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Abstract: The knowledge of salinity in a specific sea area with high accuracy is required to solve
several acoustic and hydrophysical problems on the ocean shelf. Unlike temperature, which can
be measured continuously for a long time, with, for example, thermistor strings (thermostrings),
salinity values of required accuracy can be obtained only using CTD profiling. This is why methods
of estimating salinity from temperature could be helpful. In this paper, the authors propose using the
regression method for solving this type of problem and demonstrate the efficiency of this method
using examples of temperature measurements from anchored thermostrings. For the correct construc-
tion of regressions, the authors analyzed the errors of CTD measurements and suggested a method
for the dynamic correction of raw CTD data. From CTD profiling datasets of 12 years (2011–2022),
after their dynamic correction, the authors obtained regression polynomial formulas for calculating
salinity from temperature and studied data stability in space and time at the hydrophysical test site,
located in the shelf zone of the Sea of Japan. The authors consider this method efficient and applicable
in solving a variety of acoustic and hydrophysical problems.

Keywords: CTD profiling; Ts regression; dynamic correction; sound speed fluctuations; temperature
sensors; shelf; the Sea of Japan

1. Introduction

The most important thermodynamic parameters of seawater are temperature, salinity,
and pressure. Consequently, all hydrophysical fields in the ocean can be calculated from
the spatial distribution of these parameters.

Unlike temperature (T), available data on salinity (s) in the World Ocean are irregular
and inhomogeneous. Expendable bathythermographs (XBTs) are actively used to measure
ocean temperature alongside ship-based, satellite, and drifter observations. XBTs are often
used for routine temperature measurements from merchant and passenger ships [1,2].
Salinity data are replenished only from specialized expeditions using CTD profiling [2].

In the past few decades, due to active development and subsequent application of
numerical ocean circulation models, the issue of correctly specifying the initial values
of T and s of the ocean, as well as proper data assimilation, has become highly relevant.
Ultimately, two approaches to solving this problem were proposed. The first [1,2] is the
use of mean climatic values of T and s from available databases, interpolated on the one-
degree grid. The second approach [2–4] is the development of methods that allow, with the
availability of temperature measurements, to estimate salinity at any point in the ocean
based on the statistical relationship between T and s. This approach appears more attractive
because it can give a more accurate and uniform distribution of T and s data over the
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ocean area under study. The beginning of research on statistical dependencies of T and s
goes back to the works of the first researchers—Shtokman, Stommel, and Mamayev. In
the works of these authors, the theory of Ts diagrams was developed, which is based
on studies of the specific patterns of combined change in temperature and salinity with
depth [5,6]. They proposed using the statistical interrelation between T and s based on
using the average salinity at a given temperature according to Ts diagrams [7]. Stommel
proposed a solution to the problem only for a limited class of fairly homogeneous water
masses with clearly defined Ts structure. In subsequent years, many authors proposed
both various modifications of the Stommel method and new approaches based on the
analysis of the statistical relationship between T and s, for example, [8–10]. We will not
dwell here on the review and analysis of these methods, since it is beyond the scope of
our proposed discussion. The current state of this problem can be found, for example,
in [10]. Let us focus only upon some publications, in which the regression of T and s
was used, which corresponds to the topic of this article. We shall note that the regression
analysis for estimating salinity from temperature measurements was proposed in [11].
The authors used a regression, in which, in addition to the functional dependence of
temperature and salinity on depth, they also considered the dependence of salinity on
latitude. As predictors of the regression formulas, they chose the temperature values
by the depth and salinity values on the ocean surface, i.e., actually, the regression was
linear. For the selected area of the North Pacific Ocean, they were able to reduce the error
in determining salinity by almost an order of magnitude. The next step in developing
regression methods was the use of regression formulas with polynomials of higher orders.
In [3,4], attempts were made to find suitable regression formulas for estimating salinity
in the Gulf of Mexico and the area of the northwestern Atlantic. For the case of the Gulf
of Mexico, the authors were able to show that using polynomials of the second degree is
sufficient to achieve the specified accuracy [3]. For the Atlantic, the situation turned out to
be much more complicated [4]. First, to approximate the salinity profile, it was necessary
to use polynomials of up to the fourth order. Second, it turned out that the accuracy of
the approximation could be significantly improved by dividing the study area into two
areas and using its own polynomial regression in each area. In addition, the regression
coefficients significantly depended on the specific season of the year. The authors explain
the variability of the regression over space and seasons by the presence of water masses
of different compositions, caused by the Labrador Current and the Gulf Stream [4]. The
regression approach was further developed in the works of other authors, for example [2].
The main conclusion obtained in these works is as follows: regression gives good estimates
of salinity only for the areas with quasi-homogeneous water composition. Thus, solving
similar problems requires monitoring of water composition within the study area.

For several years, the authors of this paper have been conducting regular hydroa-
coustic [12,13] and hydrophysical studies [14–16] at the geophysical test site of the Pacific
Ocean Institute of the Far Eastern Branch of the Russian Academy of Sciences (POI FEB
RAS), located in the shelf zone of the Sea of Japan. The main objectives of these studies
are the research of intense internal waves (IWs), the effect of background (linear) and
nonlinear IWs on the formation of sound fields, and statistical evaluation of weak sound
signals against the background of ambient noise, for example [12,14,15,17]. The main
measuring hydrophysical instruments for the experiments were current meters, thermistor
strings (thermostrings) and CTD profilers, and various hydroacoustic equipment [13,18].
To successfully solve these problems in individual points of the test site, it was necessary to
obtain continuous time series of not only temperature but also salinity with an accuracy
of 0.1–0.2 psu (these values will be explained below). This was the main motivation for
studying the functional relationship between T and s.

The purposes of the paper are to obtain polynomial regression formulas, based on CTD
data, for calculating salinity from temperature and electrical conductivity after their dy-
namic correction; to study the stability of the obtained regressions over the space of the test
site by seasons. We also aim to determine which hydrometeorological events may change
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the previously obtained regression; to apply functional relationships of temperature and
salinity, obtained from CTD measurements at the marine test site, for continuous calculation
of hydrophysical parameters with specified accuracy from long-term thermostrings data.

The paper consists of the following sections:
In Section 2, we present a geographical description of the marine test site. Points of

CTD measurements and thermostrings’ installations are specified. A general discussion
of experimental data by season is included. In Section 3, CTD data errors are discussed.
Methods and approaches are proposed for correcting dynamic errors, which make the
greatest contribution to the process of CTD measurements under conditions of sharp
temperature gradients. In this section, we present the results of the application of the
authors’ methods, and the results of their comparison with the methods offered by profiler
manufacturers. In Section 4, Polynomial Ts regressions, built after the dynamic correction
of CTD data, for 12 years by seasons are presented. Estimates of the error obtained for
calculating salinity from temperature are given. The issues of regression stability over time
and space of the marine test site are discussed. In Section 5, we present two examples of
using thermostrings over a long period of time and regression obtained from occasional
CTD measurements and dynamic correction: the study of the buoyancy frequency and
sound velocity fluctuations variability over time. In Section 6, the results of experimental
studies are discussed and summarized.

2. Study Area and Experimental Data

The experimental studies presented below were carried out at the hydrophysical
test site of POI FEB RAS, located in the southwestern part of Peter the Great Bay of the
Sea of Japan, including a significant part of the Posyet Bay shelf, all the way to the shelf
break (to the 100 m isobath). Figure 1 shows in detail the marine part of the test site and
presents a scheme of equipment setup and CTD profiling points during 2011–2022, in
three seasons—spring, summer, and autumn.
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In the insert to Figure 1, the area of the hydrophysical test site is marked with a
rectangle. Letters S with numbers indicate thermostrings, and blue circles and letters P
indicate the places of bottom hydrostatic pressure loggers’ location.

This area of the sea is characterized by a rather narrow shelf, from 10 to 25 km wide.
The shelf topography in this study area is characterized by a relatively smooth change in
depth up to the 100-m isobath—5 m/km, from the 100-m to 200-m isobath—20 m/km, and
then an abrupt drop in the depth of 210 m/km in the depth range from 200 m to 2 km [19].

The directions of the CTD profiling routes and thermostrings setup were chosen
approximately parallel (line S1–Sc) and normal (line S1–S5) to the movement of the tidal IWs
fronts, which are formed at the edge of the shelf break under the action of hydrodynamic
jump following the tide [20].

Various dynamic processes are possible at the test site both in the water mass and
in the adjacent airspace: in spring and summer, southerly winds can cause a significant
wind-induced setup from the open part of the Sea of Japan; in autumn upwelling is
formed under the action of northwesterly winds; in the second half of summer and early
autumn, powerful typhoons sometimes pass, with abundant precipitation [16,21]. In the
southwestern direction, at a distance of about 30 km from the test site, there is the mouth
of the full-flowing Tumannaya River, from the same direction, more seawards, the warm
Tsushima Current flows, and from the northeast, cold waters of the Primorsky Current
enter Posyet Bay. The multidirectional character of sea currents, irregularity of the river
flow, and heterogeneity of the bottom topography and coastline contribute to the formation
of mesoscale vortices [22,23]. Vortices, upwelling, strong winds, and typhoons can lead
to active mixing, freshening of the waters in the bay, and advection of extraneous water
masses. Within the framework of this paper, we will refer to any of the listed dynamic
processes as a hydrometeorological event (HE). The onset of any of the listed HEs can
significantly change the structure of the test site waters, formed before the HE. For this
reason, noticeable changes in the thermohaline stratification of the water column of the bay
can occur over time intervals of the order of the synoptic scale. Figure 2 shows the ranges
of temperature changes according to CTD profiling at the stations of the hydrophysical test
site for 12 years. Here, the left line of one color shows the minimum and the right line of
the same color shows the maximum values of temperature and salinity in a certain season.
Observations within one season averaged 2 weeks. The temperature range for all seasons
for the period of 2011–2022 was from 0 to 26 ◦C, and the salinity changes range was from
31.2 to 34.1 psu.
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Figure 3 shows the characteristic temperature distributions recorded by the S4 ther-
mostring in different seasons: 24 May–7 June 2022 (331 h), 31 July–14 August 2022 (336 h),
and 3–14 October 2022 (257 h).
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Figure 3 (top) illustrates the spring dynamics of temperature stratification caused not
only by radiative heating of the upper layer but also by the advection of relatively warm
waters from the open part of the Sea of Japan into the shelf zone of the bay under the
influence of the southern monsoon. The temperature distribution along z is predominantly
linear 0.1 ◦C/m with thin gradient layers of up to 1 ◦C/m, in the absence of a stable upper
homogeneous layer.

Figure 3 (middle) shows a typical example of summer thermal stratification of the
water column of the bay when the period of intense radiative heating ends and the tem-
perature of the surface layer increases to 24–26 ◦C. At the same time, low temperatures of
up to 1 ◦C remain in the bottom layer due to the inflow of cold waters from the open part
of the Sea of Japan, also due to tidal processes and the Primorsky Current. Due to intense
heating, temperature gradients of up to 3 ◦C/m and more are formed in the upper layer
at horizons of up to 6–10 m. Below, there is a low-gradient layer of 0–0.2 ◦C/m, covering
the main water column to 40–45 m. The near-bottom high-gradient layer of 1–4 ◦C/m is
formed under the influence of the dynamic processes described above.

Figure 3 (bottom) shows typical autumn temperature stratification, when, due to
cooling under the influence of the northern monsoon, a characteristic three-layer structure
is formed with pronounced homogeneous layers 10–15 m thick in the upper and lower
parts and an intermediate thermocline layer with a gradient of up to 2.5 ◦C/m. In the case
under consideration, during the observation period from 3 October to 14 October 2022, the
thermocline changed its thickness two-fold and the position of the upper boundary—by
20 m.

3. Correction of CTD Data

We should note that in the past few decades, manufacturers of CTD profilers have
equipped them with high-precision modern sensors for temperature, electrical conductivity,
and pressure [24,25]. An inexperienced researcher may hope that the characteristics of
the sensors are more than sufficient for direct measurement of hydrophysical fields with
the required accuracy. Indeed, in several oceanological problems, one can limit oneself to



J. Mar. Sci. Eng. 2023, 11, 1204 6 of 24

directly measured primary parameters T1, E1, and p1 (temperature, electrical conductivity,
and pressure), which are then used to calculate derived parameters, for example, s1, c1,
ρ1, and N1 (salinity, sound speed, density, and buoyancy frequency). This is so if we
limit ourselves to the analysis of distributions of hydrological parameters of water in the
absence of sharp gradients to monitor the dynamics of internal waves. For experimental
and model studies of low-frequency sound, the primary values of the sound speed may
also be sufficient. However, this is not always the case. The presence of high-temperature
gradients in the thermocline layers can significantly “noise” the derived parameters of CTD
profiling [26]. This problem is especially important in the shelf zone. Here, the layer of
seasonal thermocline can occupy a significant part of the water column. Thus, the errors in
the CTD profiling data in shallow seas will be much greater than in deep oceans [27].

In the process of working with data from many years, the authors established that the
problem of correcting CTD data is especially important for the proper construction of Ts
regression curves. Dynamic errors of CTD measurements in shallow seas, as a rule, lead to
incorrect construction of such regressions [28,29].

3.1. Errors of CTD Measurements

Over the past 12 years, we performed CTD measurements with SBE 19plus pro-
filers (Sea-Bird Electronics, Inc., Bellevue, WA, USA), and with RBR XR-620, XRX-620,
RBRconcerto (Ricard Brancker Research Ltd., Toronto, ON, Canada) models with simi-
lar characteristics.

Marine environment parameters measured with profilers contain instrumental and
methodological errors. The methodological errors in CTD data are due to measurement
methods and related conditions. In particular, with the drift and pitching of the vessel, due
to the mechanical connection of the winch (using a cable) with the submersible CTD profiler,
the mode of the device movement is unsteady. In a stratified environment, CTD profiling
data will contain distortions comparable to estimates of dynamic errors [30]. Instrumental
errors consist of three parts—systematic, random, and dynamic. All these errors are
determined by the metrological characteristics of the CTD profilers, and by stratification
of the studied water column [31]. The metrological characteristics of the profilers are
usually given by the manufacturers in the provided manuals [24,25]. For example, for
the XR-620 profiler, the accuracy of measuring electrical conductivity, temperature, and
pressure is 0.003 mS/cm, 0.002 ◦C, and 0.4 kPa, respectively. The resolution of all three
sensors is 0.001 mS/cm, 0.00005 ◦C, and 0.005 kPa, respectively. RBR estimates the inertia
of the thermometer as 0.1 s, and that of the pressure sensor—as 0.01 s. For the electrical
conductivity sensor, inertia is a function of the speed of the profiler movement. The other
profilers mentioned above have similar metrological characteristics.

Analysis of the measured data and its further use for solving several hydrophysical
problems is impossible without assessing and taking into account the levels of errors, and
primary data processing. Both procedures allow the reduction of the contribution of these
errors to the required level. The systematic component of instrumental error depends on the
accuracy of determining the calibration coefficients established in the laboratory during the
calibration of the corresponding sensitive element (sensor) of the instrument. Evaluation of
the level of this component takes into account the accuracy and drift values declared by the
manufacturer [24,25]. The random component of instrumental error includes the noise that
occurs in the measuring channel of the sensor, and the capacity of the used ADC, i.e., signal
quantization step. Estimates of this type of error in the data of most modern hydrological
instruments, as a rule, do not exceed 2–3 quantization steps [27].

The errors in the measured values of temperature T1 and electrical conductivity E1
affect the subsequent calculations of other hydrophysical parameters of water, which are
determined by the values of temperature, salinity, and pressure η = η(T, s, p). To estimate
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such an effect on salinity s(T, E, p), density ρ(T, s, p), and sound speed c(T, s, p) of water, we
will use linearized phenomenological formulas [32]:

s1 = s(T, E, p) + ∂s
∂T δT + ∂s

∂E δE + ∂s
∂p δp,

η1 = η(T, s, p) + ∂η
∂T δT + ∂η

∂s δs + ∂η
∂p δp, η = {ρ, c}

(1)

where δT = T1 − T, δE = E1 − E, δs = s1 − s, and δp = p1 − p.
Table 1 shows values of the coefficients of the linearized equations calculated for the

following ranges of parameters T, E, p, s: 1 ≤ T ≤ 25 ◦C, 27 ≤ E ≤ 51 mS/cm, p ≤ 200 dbar,
31 ≤ s ≤ 34 psu. The boundaries of the parameter variation ranges were chosen based on
the analysis of CTD profiling data from 2011 to 2022.

Table 1. Values of the coefficients of the equations for determining the errors in s, ρ, c.

∂s/∂T = 0.6–1.3 psu/◦C ∂ρ/∂T = −0.3–0 [g/cm3]/◦C ∂c/∂T = 2.6–4.4 [m/s]/◦C
∂s/∂E = 0.7–1.3 psu/[mS/cm] ∂ρ/∂s = 0.7–0.8 [g/cm3]/psu ∂c/∂s = 1–1.3 [m/s]/psu

∂s/∂p = 0.0005 psu/dbar ∂ρ/∂p = 0.0046 [g/cm3]/dbar ∂c/∂p = 0.016 [m/s]/dbar

If we assume that systematic and random errors of the measured parameters of
the state and electrical conductivity are independent, then the errors of the calculated
parameters, for example, speed of sound ∆с1 can be estimated as follows:

∆1 =
[
(∂c/∂T ∆T)2 + (∂c/∂s ∆s)2 + (∂c/∂p ∆p)2

]1/2
. (2)

As we know, the largest values of instrumental errors in CTD profiling data fall on their
dynamic components, which significantly depend on the stratification of seawater, the iner-
tia of the CTD profiler sensors, and the mode of its movement in the water column [28,33].
In many in-situ measurements, dynamic errors can exceed all other instrumental errors by
dozens of times [27].

Influence of inertial effects on the measured values of electrical conductivity E1(t) and
temperature T1(t) in stratified layers of seawater E(t) and T(t) at any moment of time t are
described by approximated first-order differential equations [31]:

T(t) = T1(t) + τT
d
dt

T1(t), E(t) = E1(t) + τE
d
dt

E1(t), (3)

where the values of the inertial coefficients τT and τE can change over time and depend
on the structural features, on properties of the sensitive elements of temperature and
electrical conductivity sensors materials, and also they significantly depend on param-
eters of the flows surrounding the sensors during movement of the CTD profiler [33].
From Equation (1) it follows that the dynamic errors are proportional to the values of the
derivatives T′1, E′1 (T

′ ≡ dT/dt):

∆T1(t) = T(t)− T1(t) = τT T′1(t), ∆E1(t) = τE E′1(t). (4)

Sensors of the SBE 19plus profiler—a thermometer and an SBE 4 conductivity cell are
connected to the pumping channel of the SBE 5 pump. Due to the constant velocity of the
measured fluid inside the channel, the values of the inertial coefficients are estimated by
constants τE(t) ≈ 0.06 s and τT(t) ≥ 0.5 s [24,34].

The XR-620 and XRX-620 profilers are equipped with an induction cell of conductivity
and a fast-response platinum thermometer [25], which, when the device moves in the
water column, is freely washed by the oncoming flow of seawater. In this case, the inertial
coefficients depend on the profiling velocity v. With stationary motion of the device,
v(t) = const, and laminar modes of flow around the sensors, these dependences have the
form: τE(v) ~ v−1.5 and τT(v) ~ v−0.5 [28].
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The authors took into account the possible limits of the variability of the inertial
coefficients and all profiling was performed at the speed of 0.5 < v < 1.5 m/s. Under
such conditions, the expected inertia of the XR-620 profiler thermometer does not exceed
τT(v) ≤ 0.2 s, and the time constant of the induction cell is minor, τE(v) << τT(v), and can
be neglected [28].

As we have noted above, the shelf zone of Peter the Great Bay from May to October
is characterized by a developed seasonal thermocline. Its structure contains layers with
significant temperature gradients |∂T/∂z| ~ 1–3 ◦C/m. In these layers, the dynamic errors
of temperature measurement with the SBE 19plus and XR-620 profilers are dozens of
times greater than the total levels of systematic and random components. Table 2 presents
estimates of various types of errors for two types of CTD profilers. Systematic and random
errors are calculated based on the data provided by the manufacturers, taking into account
formulas (1) and (2) and the data in Table 1 [24,25]. Dynamic errors are estimated here
under the assumption that profiling was carried out in a thermocline with temperature
gradient |∂T/∂z| = 1 ◦C/m with profiler movement speed v = 1 m/s. At such speed, the
temporal temperature variability in the sensor point is |∂T/∂t| = 1 ◦C/s, which makes
it possible to estimate the errors in temperature and electrical conductivity, taking into
account Equation (4). Other hydrophysical parameters are estimated with account for
Formula (1) and data from Table 1.

Table 2. Systematic, random, and dynamic errors (|∂T/∂z| = 1 ◦C/m).

CTD Profiler Seawater Parameters Random Errors Dynamic Errors

SBE 19plus

T 0.007 ◦C 0.5 ◦C
s 0.012 psu 0.5 psu
ρ 10−5 g/cm3 40 × 10−5 g/cm3

c 0.03 m/s 2 m/s

RBR XR-620

T 0.004 ◦C 0.2 ◦C
s 0.008 psu 0.5 psu
ρ 0.6 × 10−5 g/cm3 20 × 10−5 g/cm3

c 0.015 m/s 1 m/s

3.2. Minimization of Dynamic Errors

As it follows from Table 2, dynamic errors are an order of magnitude greater than
systematic and random errors. For many tasks, this situation can be unacceptable. For
example, if we study fluctuations in the speed of sound on the shelf, then we must ensure
accuracy no worse than 0.1–0.2 m/s, because the magnitude of these fluctuations can be
1–4 m/s [35]. If sound speed fluctuations are obtained from temperature based on the
regression Ts curve, then the requirements for measurement accuracy will only increase.

Next, we shall define possible methods of correcting CTD data and propose algorithms
for minimizing dynamic errors.

Let us first consider the simplest situation, when salinity in seawater is constant
s(z) = s0, and temperature distribution along the vertical line is described by the harmonic
function

T(z) = T0 + θ exp(2πi z/L), (5)

where L is the scale of temperature variability relative to the value of temperature T0,
and θ is the amplitude of these variations. With sufficiently small linear dimensions of
temperature and electrical conductivity sensors, according to Equation (1), they are inertial
links of the first order and correspond to the characteristics of linear converters with lumped
parameters. Let further ω = 2πv/L be a fixed value of frequency; v is the speed of the profiler.
Then measured profiles T1(t) and E1(t) are determined by the following equations:

T1(t) = T0 + θ aT exp[iω (t + ϕT)],
E1(t) = E0 + ∂E/∂T θ aE exp[iω (t + ϕE)] + ∂E/∂p p(t),

(6)
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were ϕ = ω−1 ψ, and a =
(
1 + ω2τ2)−0.5, ψ = arctg(ωτ) are amplitude and phase

functions of the corresponding sensors.
Lack of equality of inertial coefficients τT 6= τE leads to a mismatch between the

profiles T1(t) and E1(t) in terms of amplitudes aT 6= aE and phases ϕT 6= ϕE. Inside the
temperature gradient layer, this mismatch manifests itself as a phase shift ∆ϕ = ϕE − ϕT
between the derivatives and T′1 and E′1, and in the measured salinity profile additional
parasitic changes appear, called “salinity spike” [36]

∆s1 = ∂s/∂T θ aE [1− aT/aE exp(iω ∆ϕ)] exp[iω (t + ϕE)]. (7)

The simplest analysis of frequency functions shows that with small-scale variations
L→0 (ω→∞) in Equations (6) and (7) influence of the amplitude function a→0 (ϕ→0)
prevails. As the scale L→∞ (ω→0) increases, the contribution to Equations (6) and (7) of
the phase component ϕ→τ (a→1) increases. At stratification scales L ≥ 20 vτ, the estimates
a ≥ 0.95 and ϕ ≈ τ are valid, and the contribution of the amplitude function can be
neglected when estimating the dynamic error of the water environment parameters [27,36].

In real conditions, stratification of the seawater column usually has a stepped structure,
with an alternation of quasi-homogeneous and gradient layers. Assuming a layer thickness
of ∆z, we consider the scaling parameter L = 2∆z. CTD data measured in gradient layers
with a thickness of ∆z ≥ 10 vτE, under the condition of τT > τE, contain dynamic errors,
which are mainly determined by the phase functions ϕT ≈ τT and ϕE ≈ τE, since in this case
aT ≥ 0.95 and aE ≈ 1. If the temperature T1(t) is measured in such layers with a sufficiently
high frequency of sensor polling f > 1/τT, then the dynamic error of temperature can be
significantly reduced by shifting the temperature in time:

T2(t) = T1(t + n δt), (8)

where the interval of sensor polling δt = 1/f and some integer n = (1, 2, 3. . . ).
The manufacturers of SBE and RBR profilers also suggest the time shift of the measured

temperature T1(t) according to Formula (8) in their supplementary materials to the manu-
als [37,38]. We only note that the efficiency of method (8) is affected by the measure of the
difference between the displacement parameter and the phase function |nδt − ϕT| < 0.5δt.
The measured electrical conductivity E1(t), as a rule, is not corrected by the time shift (8)
due to the smallness of the value of the time constant τE < δt.

We will now assume that the CTD profiling process is performed at the constant speed
v = const, and before the initial profiling time t = 0, the profiler was in a homogeneous water
layer for some time longer than τT. Then, during profiling, τT = const, T1(t ≤ 0) = T(0), i.e.,
at the initial moment t = 0, the dynamic errors were negligible. Following Equation (3), we
write equations for the measured value T1(t) in terms of the true water temperature near
the moving temperature sensor T(t) in the form of an exponential low-pass filter [39,40]:

T1(t) = exp(−δt/τT) T1(t− δt) + [1− exp(−δt/τT)] T(t). (9)

For the piecewise constant temperature T(t), Formula (9) is the exact solution to (3),
and for a smooth profile T(t) it is a difference scheme for calculating T1(t) on the time grid
with step δt.

In accordance with Formula (9), we now formally define the procedure for “recovering”
the true temperature T(t) from the results of measurements T1(t):

T2(t) = [T1(t)− exp(−δt/τ2) T1(t− δt)]/[1− exp(−δt/τ2)]. (10)

In the case of a hypothetical ideal CTD profiling at τ2 = τT, procedure (10) leads to the
complete elimination of dynamic errors T(t) = T2(t). However, in real conditions, this is
not the case for the following reasons. First, even with the equality τ2 = τT, calculations
using Formula (10) cannot give a good result due to the growth of random components
of errors T1. Second, under real profiling conditions, the multifactor nature of the inertial
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effect during temperature measurements can manifest itself [27,41]. This effect is due to the
superposition of inertial processes occurring inside the thermometer and in the boundary
layer surrounding its body. Using a high-order equation to describe such a superposition
of effects is difficult due to the lack of reliable information about the inertia of each selected
inertial link. Therefore, frequency characteristics of thermometers that are part of CTD
profilers are represented by the inertial link of the 1st order with additional phase shift [42],

T3(t) = T1(t + nδt) + τT T′1(t + nδt), T3(t) ≈ T(t), (11)

which corresponds to the scheme “exponential recovery (10) + time shift (8)” [29,35]. Thus,
the inertial coefficient of a thermometer (11) should be estimated by the sum τ3 = τT + nδt.
Here, the first component τT is the parameter of the exponential filter (9), and the second
component nδt reflects the presence of an additional phase shift in the measured temper-
ature T1(t) with respect to the measured electrical conductivity E1(t). Accounting for the
second component using procedure (8) is possible only when processing high-resolution
CTD data n >> 1 [27].

Before we finalize the scheme of dynamic data correction proposed here, and give two
examples of its application, we shall, first, briefly discuss the approaches of manufacturers
of SBE and RBR profilers to solving this problem.

We should note that SBE was one of the first to recommend the users of their profilers
to perform dynamic correction of profiling data using a package of programs for primary
data processing. Similar proposals for RBR profilers have appeared only in the last few
years [38,43,44]. Since the methods of these manufacturers are quite similar, we will
limit ourselves here to discussing the primary processing of CTD data by the SBE-Data
Processing program, which contains several procedures, executed in sequence [37]. Here,
first, the “Filter” procedure reduces levels of random measurement errors. Its numerical
scheme uses the first two terms of power series expansion of the exponential low-pass
filter (9). In this case, it is proposed to smooth the temperature and electrical conductivity
profiles measured by SBE 19plus at equal filter parameters, τ2 = 0.5 s. Furthermore, using
the “Align” procedure, structural features of the smoothed profiles T1(t) and E1(t) are
aligned to eliminate their dynamic (phase) mismatch and reduce the amplitudes of false
emissions when determining salinity. This procedure corresponds to the time shift (8) and,
at the value of the shift parameter nδt = 0.5 s, is used to correct the temperature data of SBE
19plus [37].

The electrical conductivity values, measured by the SBE profilers, contain an additional
error due to the thermal contact of the studied portion of seawater with the body of the
SBE 4 conductivity cell. This effect occurs when crossing temperature gradient layers
and contributes to the heating/cooling of the measured portion of the liquid [34]. As a
result, its electrical conductivity differs from the initial value, which also leads to errors
in determining salinity [2]. Elimination of this error is carried out by the “Cell Thermal
Mass” procedure.

The standard SBE 19plus data processing scheme, which includes step-by-step exe-
cution of the listed procedures, leads to a significant reduction in errors in determining
salinity, but retains a noticeable dynamic error in the measured temperature. Smoothing
the profile T1(t) by filter (9) at the recommended value τ2 = 0.5 s increases this error com-
ponent, and the subsequent time shift (8) only partially reduces the total level of its phase
component. As a result, the data processed by SBE-Data Processing contains a significant
share of dynamic errors and can fail to meet the accuracy requirements for some tasks.
For example, they may be insufficient for problems of determining small fluctuations in
the speed of sound and density, and may also be unacceptable for constructing regression
Ts curves.

To reduce the levels of dynamic errors in CTD data as much as possible, we will
continue to use an alternative processing scheme everywhere. To do this, we replace the
smoothing of the profile T1(t) by filter (9) with the “recovery” procedure (10), preserving its
equalization (8) and smoothing of the profile E1(t) (9). In this case, we will select the optimal
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values of the “recovery” processing parameters τ2, displacement nδt, and smoothing τ3
according to the criterion of minimum dispersion of high-frequency salinity fluctuations
on scales of up to 2 s [27,36].

Figures 4 and 5 below show the results of data processing, obtained by the SBE 19plus
and RBR XR-620 profilers at the end of August 2014 and at the beginning of September
2011. At the end of summer and beginning of autumn, due to the abundant precipitation
of the wet monsoon and accumulated solar radiation, the water masses of Peter the Great
Bay shelf zone were characterized by high background values of salinity and temperature
gradients. Therefore, the CTD measurements performed in the above period contained
the maximum levels of dynamic errors. Let us evaluate the efficiency of the standard and
alternative processing schemes using CTD data, obtained by SBE 19plus in August 2014.
Figure 4 shows the results of measurements performed under conditions close to ideal
(speed 1.0–1.5 m/s, in the absence of waves and wind) near station S1. The profile of the
measured temperature T1(z) in Figure 4 shows a three-layer stratification of the water mass
of the bay, typical for the end of the summer season. The upper and bottom layers had
temperature gradients, |∂T/∂z| ≤ 0.15 ◦C/m, which is an order of magnitude lower than
in the thermocline located between 10 and 30 m horizons, where a drop from 23 to 6 ◦C
(|∂T/∂z| ≈ 1 ◦C/m) was observed. Accordingly, the levels of dynamic errors in the CTD
data, obtained in these layers, also differed. Their high values in the thermocline layer
contributed to a more pronounced dynamic mismatch between the measured profiles T1(t)
and E1(t), which manifested itself as a false structure when calculating the salinity s1(z)
= s(E1, T1, p1). Significant peaks on the profile s1(z) up to 1 psu correspond to gradient
interlayers of the thermocline |T′1(t)| ≤ 3 ◦C/s.
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Figure 4. Results of CTD SBE 19plus profiling in August 2014 at point S1. The black curves are
temperature T1(z) and salinity s1(z) = s(E1, T1, p1) as produced by the profiler software; the blue curve
s2(z) is the result of processing by the SBE-Data Processing program; the red curve s3(z) is the salinity
obtained as a result of the scheme (8–10); green curve—∆T = |T1 − T2|; purple—∆T = |T1 − T3|.

Processing of CTD data by the SBE-Data Processing program, performed in accor-
dance with the attached recommendations, led to a significant reduction in false emissions
when calculating s2(z) = s(E2, T2, p1) (see Figure 4). At the same time, the alternative
correction scheme proposed by us, due to optimization of the matching procedure of
temperature and electrical conductivity profiles T3(t) and T3(t), at processing parameters:
τ2 = 0.17 s, nδt = 0.25 s, and τ3 = 0.37 s, allowed the minimization of the salinity inversions
s3(z) = s(E3,T3, p1). Comparing the results of dynamic correction schemes, we have discrep-
ancies in temperature |T2(z) − T3(z)| ≤ 0.5 ◦C and salinity |s2(z) − s3(z)| ≤ 0.28 psu.

For the processing scheme proposed here, the absence of false salinity structure is
achieved by relative equalization of dynamic errors of the reconstructed temperature and
the smoothed electrical conductivity @E/@T ∆T3 ≈ ∆E3. At the same time, the dynamic
component of temperature error remains at a high level: ∆T3 ≈ (τT +τE) T′1. For example,
at average values of the gradient in thermocline |T′1(t)| ≈ 1 ◦C/s and ∆T3 ≤ 0.5 ◦C
repeated use of the “recovery” procedure at τ4 = τ2 + τ3 almost eliminates the dynamic
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temperature errors; however, in this case, the random component of the error increases to
2–3 levels of the initial random error, approximately up to 0.01 ◦C. Thus, the temperature
distribution T3(z) obtained by correcting T1(z) using the displacement (8) and “recovery”
(10) procedures is as close as possible to the true temperature T(z) and considerably differs
from T2(z) obtained by the SBE-Data Processing. At the final stage of data processing, to
reduce the levels of random errors, the function s3(t) was filtered in the time domain by
moving average with window ∆t = 1s, and the profiles s3(z) and T3(z) were reduced to
depth step ∆z = 0.5 m.
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Dynamic correction of the data obtained with RBR profilers (XR-620, XR-620, and RBR-
concerto) was carried out according to the scheme proposed above (8)–(10). Its efficiency is
demonstrated by the results presented in Figure 5. Here, for CTD profiling performed at
point S2 in the absence of wind and ship motion (v = 1 m/s), the minimum possible levels
of dynamic errors ∆T3 ≤ 0.01 ◦C and ∆s3 ≤ 0.02 psu at optimal correction values (8)–(10)
τ2 = 0.009 s, nδt = 0.167 s, and τ3 = 0.007 s. When calculating salinity s3(z), almost all
false emissions that reached 1 psu in s1(z) were eliminated, and the dynamic temperature
correction T1(z) led to a decrease in T3(z) by 0.1–1 ◦C in thin gradient layers.

Based on the proposed methodology of dynamic correction of CTD data and Tables 1
and 2, some hydrophysical parameters of water were estimated for the above measurements
by SBE 19plus and RBR XR-620. Error estimates have the following absolute values:
|∆T| ≤ 0.01 ◦C, |∆s| ≤ 0.02 psu, |∆ρ| ≤ 2 × 10−5 g/cm3, and |∆c| ≤ 0.05 m/s. Let us
remind ourselves that measurements were performed in the absence of ship motion at the
speed v(t) = 1 m/s, and temperature gradients in both experiments were approximately up
to 1 ◦C/m.

We shall also remark on the RBRconcerto profiler. The results of similar data pro-
cessing for this profiler according to the scheme (8)–(10) do not always reveal the phase
shift nδt (8) when estimating the mismatch of the measured temperature and electrical
conductivity profiles. This is due to the design of this model (the thermometer is built into
the conductivity sensor), and insufficiently high polling rate of 6 Hz.

In conclusion of this section, it is also worth mentioning that when processing CTD
data obtained under conditions of drift and pitch and roll of the ship, as a rule, it is not
possible to achieve a satisfactory reduction of the dynamic errors T1(t) and E1(t). Such an
example of measuring temperature and electrical conductivity with the XR-620 profiler
in mid-August 2011 in the presence of pitching and rolling of the ship, due to which the
profiler movement velocity varied within v(t) ≈ 0.55 ± 0.25 m/s, is shown in Figure 6. As a
result of the violation of the device movement dynamics, local inversions appeared in the
structures of the profiles of the measured parameters. When calculating salinity s1(z), these
inversions manifested themselves as distortions not only on the pitch and roll scale, but
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also on large scales. The salinity profile shown in Figure 6 shows a decrease in background
values of 0.05 psu in the lower gradient layer of the thermocline.
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4. Ts Regression Method

To determine the functional dependence of salinity Ts on temperature obtained by
a CTD profiler, we propose a model polynomial of the form Ys = y0 + y1T + y2T2 + y3T3,
the order of which is j = {1, 3}. The use of polynomials of a higher order, and splines, did
not significantly improve the quality of the regression model. We estimate the accuracy
of the degree of conformity of Ys regression to salinity s, calculated directly from the CTD
data, by the value of σj(δs)—Root-Mean Square (RMS) of the difference δs = |s − Ys|.
We determine the choice of the order of polynomial j by the empirical condition: when
σ1/σ3 > 1.2, we use the third-order polynomial, otherwise—the first-order one. When
analyzing the data of a series of CTD measurements performed at stations of the same
section, to assess the applicability of the Ts regression, we also use σav—the value of σj
averaged over the stations. In some cases, σmax—the maximum value of σj was more
applicable for calculations. The value of 2σ is the 95% confidence interval.

Different-scale hydrometeorological processes affecting the water column of the study
area of Peter the Great Bay contribute to the spatial inhomogeneity of its thermohaline
stratification. For this reason, to resolve the issue of applicability of the model Ts regression
within the boundaries of the entire test site, a check of the studied water area for homo-
geneity of the water composition is required, i.e., it is necessary to investigate how similar
the regressions built at different points of the test site are, and whether the regression built
based on a set of observation points is universal [2].

One of the climatic features of the coastal regions of the Sea of Japan is tropical cyclones
(typhoons), which originate in the area of the Philippine Islands. Every year from June to
September, two to five tropical cyclones are recorded in the southern regions of Primorye.
Their passage, mainly from the southwest, is always accompanied by heavy precipitation,
storm winds, and catastrophic floods on the rivers. For this reason, the second half of
summer, especially August, is the most difficult time in terms of maintaining the uniformity
of water composition in the offshore areas of Peter the Great Bay.

To monitor the composition of water, on 1 August 2012, within the study area, we
performed a series of hydrological sections along the conditional directions S1-S5-Sc-S1
(green circles in Figure 1). The profiling of the water column was carried out with an
XRX-620 CTD profiler. In total, 24 profiling was completed within five and a half hours,
under moderate wind and smooth seas. The obtained data were processed according to the
correction procedure, described in Section 3. When determining the variants of the model
Ts regression, due to freshening and uneven heating of the upper layer, we considered the
data obtained below the 5 m horizon. The range of temperature T changes at the horizons
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from 5 to 95 m was 1.0–19.6 ◦C, salinity s varied within 32.7–34.1 psu; the average salinity
sav was 33.6 psu.

In Figure 7, the red curve Ys(#10) shows the model cubic polynomial, j = 3, constructed
from the profiling data at point #10—the deepest point of the test site; the blue curve
Ys(all)—from the set of all 24 profilings. In the first case, the coefficients of the polynomial
y0 = 34.12; y1 = −5.9 × 10−2; y2 = 5.1 × 10−3; y3 = −2.7 × 10−4; in the second—y0 = 34.17;
y1 = −8.6 × 10−2; y2 = 9.2 × 10−3; y3 = −4.3 × 10−4. The maximum error in determining
salinity from temperature was σmax(#10) = 0.065 psu and σmax = 0.052 psu, which allows,
for example, the calculation of the speed of sound from T and Ys with accuracy of 0.16 m/s
and 0.13 m/s, respectively (see Table 1). Thus, we have established that in this case the
degree of spatial homogeneity of the water composition is acceptable for solving most
acoustic and hydrophysical problems, and the polynomial Ys(all) constructed over the
entire set of points will be considered universal within the test site.
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We should note that sometimes, mainly immediately after significant HEs, spatial
homogeneity of water composition may differ even within the same section. For example,
on 13 August 2015, presumably due to a vortex coming onto the Posyet Bay shelf, at
three out of nine stations along the S1–S5 route, the Ys(#) regressions calculated in the
temperature range from14 to 24 ◦C had very different Ts from the rest dependencies with
maximum error σmax = 0.28 psu.

To assess the time intervals of applicability of the obtained Ts regressions, let us
analyze the data of hydrological sections made along the S1–S5 route in August 2012.
In the study area, during the month, the air temperature varied between 11 and 31 ◦C,
precipitation of varying intensity was observed on 14 days out of 31, and its total volume
exceeded 320 mm. In the period from 1 August to 27 August, the wind, as a rule, did
not exceed 3–5 m/s, except for 15 August, when it briefly increased to 10–12 m/s. An
abrupt increase in wind, with gusts of up to 25 m/s, was observed on 28–29 August 2012,
when Typhoon Bolaven came out to the southern coast of Primorye [45]. During this
period, our thermostrings were recorded, and CTD profiling was also carried out along the
S1–S5 route, so we were able to trace the change in the water composition caused by the
HE. According to our observations, the thermohaline structure, which changed under the
influence of the typhoon on 28 August, almost returned to its original state by the afternoon
of 1 September [21]. To construct regressions, we selected the CTD data obtained at the
stations of the S1–S5 route on 1, 27, and 31 August 2012—green, pink, and orange dots in
Figure 8, respectively.
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and the optimal polynomials Ys(all) obtained from them are solid lines.

As we can see in Figure 8, the model polynomials Ys(all) almost did not change their
coefficients during the month. For each of the days of August—1, 27, and 31, the maximum
deviations of the difference δs = |s− Ys| at the points of Section S1–S5 σmax were 0.06, 0.06,
and 0.11 psu. To assess the applicability of the regressions obtained during the month Ts,
we shall perform a cross-calculation of model salinity profiles. The average deviations σav
established this way for each of the sections are shown in Table 3. As we can see from the
table, the Ts regression from 31 August, obtained from the water structure recovering after
the HE, provides the lowest accuracy compared to the other two considered polynomials
Ys(all) even for the data of the same day, but it models 1 August quite well. The worst
obtained result σav = 0.09 psu can provide a calculation of the sound speed with an error
not exceeding 0.22 m/s, because ∂c/∂s = 1–1.3 [m/s]/psu (Table 1).

Table 3. Values of average deviations σav for August 2012.

Polynomial
CTD Data

1 August 2012 27 August 2012 31 August 2012

1 August 2012 0.03 0.09 0.08
27 August 2012 0.05 0.04 0.09
31 August 2012 0.04 0.08 0.06

Extreme HEs observed in the area of the test site during one experiment sometimes
irreversibly changed the ratio of thermohaline parameters. As a result, the use of the
optimal polynomial Ys, obtained at the beginning of the experiment, after a week already
did not make sense for the subsequent modeling of the hydrological picture by the data of
thermostrings on the S1–S5 route. For example, Figure 9 shows Ts dependencies obtained
in experiments in different seasons when the initial form of regression is not permanent.
In the autumn experiment of 2013, under the action of northwesterly wind of 7–12 m/s,
the development of local upwelling was recorded on 9–12 October [16]. As a result, the
temperature range narrowed from 2–16.5 ◦C to 2–12 ◦C, and the optimal Ys polynomial
degenerated from cubic to linear. In August 2017, the narrowing of the temperature range
from 4.5–23 ◦C to 8–22 ◦C and the change in the degree of the optimal polynomial were
affected by the passage of Typhoon Noru on 7–8 August 2017 [21]. During the spring
experiment of 2016, restructuring of the thermohaline structure occurred due to a wind
surge associated with strong southerly wind on 24 May.
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Figure 9. Optimal polynomials Ys(all) established from October 2013 data are blue lines; May 2016
are green lines; and August 2017 are red lines. Solid lines are Ts regressions at the beginning of the
observation period; dotted lines are those at the end of that period.

Figure 10 shows regression dependencies built for different seasons of 2011–2022.
The values σav indicated under the Figures correspond to the RMS of the difference
δs = |s − Ys|, established for each of the presented polynomials. The order of the op-
timal polynomial j was established according to the accepted criterion σ1/σ3 > 1.2. As we
can see in Figure 10, in the spring period, the polynomials, except for one, had the first de-
gree; in summer, on the contrary, the model dependencies were cubic in five out of six cases.
In autumn, linear dependencies were observed in two cases out of the six presented.
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5. Examples of Using Temperature Sensors for Monitoring Hydrophysical Processes

Let us now consider two examples of using thermostrings data and the Ts regression
method to analyze various hydrophysical processes in 2022. The change of buoyancy fre-
quency distribution with depth over many hours of observation is discussed in Section 5.1.
Furthermore, in Section 5.2, we estimate sound speed fluctuations caused by internal waves
and discuss the relationship between sound speed variations and isopycnal shifts.

5.1. Space–Time Distributions of the Buoyancy Frequency

Prediction of wave modes in the seas requires detailed knowledge of the vertical
structure of the hydrophysical characteristics of water over long periods of observation.
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According to theoretical concepts, the parameters of nonlinearity and coefficient of nonlin-
ear internal waves’ dispersion are determined by the eigenfunctions of the Sturm-Liouville
problem. The determining factor of these eigenfunctions form is the buoyancy frequency
N(z) as a function of the site depth [46,47]. In turn, the buoyancy frequency varies not
only in space but also in time. Such variations in the buoyancy frequency are one of
the reasons for fluctuations of packets of nonlinear internal waves observed in long-term
experiments [48]. To estimate the coefficients of evolutionary equations and predict the pa-
rameters of nonlinear wave motions, it is customary to use some average values, which can
sometimes be found in international databases. Using field measurements of hydrological
characteristics allows the estimation of the limits of applicability of averaged wave models
when only averaged profiles of buoyancy frequency are used [49].

Figure 11 shows the distribution of the buoyancy frequency averaged over 1 h at a
point with a depth of 56 m in autumn 2022. The buoyancy frequency was calculated from
the S4 thermostring data using linear Ts regression. To estimate the regression coefficients,
we used CTD data obtained at this point on 3, 8, and 12 October. The temperature, measured
by a thermostring in the layer of 5.5–55 m at 34 horizons with a step of 1 min from 3 October
to 14 October 2022, is shown in Figure 3. As we can see in Figures 3 and 11, the water
layer under study had temperatures from 2 to 18 ◦C and was characterized by thermocline
thickness of 12–20 m with a gradient of more than 2 ◦C/m. At the same time, during the
tidal cycle of 12.4 h, it sometimes performed vertical oscillations of up to 20 m.
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Figure 11. Depth distribution of buoyancy frequency N(z) at point S4 in the period of 3–14
October 2022.

Variations in time N(z) are significantly determined by fluctuations in the depth of
the thermocline position, which we can see if we compare Figures 3 and 11. The values of
N(z) in the first half of the experiment reach 38 c/h (cycles per hour), and in the second
part, they become less than 30 c/h. Figure 12 shows instantaneous values of buoyancy
frequency in three 1-h intervals 0–1 h, 23–24 h, and 219–220 h, and also the corresponding
averaged profiles.

As we know, the average value of the buoyancy frequency is usually calculated from
the average density over a selected time interval [50]. Since the density changes little, and
the differentiation operation is linear, such an operation corresponds to the usual time
averaging of the instantaneous value N(z). However, this approach applies to the deep
ocean, where tidal motions change the position of the thermocline only slightly. In the
case of a coastal zone, tidal waves significantly change the position of the thermocline in
the water layer, as a result, when averaging over periods of more than a semidiurnal tide,
typical functional dependence N(z) is distorted. Figure 13 shows the N(z) curves averaged
over time intervals ∆t = {1 h, 6 h, 12 h}. The values of N(z) averaged over the time interval
∆t =12 h (Figure 13c) already have a structure that is not typical for this region.
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Figure 13. Average values of buoyancy frequency N(z). Black curves—instantaneous values of
N(z); blue curves—N(z) averaged over time intervals ∆t: (a) 1 h; (b) 6 h; (c) 12 h. Red curves
are N(z), calculated from the density obtained by averaging the isopycnal positions over the same
time intervals.

The same Figure 13 shows the N(z) curves obtained by another method, marked in red:
we averaged the isopycnal positions over time, from which we then formed the vertical
profile of the “average” density and calculated the N(z) values. We can see that these
“average” N(z) at small averaging intervals of 1 h (Figure 13a) and 6 h (Figure 13b) are close
to the usual average N(z). For the averaging interval of 12 h (Figure 13c), they retain the
structure of the instantaneous buoyancy frequency, and the position of the peak of this
curve corresponds to the average value of the peaks of all instantaneous N(z). Despite the
physical clarity of this approach, it still requires further mathematical justification.

5.2. Fluctuations of Sound Speed in the Field of Internal Waves

The main cause of sound speed fluctuations both in the deep ocean and in its shelf
zone are internal waves [35,51]. Background (linear) IWs are always present on the shelf,
the same as in the deep ocean. Unlike soliton-like nonlinear waves, they represent a field
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that can be considered random in a certain sense. The main specificity of background waves
on the shelf is that not free waves, but residual perturbations of small amplitudes of trains
of nonlinear waves, can make a significant contribution to the background field. Such “tails”
are both quite long in time and extended in space. If we consider the speed of sound, per-
turbed by the IW field, then formally it can be written as c(t,x,y,z) = <c(t,x,y,z)> + δc(t,x,y,z).
Here the angle brackets mean the operation of averaging, and the value δc describes the
random part, which is obtained by subtracting its middle part from the observed sound
speed field. Let us note that such a representation requires a preliminary choice of charac-
teristic space and time scales of the sound speed field, over which averaging is performed.
Thus, fluctuations c(t,x,y,z) are determined by the maximum scales for inhomogeneities,
which we decided to classify as fluctuations. Naturally, such a choice is ambiguous, it is
conditional and is determined by the physical meaning of a specific task; for example, the
problem of IW sound scattering over a certain time interval [8].

According to studies, in the presented region, IW fluctuations at frequencies higher
than 2–2.5 c/h (periods from 30 to 24 min) are “stochasticized” and are well described by
Gaussian distribution [52]. Therefore, further, for the sake of definiteness, we assume that
<c(t,z)> is the average speed of sound over the time interval of 30 min, and we consider
δc(t,z) = c(t,z) − <c(t,z)> its fluctuations over the same time interval.

Figure 14 shows the RMS value of fluctuations in the sound speed σ over the entire
depth of the water layer throughout the entire time of the experiment, where
σ2(δc) = [<(δc)2> − <δc>2]. As in the case of determining the buoyancy frequency, the
values c(t,z) were calculated from the data of thermostring S4 using the regression. Com-
parison of c(t,z) with distributions T(t,z) and N(t,z) (Figures 3 and 11) shows that main
fluctuations of sound speed with amplitudes σ(δc) ≈ 1–2 m/s are observed in the thermo-
cline and values σ(δc) up to 4–10 m/s are observed more seldom. Outside the thermocline,
the values of σ(δc) are at least an order of magnitude smaller than those indicated above.
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For small fluctuations in sound speed, it is customary in hydroacoustics to use the
following relationship between δc(t,z) and the value of vertical displacement of fluid
particles ζ [51,53]:

δ =

(
∂

∂z

)
pot

ζ, δ = c
(

µ

g

)
N2 ζ. (12)

Here the potential gradient of sound speed is indicated, µ ≈ 24.5 is a dimensionless
constant, and g = 9.8 m/s2 is the gravitational acceleration. Formula (12) provide a simple
connection between the statistics ζ(t,z) and δc(t,z). The second part of Formula (12) has
gained particular popularity. It is used by many researchers to model fluctuations δc(t,z)
both in deep oceans and in shallow seas [35,51].
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For the first time, the second part of Formula (12) was obtained in [53], where the
authors studied the effect of linear internal waves on sound fluctuations in deep oceans.
The parameter µ, included in (12), is determined by a set of thermodynamic parameters
that combine variations in sound speed, density, temperature, and salinity. Moreover,
the variability of the µ parameter itself depends on the ratio of salinity and potential
temperature gradients (the “Turner number”), which, in the case of deep oceans, change
insignificantly; therefore, all parameters in [53] were chosen for the depth of 1 km. As
a result, the value of µ ≈ 24.5 was obtained; however, wide ranges of temperature and
salinity variability are observed in the shelf zone (Figure 3). Accordingly, variations in the
parameter µ are inevitable due to multiple changes (several times) in the derivatives of
thermodynamic parameters (see Table 1).

From the CTD profiling data for different seasons, the values of µ were calculated
both by the formulas of [53], using a set of thermodynamic parameters, and from a simple
equation following from Formula (12):

µ =
g
c

(
∂

∂z

)
pot

N−2. (13)

Figure 15 shows the distributions of temperature (Figure 15a), salinity (Figure 15b), and
the µ(z) function (Figure 15c) in three seasons of 2022. Here, µ was calculated by the method
of [53], and for control, calculations were also carried out using formula (13). Determining
the values of thermodynamic parameters, we used CTD data from RBRсoncerto, measured
at point S4. Good coincidence between different calculations ensured the reliability of
the result.
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As you can see in Figure 15c, µ is a function of the z-coordinate and depends on time.
During the measurement periods of 2022, the value of µ, depending on the depth, changed
in the range from 0 to 36. We also performed similar calculations based on CTD data
obtained in different seasons of 2016 and 2019, according to which this function varied in
the range from 1 to 40 and had a noticeable seasonal variability.

Thus, for the shelf zone in the model descriptions of IWs, it is necessary to take into
account that in Formula (12) µ is not a constant, but a function that changes significantly
not only with depth but also with time.
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6. Conclusions

High-precision measurements of salinity and temperature in the seawater column are
carried out, as a rule, using a CTD profiler from a board of a specialized vessel. During
long-term observations in a chosen point or area, the variability of weather conditions
imposes an additional limitation on the technical capabilities of the experimenters. In this
regard, the optimal solution is the long-term setup of anchored thermostrings.

However, for several hydroacoustic and hydrophysical problems on the shelf, in
addition to thermostrings, it is necessary to know the salinity with certain optimal accuracy.
For example, to study background fluctuations in the sound speed, when amplitudes
of these fluctuations are 1–2 m/s, it is required to measure salinity with an accuracy of
0.1–0.2 psu, because @c/@s ≈ 1 [m/s]/psu (Figure 14). Increased requirements for the
accuracy of determining the density of water may also arise for calculating the equations of
multilayer shallow water [54]. The range of salinity variation in the study area of Peter the
Great Bay (the Sea of Japan) is about 3 psu, which is why using some average salinity for
solving the set tasks is unacceptable.

From data of many years from CTD profiling at the hydrophysical test site in the
shelf zone of Peter the Great Bay, the authors obtained regression formulas for calculating
salinity from temperature with the required accuracy. It was established that the stability
of regression dependence is determined by the degree of spatial homogeneity of the water
composition. Thermohaline structure in the area of the test site may change upon the onset
of one of the hydrometeorological events (HEs): entry of a mesoscale vortex into the water
area, upwelling, passing of a typhoon, etc. On average, on time scales of the order of one
week, the regression dependence is permanent. In the time intervals between HEs, the
stability of regression dependence over the test site space was established, when functional
dependence Ts was permanent in the water area with an accuracy of 0.2 psu.

During 12 years of monitoring, we observe a certain recurrence of the functional
relationship between temperature and salinity by season. In different years, as a rule, the
degree of the regression polynomial is preserved, but in some years, in spring and autumn,
its coefficients also may change slightly (Figure 10). Thus, in spring, the regression is
mainly polynomials of the 1st order; and rare polynomials of the 3rd order are close to a
linear function. In autumn, on the contrary, regression is mainly the 3rd-order polynomials
located in a close group in the figure. The most complex regression pattern in summer
is the 3rd-order polynomials with considerably varying coefficients. This situation arises
because in summer this area is subject to a stronger and more frequent influence of HEs,
which change the composition of water more intensively than in other seasons.

Based on the selected data, it was established that to describe the functional depen-
dence of T and s, it is sufficient to use polynomials of up to the 3rd order. The use of
polynomials of a higher order, as well as splines, did not significantly improve the quality
of the regression model.

An important step in constructing Ts regressions is the preliminary primary processing
of CTD profiling data. The purpose of such processing is to minimize dynamic errors
of CTD data, which are especially great in the coastal zone due to high-temperature
gradients. Dynamic errors in the measured temperature and salinity in the selected area
can reach values of 0.2 ◦C and 0.5 psu or more, which is unacceptable for using such
regressions to solve the problems mentioned above. Solutions for processing raw CTD data
offered by profilers’ manufacturers did not always provide the required accuracy in our
experiments. Therefore, based on many years of experience in the coastal zone, the authors
have developed and proposed original methods for the dynamic correction of CTD data.

It was demonstrated in the work that in the coastal zone of the sea, the combined use of
data from thermostrings and CTD profilers (Ts regressions) allows the efficient investigation
of the space–time variability of the buoyancy frequency and sound speed fluctuations on the
average for one week in the absence of HEs. Accordingly, additional CTD measurements
should be planned regarding weather forecasts, meteorological observations, and satellite
data. In the future, when organizing such test site work, it will be possible to avoid the
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necessity of monitoring HEs using setups of scanning systems of the “Aqualog profiler”
type, which allow the measurement of salinity for a long time at all horizons of the water
column [55].
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