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Abstract: Existing research has proven the increase in sea surface temperature (SST) due to global
warming. However, the sea bottom temperature (SBT) may exhibit different characteristics in various
regional seas. The East China Shelf Seas (ECSSs), which are important shelf seas in the Western Pacific,
hold ecological significance when analyzing their SBT variations in a warming future. This article
investigates both the interannual and interdecadal SBT variations from 2006 to 2100, utilizing the
projection results from phase 5 of the Climate Model Intercomparison Project (CMIP5) sponsored by
the Intergovernmental Panel on Climate Change (IPCC). We conducted an analysis of the interdecadal
variation by comparing the SBTs from the 2030s, 2060s, and 2090s to the SBT observed in the 2010s.
Our findings reveal a significant increase in SBT in the ECSSs. By 2100, the region is projected
to experience enhanced warming of 1.18 ◦C. The springtime warming intensity of the Bohai Sea,
reaching 1.92 ◦C, can be twice the rate of global ocean warming. The outer shelf of the ECSSs also
exhibits significant increases in SBT. Through an analysis of the correlation between SBT and ocean
currents, we investigate the potential mechanisms behind these observations. This paper provides
insights into future SBT variations from both an interannual and interdecadal perspective, explaining
the causes and the projected increase in environmental stresses on the benthic ecosystem over the
next eighty years.

Keywords: sea bottom temperature projection; East China Shelf Seas; CMIP5

1. Introduction

The climate is undergoing changes, in which the greenhouse effect plays an important
role [1,2]. Many believe that climate change could be one of the most serious threats
to our world. Ocean warming has already become a significant problem, contributing
significantly to global climate change. It has been accelerating and may persist over the
next 100 years, according to the results of recent observation-based estimations and model
simulations [3–8].

The East China Shelf Seas (ECSSs) are composed of the Bohai Sea, the Yellow Sea,
and the East China Sea. They refer to the eastern marginal seas of China, which are
surrounded by the Chinese mainland and the Korean Peninsula. Since the ECSSs are
shallow, located at the eastern end of the largest continent in the world, and can respond
quickly to climate change, they are recognized as some of the most important marginal seas
in the Western North Pacific Ocean (WNPO) [9,10]. The ECSSs play important roles in the
study of environmental and ecosystem issues due to their unique geographic locations and
complex hydrography. The Bohai Sea is a semi-enclosed sea with an average depth of only
18 m. In comparison to the physical forcing from the open-ocean side, the temperature
variation within its basin has a greater impact on its ecosystem [11,12]. The Yellow Sea,
which covers a relatively larger area, is also quite shallow. The water depth over most of
the Yellow Sea is less than 50 m. For this broad and shallow continental shelf sea, its water
column is more susceptible to the atmospheric factors within itself than from the outer
oceans [13]. The East China Sea is located between the world’s largest ocean and the largest
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continent. It is influenced by the climatic forcing from the Kuroshio Current in the tropic
ocean and the East Asian Monsoon System in the high-latitude Northern Hemisphere.
The combination of these two forces results in a distinct climate pattern of strong vertical
and horizontal temperature gradients [14,15]. All of these marginal seas, which support
heavy oil drilling, fishing, and shipping activities, hold significant social and economic
importance for the people living in the coastal regions [16,17].

The response of the ECSSs to global warming is sensitive due to their shallow water
depths [3]. The warming in this region, including the Japan Sea, is projected to increase
by approximately 0.8 to 2 ◦C per century [18]. The metabolic rated of marine organisms
and other oceanic conditions, such as local currents, are affected by the increase in sea
temperature [19]. Thus, it is crucial to comprehend the spatial and temporal variabilities of
the ECSSs, particularly in projecting the long-term variations in the future [3,19].

With the high development of ocean simulation technologies, climate change can
be assessed through model intercomparison projects, among which, the coupled model
intercomparison project plays a significant role [20,21]. The Intergovernmental Panel on
Climate Change (IPCC) has sponsored phase 5 of the Climate Model Intercomparison
Project (CMIP5), which provides a multimodal context for comprehending the responses of
climate models to a common forcing. The goal is to facilitate climate model projection and
evaluation for the Fifth Assessment Report (AR5) [21,22]. It comprises multiple models that
can project future climate in a warming world under various representative concentration
pathways (RCPs), such as RCP2.7, RCP4.5, RCP6.0, and RCP8.5. The RCPs will correspond
to a top-of-the-atmosphere radiative imbalance of 2.6, 4.5, 6.0, and 8.5 W/m2 by 2100 [23].
CMIP5, which follows previous CMIPs, has emerged as a recently available experimental
framework that addresses climate change projections for future scenarios, and can be used
for interannual and interdecadal climate projections for global oceans.

In the literature, a large number of works have been developed to project climate
changes using the simulation results of CMIP5. For example, Heuz et al. [24] studied the
southern ocean’s deep water properties, including the southern ocean’s bottom density
and temperatures from 1986 to 2005. Cheng and Zhu [23] proposed an advanced mapping
method based on an ensemble optimal interpolation and a multimodal ensemble of CMIP5
historical simulations and RCP4.5 scenarios to reconstruct the historical temperature field of
the ocean subsurface (0–700 m) from 1940 to 2014. Zhou and Ying [25] analyzed the Pacific
interannual SST variability in the historical simulations and future analyses of RCP4.5 and
RCP8.5. There have also been some results from studying climate changes using CMIP5
models in the Chinese coastal seas. Huang et al. [26] assessed the abilities of 17 CMIP5
models to simulate historical SSTs in the South China Sea (SCS). Based on this assessment,
they also projected future SST changes in the 21st century under various RCPs. Huang and
Qiao [27] estimated the future potential sea level changes in the SCS under different RCPs.
Based on the simulated results of the CMIP5 models under RCP4.5, Tan et al. [28] assessed
the SST trend for offshore China in the 21st century. Song et al. [29] used five representative
CMIP5 models to analyze the monthly, seasonal, and interannual SSTs from 1960 to 2002 in
the China Seas.

Existing works on the study of seawater temperature changes in the ECSSs mainly
focus on the projection of SST changes, without investigating the changes in sea bottom
temperature (SBT). The SBT, which is a key physical parameter of the benthic environment,
plays a crucial role in adjusting the bottom biogeochemical and physical processes and
controlling the growth and development of bottom organisms. Its spatial and temporal vari-
ations, which are usually coupled to climate changes, can greatly influence the structures
and functions of bottom marine ecosystems [14,30]. SBT increases can intensify ecological
problems in nearshore regions. For instance, due to the SBT increase, since 2009, there have
been frequent brown tide breakouts in the coastal areas of Qinhuangdao in the Bohai Sea.
Red and green tides, as well as jellyfish disasters, have recently affected the Changjiang
Estuary and the shores in the northern Jiangsu province [11]. Thus, it is crucially important
to project the long-term variations. Moreover, existing works have demonstrated that SSTs
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over worldwide oceans can increase due to global warming. However, the SBT may show
different characteristics in different regional seas. The East China Shelf Seas are important
marginal seas of the Western Pacific, characterized by relatively shallow water. It is much
easier to be influenced by atmospheric changes. Thus, it is important to project and analyze
SBT variations in future climate change scenarios.

Motivated by the aforementioned findings, we propose a CMIP5-based projection of
SBT to analyze interannual and interdecadal variations in the ECSSs by 2100. The projection
results of six representative models under RCP4.5 were used, i.e., ACCESS1.3, FIO-ESM,
CCSM4, NorESM1-ME, CESM1-WACCM, and MPI-ESM-MR. We first calculated the SBT in
the ECSSs according to the depth map of this region, which was used to determine the bot-
tom layer. The model validation was performed using high-resolution hydrographic data
from the World Ocean Atlas 2018 (WOA18) [31]. We utilized the most appropriate model,
MPI-ESM-MR, which offers higher resolution and simulation accuracy compared to others,
to analyze the interannual and interdecadal variability of SBT by 2100. RCP4.5 was used
as a representative scenario because it provides a medium-mitigation emission scenario
that stabilizes the direct radiative forcing at 4.5 W/m2 (650 ppm CO2 equivalent) [32,33].
When comparing RCP 4.5 to RCP8.5, it is evident that RCP8.5 results in significantly higher
greenhouse gas emissions (at 8.5 W/m2 by 2100), while RCP2.6 leads to a very low forcing
level (at 2.6 W/m2 by 2100). RCP4.5 is neither too low (as RCP2.6) nor too high (as RCP8.5)
for projections. The essential ideas and most important findings of this paper are shown in
Figure 1.

Figure 1. The essential ideas and findings of this paper are as follows: (a) the projection of interannual
SBT from 2006 to 2100 using MPI-ESM-MR under RCP4.5; (b) the interdecadal changes in SBT for
the Bohai Sea, Yellow Sea, and East China Shelf Seas in the 2030s, 2060s, and 2090s compared to the
2010s; (c) the spatial distribution of SBT changes in the 2090s compared to the 2010s.
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This paper is organized as follows: Section 2 introduces the data and method utilized
for bottom temperature estimation. In Section 3, a model validation and simulation result
modification strategy is presented using WOA18 data. The experimental results of interan-
nual and interdecadal bottom temperature changes are analyzed in Section 4 and Section 5,
respectively. This paper is concluded in Section 6.

2. Data and Method
2.1. Data

This paper utilizes CMIP5 model data from 2006 to 2100 for the analysis of future bot-
tom temperature changes and introduces WOA18 data for the current analysis as well as for
model validation. CMIP5 comprises 36 models provided by 16 institutes. In this paper, we
utilize the most representative models based on two primary criteria: (1) for each institute,
we only use the recently developed model with the highest resolution for our study; (2) the
selected models provide continuous simulation results of seawater temperature along
the depth, from 2006 to 2100, without any interruptions. Six representative models were
selected in this paper: ACCESS1.3, FIO-ESM, CCSM4, NorESM1-ME, CESM1-WACCM,
and MPI-ESM-MR. Table 1 shows the information on these models. From Table 1, it can be
observed that MPI-ESM-MR has a significantly higher resolution compared to the other.
MPI-ESM-MR is a general circulation model that couples the atmosphere and the ocean. It
has been applied in numerous climate change studies involving idealized CO2-only forcing,
forcing based on RCP scenarios, and observations [34].

Table 1. The information of the six CMIP5 models utilized in this paper, including the vertical
coordinate type (z, z∗, isopycnic or sigma level), the number of vertical levels, and the horizontal
resolution (latitude × longitude), and the references.

Model Name Vertical Grid Horizontal Resolution Reference

ACCESS1.3 z 50 0.3◦ × 1.0◦ [35]
CCSM4 z 60 0.5◦ × 1.1◦ [36]

FIO-ESM z 40 0.5◦ × 1.1◦ [37]
CESM1-WACCM z 60 0.5◦ × 1.1◦ [38]

NorESM1-ME z 70 0.5◦ × 1.1◦ [39]
MPI-ESM-MR z 40 0.1◦ × 0.1◦ [40]

The WOA18 data from 2005 to 2017 were used to investigate the climatological annual
mean and seasonal mean water temperature in 2010 for the current analysis and model
validation. The WOA18 data provide objectively analyzed (1◦ grid) climatological fields of
annual and seasonal seawater temperatures at standard depth levels of the World Ocean,
providing associated statistical observation data interpolated to standard depth levels of
5◦, 1◦, and 0.25◦ grids [31]. We used a data grid with a resolution of 0.25◦ for the analysis.

The annual and seasonal mean water temperatures for 2010 were determined by
the average results from 2006 to 2015 in order to reduce the inner simulation variations
and errors in each CMIP5 model. Similar processing was applied to derive the aver-
age results for 2030, 2060, and 2090. The average results are 2026∼2035, 2056∼2064,
2086∼2094, respectively.

2.2. Study Area

The study area of this paper consists of the Bohai Sea, the Yellow Sea, and part of the
East China Sea. The water depth map with contours of 0 m, 50 m, 100 m, 150 m, and 200 m,
is shown in Figure 2. From Figure 2, we can see that the Bohai Sea is a semi-enclosed
shallow sea with a water depth that is less than 50 m (the average depth is only 18 m).
The East China Sea and the Yellow Sea cover relatively larger regions with water depths
ranging from 50 to 200 m. Given the shallow water in these three seas, we calculated the
annual and seasonal average vertical temperatures in 2010. Figure 3 shows the vertical
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temperature distribution in the Bohai Sea, Yellow Sea, and East China Sea. The horizontal
axis indicates the temperature and the vertical axis indicates the water depth level.

Figure 2. Water depth map in the East China Shelf Seas with contours of 0 m, 50 m, 100 m, 150 m,
and 200 m.

Figure 3. Vertical temperature distribution in the Bohai Sea, Yellow Sea, and East China Sea: (a) Bohai
Sea; (b) Yellow Sea; (c) East China Sea. The horizontal axis indicates temperature. Vertical axis indi-
cates water depth level: 1 denotes 1–12 m; 2 denotes 12–22 m; 3 denotes 22–32 m; 4 denotes 32–42 m;
5 denotes 42–52 m; 6 denotes 52–62 m; 7 denotes 62–75 m; 8 denotes 75–90 m; 9 denotes 90–110 m;
10 denotes 110–135 m; 11 denotes 135–165 m; 12 denotes 165–200 m; 13 denotes 200–240 m.

2.3. Bottom Temperature Determination

This paper focuses on the projection of bottom temperature changes. However, neither
the CMIP5 data nor the WOA18 data provide the bottom temperature value directly.
Instead, they provide the simulation results of seawater temperature along the depth.
To solve this problem, this paper calculates the bottom temperature according to the depth
map of the study region. For each grid point, the bottom temperature can be determined
by assigning the temperature at the sea bottom depth to it. The detailed procedure is as
follows. For the depth (d) of a given grid point at the coordinates (i, j), we first calculate
the vertical layer (k, k = 1, 2, . . . z, where z represents the number of vertical levels of each
model in Table 1), where d is higher than the depth at layer k and lower than or equal to
the depth of layer k + 1. Then, we assign the water temperature of layer k as the bottom
temperature to this gird point. The same calculation goes for the other grid points. Finally,
we can obtain the bottom temperature covering all of the grid points.
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3. Model Validation and Simulation Result Improvement

Simulation results from numeric models are subject to some degree of error. Thus,
model validation is necessary to evaluate the reliability of CMIP5 model data for projection.
Model validation is conducted by comparing CMIP5 model data with observed climatology
data from WOA18 in 2010, calculated as an average over the period 2005–2017. First, we
calculate the bottom temperatures of CMIP5 models and WOA18 data using the method
described in Section 2.3. The simulation results of each selected CMIP5 model are compared
with the WOA18 data, both in terms of yearly and seasonal means. Figure 4 and Table 2
show the results of the qualitative and quantitative comparisons, respectively. Figure 4
indicates that the yearly and seasonal mean distributions of most CMIP5 models are similar
to the WOA18 data. However, different models also vary in terms of simulation accuracy
and model resolution. Among them, the simulation results of MPI-ESM-MR are better
than the others. Due to its high resolution, the MPI-ESM-MR model performs even better
than the WOA18 data. It can reveal local climate impact factors, including the Kuroshio
invasion, the Yellow Sea warm current in the winter, the Yellow Sea cold water mass in
the summer and autumn, and the northern flow of the Taiwan Warm Current along the
Changjiang shore to the Tsushima Strait. This finding is also verified by the quantitative
results in Table 2. Table 2 reflects the low annual and seasonal mean simulation errors
of MPI-ESM-MR. The results show that MPI-ESM-MR is the most appropriate model for
projecting the SBT in the future. From Table 2, we can also find that the other models,
such as CESM1-WACCM and NorESM1-ME, have much higher simulation errors than
MPI-ESM-MR. We can speculate that the average results of all the models may contain
more errors than MPI-ESM-MR. Thus, we use the results of MPI-ESM-MR instead of using
the ensemble results of all models for the analysis of bottom temperature changes.

Table 2. Model validation of temperatures by comparing the data from each CMIP5 model with the
WOA18 observation data in 2010 (◦C).

Data Source Yearly-Mean Spring Summer Autumn Winter

WOA18 14.76 13.47 17.87 16.63 16.40

CMIP5
Model Errors

ACCESS1.3 0.69 0.65 1.40 1.30 0.83

CCSM4 0.74 0.83 1.30 1.26 0.91

FIO-ESM 1.16 0.67 0.95 1.71 1.32

CESM1-WACCM 1.21 0.96 0.37 1.37 2.14

NorESM1-ME 0.87 0.84 1.15 1.30 1.16

MPI-ESM-MR 0.77 0.33 0.30 1.22 1.21

In order to enhance the accuracy of the projection, it is necessary to make modifications
to the simulation results following model validation. We first calculate the error map of each
CMIP5 model by comparing its results with the WOA18 data in 2010, in both yearly and
seasonal ways. Then the simulation results can be modified by subsequently subtracting
their errors from the original simulation results. The yearly and seasonal error maps of
MPI-ESM-MR are shown in Figure 5a–e. From Figure 5, we can see that the errors mainly
focus on the deep troughs of the East China Sea and the Yellow Sea, where the simulation
of the Yellow Sea warm current appears to be stronger compared to the ground truth.
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Figure 4. Model validation: Each subfigure indicates the bottom temperature (◦C), the horizontal
axis denotes the longitude (°E) and the vertical axis denotes the latitude (°N). The first to sixth
rows illustrate the results of six CMIP5 models. The final row displays the observational data from
WOA18. The first to fifth columns present the results for the entire year and the four seasons of
2010, respectively.
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Figure 5. The error maps of MPI-ESM-MR in 2010 in yearly and seasonal ways: (a) yearly-mean,
(b) spring, (c) summer, (d) autumn, and (e) winter.

4. Projection of Interannual and Interdecadal Bottom Temperature Changes in ECSSs
4.1. Projection of Interannual Bottom Temperature Changes in ECSSs

We investigated the interannual changes in bottom temperature over the next 80 years
using the modified results of MPI-ESM-MR. We chose MPI-ESM-MR to assess the SBT
variation rather than other models or an ensemble mean of the six featured estimates, due
to its much higher resolution compared to the others; moreover, its computation error
is low enough for projection. By involving other models, the ensemble error of multiple
estimates can be higher than when using just MPI-ESM-MR. The interannual estimates of
MPI-ESM-MR with 90% confidence intervals for the least square fit are shown in Figure 3a.
We can see that SBT in the ECSSs will increase significantly from 2006 to 2100 with a linear
warming trend of 1.10 ◦C by 2100.

In order to reflect the specific variations in SBT across different seas, we performed
regional average statistics on the Bohai Sea, the Yellow Sea, and the East China Sea, respec-
tively. The quantitative results of the annual and seasonal means of SBT variation, along
with the least square fitting, are displayed for all three seas in Figure 6. The estimate shows
a linear warming trend by 2100, which is consistent with the whole ECSS region. The quali-
tative results calculated by subtracting the SBT in 2006 from that in 2100 after cure fitting
are shown in Table 3. We can see that the annual and seasonal means of interannual SBT in
all the seas exhibit significant increases from 2006 to 2100, surpassing 1.00 ◦C. In terms of
the annual average changes, the SBT in the Bohai Sea increases most significantly (1.60 ◦C),
which is followed by the Yellow Sea (1.49 ◦C) and the East China Sea (1.21 ◦C). As for the
seasonal mean changes, in the spring and summer, the SBTs of the Bohai and Yellow Seas
are higher than 1.5 ◦C. The SBT in the spring of the Bohai Sea can increase by 1.92 ◦C.
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Figure 6. Interannual yearly and seasonal mean SBT changes using MPI-ESM-MR in the ECSSs: the
first to fifth rows present the results in the annual and four seasons, respectively. The first to third
columns illustrate the results from three seas. Since this figure is mainly used to demonstrate the
trend of SBT changes in each sea area, it can be really difficult to illustrate this trend using a unified
color bar. Thus, we use various color bars for each sea area. The gray line indicates the trend of SBT
changes. The red, blue and yellow lines indicate the results of the linear fit of the SBT changes in the
Bohai Sea, Yellow Sea and East China Sea respectively.

Table 3. Interannual and seasonal bottom temperature changes of MPI-ESM-MR in the ECSSs (◦C).

SBT Changes (2100–2006) Ann. Spr. Sum. Aut. Win.

Bohai Sea 1.60 1.92 1.75 1.36 1.45
Yellow Sea 1.49 1.63 1.55 1.43 1.44

East China Sea 1.21 1.36 1.11 1.08 1.38

4.2. Projection of Interdecadal Bottom Temperature Changes

In this experiment, we investigate the interdecadal changes in SBTs during the 2030s,
2060s, and 2090s compared to the SBT during the 2010s. Table 4 and Figure 7 show the
modified results for each of the six models and their averages across the entire region of
the ECSSs. In most models, there is a significant increasing trend in SBT over the next
80 years. Among all of the models, the MPI-ESM-MR has the highest resolution, and
its results are most similar to the average results. Since the resolutions of other models
are too low to reveal the local climate distribution patterns, they are inappropriate for
bottom temperature projections. Thus, we use MPI-ESM-MR to analyze the numerical and
quantitative interdecadal SBT changes. From Table 4, it can be seen that the SBT increases
from 14.59 ◦C in the 2010s to 14.67 ◦C in the 2030s, to 15.45 ◦C in the 2060s, and to 15.77 ◦C
in the 2090s, as projected by MPI-ESM-MR. Until the 2090s, the SBT will increase by 1.18 ◦C.
A remarkable SBT rise is seen from the 2030s to 2060s. For further analysis, we also calculate
the annual changing rate between the 2030s and 2010s, between the 2060s and 2030s, and
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between the 2090s and 2060s in Table 4, besides the interdecadal analysis. We can see that
the highest change rate is obtained from the 2030s to 2060s (0.025 ◦C/year). The increment
is slow from the 2060s to the 2090s. This can also be illustrated in Figure 7. We can see
that the MPI-ESM-MR curve becomes smoother from the 2060s to 2090s than that from the
2030s to 2060s.

Table 4. Interdecadal SBT changes of six models across the entire region of the ECSSs (◦C).

SBT 2010s 2030s 2060s 2090s

ACCESS1.3 14.62 15.37 16.75 17.23

CCSM4 14.60 14.70 15.58 15.45

FIO-ESM 14.73 14.92 15.02 14.89

CESM1-WACCM 14.70 14.64 14.90 15.23

NorESM1-ME 14.60 14.14 15.21 15.36

MPI-ESM-MR 14.59 14.67 15.45 15.77

Average 14.63 14.90 16.05 16.19

SBT changes
2010

2030–2010 2060–2010 2090–2010

change rate (2030–2010)/years (2060–2030)/years (2090–2060)/years

ACCESS1.3 14.62
0.75 2.13 2.61

0.036 0.045 0.015

CCSM4 14.60
0.10 0.98 0.85

0.005 0.028 −0.004

FIO-ESM 14.73
0.18 0.29 0.15

0.009 0.003 −0.004

CESM1-WACCM 14.70
−0.06 0.20 0.53

−0.003 0.009 0.011

NorESM1-ME 14.60
−0.46 0.60 0.76

−0.022 0.034 0.005

MPI-ESM-MR 14.59
0.09 0.86 1.18

0.004 0.025 0.010

Average 14.63
0.27 1.43 1.56

0.013 0.037 0.004

Figure 7. Interdecadal SBT changes of six modified models.
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Next, we analyze the spatial distribution of interdecadal SBT changes in various
regions. Figure 8a,c,e demonstrate the spatial distributions of SBTs in the 2030s, 2060s,
and 2090s; moreover, the corresponding changes in SBT compared to the 2010s can be seen
in Figure 8b,d,f. From Figure 8b, we can see that, in the 2030s, significant SBT increases are
concentrated in the following areas: the Eastern Bohai Sea (especially east of Qinhuangdao),
the Changjiang Estuary, and its adjacent Southern Yellow Sea. These nearshore regions
have suffered from serious ecological problems. These problems will be intensified by
the increase in the SBT for several reasons. First, the metabolic rate of marine organisms
from the sea bottom to the sea surface can be affected by the increased SBT. Second,
the increased SBT can influence other oceanic conditions, such as local currents. Third,
the substrate structure, the water column stratification, the photosynthetic light intensity,
and nutrient cycling can be further affected [11]. Moreover, the increase in SBT can disturb
species distribution. Tropical marine organisms may migrate to middle- and high-latitude
areas, where the water temperature is warmer than before, and the cold and warm water
fish stocks can be greatly reduced in the regions with significantly increased SBTs [41].
From Figure 8d,f, we can see that compared to the 2030s, the increases in the bottom
temperatures in the 2060s and 2090s become more obvious and expand to almost all of the
regions at a higher rate. The increment reaches 2.5 ◦C in some local regions. The middle-
and outer-shelf areas also display significant bottom temperature increases, even higher
than that in the inner-shelf regions. By the 2090s, the ecosystem of the benthic environment
will face significant challenges due to the rising bottom temperature, especially in the
low-latitude areas, where the bottom temperature increase is more significant than in the
middle- and high-latitude areas. Moreover, the bottom temperature increase in the northern
and central Yellow Sea is not very obvious (see Figure 8b) and the SBTs in these regions are
relatively lower than others (see Figure 8a,c,e). This is mainly due to the presence of the
northern and central Yellow Sea cold water mass, which reduces the water temperature in
these regions.

4.3. Projection of Interdecadal Seasonal Bottom Temperature Variations

In this section, we study the interdecadal seasonal SBT changes in the 2030s, 2060s,
and 2090s compared with those in the 2010s. Table 5 shows the quantitative results of
six models as well as their average results. We also use the results of MPI-ESM-MR for
projection. From Table 5, we can see that the interdecadal seasonal SBTs display significant
increases from the 2010s to the 2090s. In the spring, the bottom temperature increases from
13.26 to 13.96 ◦C in the 2060s, and to 14.56 ◦C in the 2090s. In the summer, the bottom
temperature increases from 17.45 ◦C in the 2010s to 18.35 ◦C in the 2060s, and to 18.61 ◦C
in the 2090s. In the autumn, the bottom temperature ascends from 16.53 ◦C in the 2010s
to 17.50 ◦C in the 2060s and 17.48 ◦C in the 2090s. In the winter, the bottom temperature
improves from 11.11 ◦C in the 2010s to 11.46 ◦C in the 2030s, to 11.99 ◦C in the 2060s, and to
12.44 ◦C in the 2090s. The increment reaches about 1.5 ◦C by the 2090s. From Table 5, we
can see that, similar to the interdecadal annual mean SBT changes, the highest seasonal
SBT increases are obtained from the 2030s to the 2060s for all seasons.

Next, we investigate the interdecadal SBT variations in different seasons in Figure 9.
The first to fourth rows show the results from spring to winter, while the first to third
columns show the changes from the 2030s to the 2090s, respectively. We find that in the
spring and winter, the regions with significant SBT changes concentrate in the eastern
Bohai Sea (especially in the east of Qinhuangdao), the northern part of the Yellow Sea,
and the central shelf and outer shelf of the East China Sea. This is mainly attributed to
the weakened upwelling, the strengthened Kuroshio invasion, and the severe impact of
the Taiwan Warm Current water. In the summer and autumn, the regions with significant
SBT changes expand from the nearshore region (such as northern Jiangsu province and
Changjiang Estuary) to the middle and outer-shelf regions. As aforementioned, the increase
in SBT in the Bohai Sea may induce the brown tide problem and the increased SBT in
the northern Jiangsu coast, and the Changjiang Estuary may contribute to red and green
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tide issues, and could even result in jellyfish disasters. Figure 9c,f show the remarkable
seasonal increase in SBT in the northern Yellow Sea, where the Yellow Sea warm current
plays a more important role than the Yellow Sea cold water mass in the spring and summer.
The SBT increases in this region may intensify the low oxygen and acidification problem.
Similar to the interdecadal annual SBT variation, for all seasons, the SBT increases more
significantly in the 2060s than in the 2030s.

(a) (b)

(c) (d)

(e) (f)

Figure 8. The interdecadal annual SBT changes projected by MPI-ESM-MR: the annual mean bottom
temperature in (a) 2030, (c) 2060, (e) and 2090, as well as their changes compared with that in 2010:
(b) 2030–2010, (d) 2060–2010, (f) 2090–2010.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9. Interdecadal seasonal projection of SBT variations by MPI-ESM-MR. The first to third
columns show the seasonal mean changes from the 2010s to the 2030s, to the 2060s, and to the 2090s,
respectively. The first to fourth rows illustrate the changes in the four seasons, respectively.
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Table 5. Interdecadal seasonal SBT changes of six modified models (◦C).

SBT
2010s 2030s 2060s 2090s

Spr. Sum. Aut. Win. Spr. Sum. Aut. Win. Spr. Sum. Aut. Win. Spr. Sum. Aut. Win.

ACCESS1.3 13.25 17.38 16.58 11.27 13.82 17.97 17.53 12.17 15.28 19.79 19.00 12.95 15.66 20.19 19.50 13.56

CCSM4 13.20 17.40 16.62 11.18 13.20 17.53 16.83 11.25 14.23 18.35 17.54 12.21 13.95 18.36 17.71 11.79

FIO-ESM 13.36 17.49 16.71 11.36 13.60 17.68 16.67 11.71 13.61 17.81 16.99 11.67 13.46 17.77 16.92 11.38

CESM1-WACCM 13.32 17.46 16.69 11.33 13.29 17.40 16.68 11.19 13.43 17.72 17.09 11.37 13.73 18.06 17.35 11.78

NorESM1-ME 13.22 17.41 16.61 11.17 12.71 17.05 16.39 10.43 13.87 18.19 17.47 11.29 13.93 18.44 17.62 11.46

MPI-ESM-MR 13.26 17.45 16.53 11.11 13.20 17.45 16.59 11.46 13.96 18.35 17.50 11.99 14.56 18.61 17.48 12.44

Average 13.22 17.63 16.63 11.02 13.40 17.89 16.96 11.34 14.64 19.19 18.16 12.23 14.70 19.35 18.36 12.34

SBT
Changes

2010s 2030s–2010s 2060s–2010s 2090s–2010s

Spr. Sum. Aut. Win. Spr. Sum. Aut. Win. Spr. Sum. Aut. Win. Spr. Sum. Aut. Win.

ACCESS1.3 13.25 17.38 16.58 11.27 0.57 0.58 0.95 0.90 2.02 2.41 2.41 1.69 2.40 2.81 2.92 2.30

CCSM4 13.20 17.40 16.62 11.18 0.01 0.12 0.21 0.06 1.03 0.95 0.92 1.03 0.75 0.96 1.09 0.60

FIO-ESM 13.36 17.49 16.71 11.36 0.24 0.19 −0.04 0.35 0.24 0.31 0.28 0.31 0.10 0.28 0.02 0.02

CESM1-WACCM 13.32 17.46 16.69 11.33 −0.03 −0.06 −0.01 −0.14 0.10 0.26 0.40 0.05 0.41 0.60 0.66 0.45

NorESM1-ME 13.22 17.41 16.61 11.17 −0.51 −0.36 −0.21 −0.75 0.65 −0.78 0.86 0.11 0.74 1.03 1.01 0.29

MPI-ESM-MR 13.26 17.45 16.53 11.11 −0.06 0.00 0.06 0.35 0.70 0.89 0.97 0.88 1.30 1.15 0.95 1.33

Average 13.22 17.63 16.63 11.02 0.18 0.25 0.33 0.32 1.42 1.56 1.52 1.21 1.48 1.72 1.73 1.32

5. Discussion

In this section, we perform an empirical orthogonal function (EOF) analysis for a more
comprehensive discussion. The original EOF results under the first principal dimension,
considering the annual mean from 2006∼2099 using MPI-ESM-MR, along with its de-2010
climate state (obtained by subtracting the value of 2010), are depicted in Figure 10a,b.
The original seasonal EOF results under the first principal dimension and their de-2010
climate states are illustrated in Figures 11 and 12. We can see that the highest SBTs of both
annual and seasonal ones mainly concentrate in the Taiwan Strait, where the Taiwan Warm
Current plays a significant role. Moreover, the most significant warming rate of SBT is
located in the outer shelf of the East China Sea. Based on these findings, we will investigate
the main contribution to the significant warming in the outer-shelf region: whether it is
primarily due to the warmer Taiwan Warm Current or the reduced influx of Kuroshio water.
To answer this question, we create three sections, as shown in Figure 10b: the boundary
of the Taiwan Warm Current, the boundary of Kuroshio, and the boundary in the outer
shelf of the East China Sea. We calculate the annual and seasonal correlations between the
mean Taiwan Warm Current bottom temperature and the SBT in the outer shelf of the East
China Sea; we also analyze the correlation between the Kuroshio water flux and the SBT
in the outer shelf of the East China Sea. They are shown in Table 6. The Kuroshio flux is
determined by using the monthly-averaged velocity data (u, v) from the MPI-ESM-MR
model from January 2006 to December 2100 under the RCP 4.5 scenario. u and v represent
the longitudinal and latitudinal current velocities, respectively. To calculate the Kuroshio
flux, we first need to define the Kuroshio boundary. In this paper, the Kuroshio boundary
is defined as the water depth at which the Kuroshio intrudes into the ECSSs. This water
depth is obtained by using the typical minimum temperature (18 ◦C) as the threshold.
Then, the Kuroshio boundary is determined by using the position illustrated in Figure 10b
on this water depth. Assuming that the flow at the boundary of the Kuroshio into the
ECSSs is homogeneous over time, the flux is only correlated to the current velocity. In this
paper, we did not calculate the flux directly. Instead, we used the total velocity to represent

the flux as ∑i

√
u2

i + v2
i , where ui, vi represent the longitudinal and latitudinal current

velocities of the aforementioned MPI-ESM-MR model at the i-th grid on the Kuroshio
boundary, respectively. The results indicate that in the spring, and throughout the whole
year, the warming of the Taiwan Warm Current is the primary contributing factor to the
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temperature increase; in the summer, autumn, and winter, the decrease in the Kuroshio
water flux is the main reason. We also show the annual and seasonal average SBTs of
the Taiwan Warm Current and Kuroshio current from 2006 to 2100, as shown in Table 7.
The SBT of the Taiwan Warm Current is warmer and the SBT of the Kuroshio is colder.
From this, we can see that the warmer waters of the Taiwan Current can cause an increase
in the SBT, while the influx of colder water from the Kuroshio leads to the SBT cooling.

(a) (b)

Figure 10. The EOF result of interannual mean from 2006 to 2099 under the first principal dimension
using MPI-ESM-MR: (a) the original EOF result; (b) the EOF result of the de-2010 climate state one.

(a) (b)

(c) (d)

Figure 11. The original EOF resultd under the first principal dimension from 2006 to 2099 using
MPI-ESM-MR for different seasons: (a) spring, (b) summer, (c) autumn, and (d) winter.
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(a) (b)

(c) (d)

Figure 12. The de-2010 climate state of EOF results under the first principal dimension from 2006 to
2099 using MPI-ESM-MR for different seasons: (a) spring, (b) summer, (c) autumn, and (d) winter.

Table 6. The annual and seasonal correlations between the mean Taiwan Warm Current bottom
temperature and the SBT in the outer shelf of the East China Sea (the first row); the correlation between
the Kuroshio water flux and the SBT in the outer shelf of the East China Sea (the second row).

Impact Factor Annual Spring Summer Autumn Winter

Taiwan Warm Current SBT 0.57 0.58 0.49 0.38 0.07
Kuroshio water flux −0.41 −0.39 −0.63 −0.56 −0.42

Table 7. The annual and seasonal average SBTs of the Taiwan Warm Current and Kuroshio from 2006
to 2100 (◦C).

Critical Ocean Current Annual Spring Summer Autumn Winter

Taiwan Warm Current Average SBT 24.62 23.86 26.76 26.49 21.37
Kuroshio Average SBT 18.07 17.91 17.68 17.77 18.91

6. Conclusions

This paper investigated the interannual and interdecadal changes in bottom temper-
ature within the East China Shelf Seas up to the year 2100, based on simulation results
obtained from CMIP5 models. Before the analysis, the simulation results of six representa-
tive CMIP5 models were validated by comparing them with the hydrological observation
data from WOA18. Then the best model, MPI-ESM-MR, was selected for further analysis
due to its high resolution and low errors. Through extensive experiments, we found that
both the yearly and seasonal bottom temperatures will increase significantly in the next
80 years, especially from 2030 to 2060. The regional interannual bottom temperature will
increase most significantly by 1.92 ◦C in the Bohai Sea (in the spring). The yearly inter-
decadal SBT will increase by about 1.18 ◦C until 2100, while seasonal interdecadal SBT
will increase by 1.15–1.33 ◦C by 2100. Significant bottom temperature increases mainly
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concentrate in the inner shore regions, such as the east part of Qinhuangdao in the Bohai
Sea, the Changjiang Estuary, the northern Jiangsu province shore, the northern part of
the Yellow Sea, and the middle shelf and outer shelf of the East China Sea. Among them,
the most significant warming region is located in the outer shelf of the East China Sea,
which is affected by the dual influence of the Kuroshio invasion and the Taiwan Warm
Current. In this study, we also performed an EOF analysis to study the specific reasons
for the significant warming in the outer-shelf region of the East China Sea. We found that
in the spring and throughout the whole year, the warming of the Taiwan Warm Current
is the main contribution, while in the summer, autumn, and winter, the decrease in the
Kuroshio water flux is the main reason. The significant bottom temperature increases may
greatly influence the ecological environments in these regions. They will intensify the
low oxygen, acidification, and harmful algal blooms, leading to serious marine ecological
problems, such as brown tides in the Bohai Sea, red and green tides in the Changjiang
Estuary and the northern Jiangsu province shore, and the burst of jellyfish disasters in these
areas. The distribution of bottom species and their living environments can be seriously
affected. Thus, we need to conduct more effective strategies to deal with climate change
problems in these regions.
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