flow rate’s decreasing will make
the runner to lose motivation and become runaway. There may also be some differences in
the characteristics of pressure pulsation and force (including motive force and drag force),
which need to be further studied and explored in future research.
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7. Conclusions

Based on this research on pump-turbines for hydropower and ocean power, the
conclusions of this study can be drawn as the following three points:

(1) Under the runaway condition, there is a certain regularity in the strength of pressure
pulsation inside the unit, which is clearly reflected through the pressure pulsation
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amplitude at a 97% confidence level. Firstly, the area between the runner and guide
vane is the strongest. Secondly, the area between the guide vane and the stay vane is the
second strongest, only lower than in the area between the runner and the guide vane.
The amplitude of pressure pulsation in the draft tube increases with the distance away
from the runner. It can be seen that the runner is the cause of strong pressure pulsation.

(2) Within the guide vane opening angle range of 1 to 28 degrees, as the guide vane
opening increases, the pressure pulsation mainly shows an upward trend, but there
are also local pulsations and peaks. When the opening of the guide vane is small,
the pressure pulsation caused by runaway is less than 5% even in the area between
the runner and the guide vanes. When the opening of the guide vane increases to
12 degrees, a local peak appears, and the amplitude of pressure pulsation can reach
40~50%. When the opening of the guide vane is at 28 degrees, the pressure pulsation
is very intense, with an amplitude of nearly 70%, making operation very dangerous.

(3) From the streamlined distribution, it can be seen that the cause of pressure pulsation
may be related to the uneven distribution of vortexes. Especially the uneven distribu-
tion of vortexes inside the runner can lead to local peaks in pressure pulsation. From
the vortex identification method based on the Q-criterion, it can be seen that pressure
pulsation is related to the uniformity of vortex distribution at the inlet circumference
of the runner. The pulsating flow field leads to the dissipation of flow energy, causing
changes between mechanical energy and internal energy.

In general, the results of this study can provide a scientific reference for the investigation
of accident causes and stability improvement of pump-turbines under runaway conditions.
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