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Abstract: Characterizing the electrical properties of hydrate-bearing sediments, especially resistivity,
is essential for reservoir identification and saturation evaluation. The variation in electrical properties
depends on the evolution of pore habits, which in turn are influenced by the hydrate growth pattern.
To analyze the relationship between hydrate morphology and resistivity quantitatively, different
micromorphologies of hydrates were simulated at the pore scale. This study was also conducted
based on Maxwell’s equations for a constant current field. During numerical simulation, three types
of hydrate occurrence patterns (grain-cementing, pore-filling and load-bearing) and five types of
distribution morphologies (circle, square, square rotated by 45◦, ellipse and ellipse rotated by 90◦) in
the pore-filling mode were considered. Moreover, the effects of porosity, the conductivity of seawater,
the size of the pore-throat and other factors on resistivity are also discussed. The results show that
the variation in resistivity with hydrate saturation can be broadly divided into three stages (basically
no effect, slow change and rapid growth). Compared with the grain-cementing and pore-filling
modes, the resistivity of the load-bearing mode was relatively high even when hydrate saturation
was low. For high hydrate-saturated sediments (Sh > 0.4), the saturation exponent n in Archie
equation was taken as 2.42± 0.2. The size of the throat is furthermore the most critical factor affecting
resistivity. This work shows the potential application prospects of the fine reservoir characterization
and evaluation of hydrate-bearing sediments.

Keywords: hydrate-bearing sediment; micromorphology in porous media; electrical property;
numerical modeling; saturation exponent n

1. Introduction

In recent years, the energy demand in the world has increased while the reserves
of fossil fuels have been shrinking. Therefore, it is urgent to find new energy sources to
alleviate the problem of energy shortage in the future. Natural gas hydrate (NGH) is an
ice-like crystalline solid compound formed by water molecules and other guest molecules
such as methane, ethanol carbon dioxide and so on, under certain temperature and pressure
conditions [1]. It is widely distributed in submarine sediments on continental shelf margins
and in permafrost regions [2,3]. Due to its wide distribution, huge resources and high
density (1 m3 of NGH can release 164~180 m3 methane gas and its energy density is
nearly 10 times that of traditional energy), NGH is regarded as a new potential source with
cleanliness, high efficiency and abundant reserves [4–7].

Since NGH is stable only under low-temperature and high-pressure conditions, it will
decompose and transform from a solid to gas state once conditions change. Natural gas
spills into sediment easily, leading to formation deficits and causing large uncontrollable
phase changes. Moreover, methane in natural gas hydrate is a gas with a strong greenhouse
effect. Instability of hydrate reservoirs may cause submarine landslide, borehole collapse
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and methane gas leakage, which may lead to tsunamis, the greenhouse effect and other
disasters and bring great inconvenience to exploration and development, so there is an
immediate need to carry out research on the fine reservoir characterization and evaluation
of marine NGH [8–10]. Resistivity is very sensitive to the existence of NGH. In the rock
skeleton of sedimentary rocks, only the solid particles of rock minerals contain a small
number of free electrons, resulting in a poor electrical conductivity of the rock skeleton,
which mainly relies on the ionic conductivity of fluids between the connected pores and
fracture. When NGH forms in the pore space of seafloor sediments, the flow channels
are blocked, leading to reduced porosity and the geophysical response is characterized
by high resistivity. Consequently, the anomalous change in resistivity can be used to
indicate the hydrate-bearing reservoir and also to estimate the hydrate saturation to a
certain extent [11–13].

Based on previous research, it is evident that the factors affecting the electrical prop-
erties of hydrate-bearing reservoirs mainly include the temperature and pressure of the
reservoir, salinity of pore water, hydrate-bearing saturation, structure of the pore space and
clay content of the reservoir [14,15]. Temperature on the one hand can affect the solubility
of charged ions, such that the concentration of ions in the pore solution changes; on the
other hand, it can also affect the migration rate of ions [16–18]. Seafloor sediments are
mostly unconsolidated porous media, and pressure mainly affects the porosity of their
porous media. When the pore fluid is a salt solution, the presence of salt ions can greatly
enhance electrical conductivity, causing a significant decrease in the resistivity value of the
sediment [19]. The hydrate will block the throats and pores in the formation, leading to a
poor pore connectivity. Meanwhile, the fluid may be trapped in a closed range, and the ions
in the fluids will not be able to communicate well. Thus, the electrical conductivity will
be poor [20]. The pore structure of the reservoir refers to the size, shape, distribution and
connectivity of the throats and pores, which all have a certain influence on the electrical
properties of the rock [21]. When clay is present in the reservoir, the electrical properties
become complex and the double layer effect caused by it produces additional conductiv-
ity [22,23]. In addition, it has been shown in the literature that the electrical conduction
patterns of sediments differ under different hydrate occurrence conditions. This is mainly
attributable to the change in pore structure caused by the growth of hydrate, which in
turn affects electrical properties [24–26]. However, most of the aforementioned studies are
qualitative analyses, which basically analyze the general trend of the influence of these
factors on resistivity, and further work can be completed on the quantitative analysis of
resistivity changes. It is worth noting that multiple phases of solid (hydrate, ice), liquid
(seawater) and gas (free gas) may co-exist in hydrate-bearing sediments, making current
conduction much more complex. In general, both solid and gas phases are considered
to be insulating and cause an increase in resistivity in electrical properties, especially for
ice and hydrates, both of which can block the pore and throat. It is currently difficult to
distinguish them by their resistivity information alone [27,28]. At present, the study of
hydrate electrical properties mainly focuses on the study of sediment pore space and the
double layer effect brought by and clay, though the double layer effect is not particularly
significant in seawater with high salinity. The electrical conduction in the pore space of
hydrate-bearing sediments is extremely complex and its mechanism is not completely
clear, which brings a challenge to quantitative analysis. To correctly understand electrical
conduction characteristics, it is necessary to consider hydrate occurrence patterns and
electrical conduction channels at the pore scale.

Currently, the technology to obtain in situ NGH samples is immature and extremely
costly. It is almost impossible to achieve absolute preservation of NGH under in situ condi-
tions [29]. Laboratory simulation is an important method for studying the evolutionary
law of NGH’s physical properties. Moreover, it can also provide support for reservoir un-
derstanding during hydrate exploration and development in the field [30–33]. Laboratory
simulation for hydrates usually includes core experiments and numerical simulations of
the petrophysical type. The core experiments conducted in the laboratory are the basis for
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the research on the electrical conductivity mechanism of hydrates, which allows visual
observation of the effects of temperature, pressure, sediment salinity and other factors
on resistivity [34–37]. However, they are often unable to accurately analyze the extent of
influence of microscopic factors such as rock components and pore structure on electrical
properties. Based on the construction of numerical rock physics models, a conductivity
model can study the microscopic conductivity mechanism of porous media and quantita-
tively obtain the relationship between the pore structure as well as fluid distribution and
rock electrical properties [38,39]. Numerical simulations of the petrophysical variety can
compensate for the above-mentioned laboratory deficiencies and are not limited by the
hydrate formation environment and related experimental conditions, which is well suited
for the study of hydrates’ electrical properties at the pore scale.

This paper focuses on the electrical properties of hydrate-bearing sediments at the
pore scale, which were mainly simulated using the finite element method. This study
was also conducted based on Maxwell’s equations for a constant current field. The effects
of two arrangements with hydrate skeleton grains, three occurrence patterns and five
distribution morphologies on hydrate-bearing sediments were investigated mainly by
simulating different variations of hydrate saturation. Additionally, the relationship between
the resistivity index and water saturation (RI–Sw) was fitted to the Archie formula to obtain
the saturation exponent n, and the n of this paper is compared with previous work. Finally,
the influences of the skeleton grain arrangements of the sediment, initial porosity, hydrate
saturation, conductivity of seawater, tortuosity and size of the pore-throat on resistivity are
also discussed.

2. Method
2.1. The Occurrence Patterns of Hydrates at the Microscopic Scale

The occurrence pattern and distribution morphology of hydrates in sediments is the
contact relationship between hydrate and sediment skeleton grains and their position in a
pore space, which describes the formation of hydrate at the microscopic scale. To determine
the microscopic morphology of pore-type gas hydrate reservoirs in a submarine, many
researchers have carried out a series of hydrate synthesis–decomposition experiments and
observed the microscopic distribution of hydrates using XCT, SEM and other methods.
The results show that hydrates can form and reach different occurrence patterns and
distribution morphologies under different gas source and sediment composition conditions,
which is worthwhile to study further [40–42].

From the perspective of the pore scale, the occurrence patterns of hydrates in sediments
can roughly be divided into three main types: (a) grain-cementing (GC) mode, where
hydrate grows uniformly on and around the surface of skeleton grains and eventually
wraps around and cements the skeleton grains; (b) pore-filling (PF) mode, where hydrate
is dispersed in the pores of the rock without contacting any sediment skeleton grains;
and (c) load-bearing (LB) mode, where hydrate links adjacent skeleton grains together
and forms points of contact with them, becoming a part of the skeleton while providing
stability to the sediment [43–46]. A schematic diagram of each hydrate mode is shown in
Figure 1, which assisted us in visually identifying hydrate occurrence patterns. It is clear
that the occurrence pattern and distribution morphology of hydrates in sediment grains
have different effects on the electrical properties of the reservoir.
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2.2. Microscopic Numerical Simulation Methods

A constant current field is generated by a current that does not vary with time. In
general, the current intensity does not effectively describe the distribution of the current
in the current field. To this end, current density J (A/m2) is introduced to quantitatively
describe the current distribution and direction at each point in space. The differential form
of the current continuity equation is as follows:

∇·J + ∂ρ

∂t
= 0 (1)

∇·J = −∂ρ

∂t
(2)

where ρ is the space charge density (C/m) and t is the time of applying current (s).
According to the law of charge conservation, the charge q (C) flowing out from the

surface S in unit time should be equal to the reduction in charge from the surface S:
x

S

J·dS = −∂q
∂t

(3)

In a constant current field, although the charge is in motion, the current does not
change with time. Moreover, the distribution of moving charges in space does not change
with time, and there can be no increase or decrease in charge in any closed surface S, that is,
∂q
∂t = 0. So, Formula (3) is equal to the following:

x

S

J·dS = 0 (4)

The differential form of the continuity equation for a constant current can be obtained
by the Gaussian divergence theorem:

∇·J = 0 (5)

This equation is mathematically similar to the electrostatic equation in free space. In
addition, as in the case of static electricity, Maxwell’s equations imply that the electric field
needs to meet the additional requirements of a non-rotational field [47]:

∇× E = 0 (6)

where E is the electric field intensity (V/m).
The flow chart of the numerical simulation process based on Maxwell’s equations is

shown in Figure 2. First, the variables and formulas of the simulation process need to be
defined. Then, the two-dimensional (2D) geometric models are constructed, the boundary
conditions are set and the mesh is dissected. When the work above is ready, Maxwell’s
equations can be solved and finally, electrical parameters can be calculated based on general
physics concepts.

2.3. Simulation of Saturation Model

Generally, after calculating the hydrate-bearing reservoir resistivity of different occur-
rence patterns by the numerical simulation method, the relation between the formation
factor and porosity (F–ϕ) and the resistivity index and water saturation (RI–Sw) can be fur-
ther established by using Archie’s law, which can further estimate hydrate saturation [48].
They are written as the following:

F =
R0

Rw
=

a
ϕm (7)

RI =
Rt

R0
=

b
Swn (8)
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The formation factor F is defined as the ratio of resistivity when all the pores are filled
with brine, R0, to the resistivity of brine, Rw, which is only related to the rock properties,
porosity and pore structure of the formation. ϕ is the effective porosity of the rock, a is the
lithology coefficient related to the rock properties, generally within 0.6~1.5, and m is the
cementation index, related to the pore structure, generally within 1.5~3. The resistivity
index RI is defined as the resistivity of petroliferous rocks, Rt, to R0, which is related to
water saturation and lithology. Sw is the water saturation of rock, b is the coefficient related
to lithology, generally close to 1, and n is the saturation exponent, generally close to 2.

The pore structure of the reservoir using the Archie age is simple, and the pores of the
rock can be completely filled by experimental electrolytes. With the gradual deepening of
oil and gas field exploration and development, the understanding of the complexity of reser-
voir pore structure is more in-depth, and the Archie formula needs to be improved when it
is used. Therefore, using numerical simulation to calculate hydrate resistivity under differ-
ent occurrence modes in the formation and constructing the relationship between resistivity
and saturation is an important and effective method to study water saturation models.

3. Numerical Simulation of Electrical Properties at the Microscopic Pore Scale
3.1. Porous Medium Model

With reasonable simplification, 2D models can obtain the desired results faster and
with great savings in computational resources. The equivalent substitution of 2D models for
3D models has certain limitations. Since the model simulated in this paper is homogeneous,
the difference between 2D and 3D is not obvious. To facilitate research on the hydrates’
electrical properties in the microscopic pore structure of the seafloor porous medium,
2D geometric models were adopted, which are equivalent to three-dimensional models
while saving computational power. The marine hydrate-bearing reservoir is characterized
by shallow burial, low compaction and unconsolidated cementation. Meanwhile, its
porosity mainly varies from 0.2 to 0.5, with local porosity as high as 0.7 [49–52]. Based on
this point, the porosity without hydrate in this paper is set to 0.6. The first step is to construct
a porous medium skeleton. As shown in Figure 3, two different skeleton arrangement
models were considered. Model A has a square arrangement of skeleton grains, while
Model B has a 45◦ inclination in skeleton grain arrangement. These two models can be
regarded as the skeleton arrangements formed by a more extreme stratigraphic sedimentary
environment, respectively. In most cases, hydrates are present in coarse sand to medium
silty sandy (500–20 µm) sediments [53–56]. Each skeleton grain has the same radius of
35.68 µm, which belongs to medium silty sandy. Further, the 2D rectangular geometry
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models are the same size of 1000 × 1000 µm with 10 × 10 skeleton grains uniformly
distributed. The distance between the centers of two skeleton grains Lg is 100 µm. Moreover,
the space around which four skeleton grains wrap is called a pore, and the space between
two skeleton grains is called a throat.
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The conductive response mechanism of hydrate can be discussed by simulating the
hydrate in the pore space, including different occurrence patterns of hydrates in sediments
and different distribution morphologies of hydrate in PF mode. Taking Model A as an
example, Figure 4 shows the local diagram of three hydrate occurrence patterns in the
model, and each model is composed of several symmetrical local diagrams. Among them,
the PF mode contains five different hydrate distribution morphologies (Figure 5): circle,
square, square rotated by 45◦ (square-45◦), ellipse and ellipse rotated by 90◦ (ellipse-90◦). It
is noteworthy that each distribution morphology is suspended in the pores without contact
with the skeleton grains. Finally, we constructed a series of 14 models considering multiple
skeleton arrangements, occurrence patterns and distribution morphologies. In addition,
various hydrate saturations can be simulated by adjusting the radius and side length of
hydrate particles in each model.
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3.2. Setting of the Numerical Simulation Model

Erickson and Jarrard (1998) found that additional conductivity of clay was not signifi-
cant in highly porous marine clastic sediments and the effect of clay could be neglected [57].
In this paper, a relatively pure quartz sand medium was simulated without clay com-
ponents, so the effect of its additional conductivity is also disregarded. A total of three
components were set up: seawater, skeleton grain and hydrate. As it is known, seawater
is highly conductive, while hydrate can be considered as completely non-conductive (i.e.,
electrical insulator). Conductivity is defined as expressing the strength of a substance’s
ability to transmit electric current, which is strongly influenced by temperature. Because
the model is at the micron scale, it is assumed that the fluid inside the pores has a constant
temperature. Under isothermal conditions, the effective electrical properties of the three
components do not change. Therefore, their conductivity is 3 S/m, 1 × 10−3 S/m and
1 × 10−8 S/m, respectively [58,59].

The finite element method was used to solve the electric field model equations of
the porous media based on a constant current field, and the resistivity of the porous
media containing hydrate for numerical simulation was derived. The detailed procedure
is described in Section 2.2. Figure 6 shows the schematic diagram of a conventional 2D
porous medium under electrical simulation, which follows the law of current conservation.
The top and bottom boundaries of the model are insulated, and the left and right sides
are the electrical potential and ground boundaries, respectively. The left side is connected
to a 0.1 A constant-current power supply, indicating current inflow, and the right side is
grounded, indicating current outflow.
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The entire computational domain including seawater, skeletal particles and hydrates
was discretized using a triangular mesh that could be applied to arbitrarily complex
geometries. Furthermore, too coarse mesh settings could lead to the improper resolution of
thin regions and short edges. Therefore, a fine meshing method was adopted to improve
accuracy during model calculation. Since the models are dominated by ion conductivity
and the pores and throats are their main channels, local refinement was performed on this
part of the mesh.

4. Results
4.1. Three Occurrence Patterns of Hydrates in Sediments

The resistivity of pore water (seawater) during the simulation was 0.33 Ω ·m, and the
original core saturation resistivity was 0.78 Ω ·m. The effects of three hydrate occurrence
patterns (PF, GC and LB mode) on resistivity were considered, as shown in Figure 7. Overall,
the resistivity response of these two skeleton arrangements was generally consistent, and
there was a positive correlation between resistivity and hydrate saturation in the three
occurrence patterns. The curves can be roughly divided into three stages. In the first stage,
when the hydrate saturation was below 0.2, the resistivity of the three modes was nearly
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changeless, and the effect of hydrate occurrence patterns on electrical conduction was
almost negligible in this case. In the second stage, the resistivity of the three modes of
hydrate saturation changed slowly in the range of 0.2~0.4. Finally, the resistivity grew
rapidly with increasing hydrate saturation, especially when it reached above 0.5. For the
LB mode, even with low hydrate saturation, the resistivity was relatively high, which is
more different from the other two modes. Notably, the PF mode mainly influenced the
pore space, while the GC mode mainly focused on the narrow throat space. However,
when the resistivity of the PF mode had a circular distribution morphology, the degree of
resistivity varying with hydrate saturation was basically the same as that of the GC mode.
Although the resistivity of Model B is more sensitive to the variation in hydrate saturation,
the arrangement of skeleton grains has little effect on resistivity in general.
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The current density diagram allows us to visualize the distribution of the electric
current during conduction. Since the simulated model was homogeneous, a partial plot was
obtained for illustrative purposes. The product of electric field intensity and conductivity
is the current density. During the simulation, the conductivity was assumed to be constant,
and the electric field intensity and current density were proportional to each other. However,
the conductivity corresponding to different components varies widely, and the current
density and electric field intensity can be combined to understand the electrical properties.

The conduction path of electric current in the GC mode was basically the same as that
in the non-hydrate condition, and the GC mode mainly led to a smaller throat channel
but had little effect on pore space (Figure 8). With increasing hydrate saturation, the
vertical gap between the two skeletal grains is the main channel of electrical conduction in
Model A. Meanwhile, Model B mainly represents the gaps in each skeletal grain, which
refer to the corners around one grain, and the curvature of the electrical conduction path
rose. Due to the tiny conductivity of hydrate, the current density was close to zero even
though the electric field intensity of hydrate becomes larger with increasing saturation.
The conductivity of the seawater was constant and as the hydrate saturation increased, the
electric field intensity became stronger, which is proportional to the current density.
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The PF mode mainly occupied the pore space, causing it to become smaller (Figure 9).
At first, the channel of electrical conduction in Model A was mainly dominated by the
vertical gap of two skeletal grains, and Model B is the vertical gap between the skeletal
grain and hydrate. With the increase in hydrate saturation, Model A gradually occupied
the gaps in each skeleton grain as the main channel, and the curvature of the electrical
conduction path grew, while the conduction path of Model B was unchanged. The electric
field intensity became stronger as the hydrate saturation increased. Similar to the GC mode,
the electric field intensity was also greater where the current density was high for seawater.

The hydrate in the LB mode was in contact with both skeleton grains simultaneously,
and this had an impact on electrical conduction even if the saturation of the hydrate was
relatively low (Figure 10). In Model A, the vertical gap between the two skeleton grains
was the main channel for electrical conduction. When the hydrate saturation rose to 0.375,
two hydrate grains in the lateral direction were about to come into contact and the electric
current passed mainly through the narrow throat between the skeleton grains and hydrates.
There was no significant change in the electrical conduction path in Model B, and the main
conduction path was where the current density was high. Since the hydrate in the LB
mode was contacted with the skeleton grains, the electric field intensity remained relatively
strong at a low hydrate saturation, and the electric field intensity was maximal between
the contact points of the hydrate and rock skeleton, which is different from the previous
two modes. The pore and throat were the main channels for the ionic conductivity of
hydrate-bearing sediments, and the load-bearing hydrate mainly blocked the pore and
throat, which in turn caused an increase in resistivity. After the formation of sediments, the
resistivity of the load-bearing hydrate was higher than in the other two modes.

In summary, hydrate saturation was low initially, and the pore space and throat
channel were only a little affected by the hydrate. Meanwhile, the current density was very
tiny, which was nearly uniformly distributed in the pore space, and the model’s resistivity
was poor. As hydrate saturation grew, the pore space and throat channel gradually became
small, and the electrical conduction path was affected. All electric currents were squeezed
through the narrow throat channel, causing the electric current to concentrate in the local
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area. At this time, the current density at the narrow pore-throat became larger and the
resistivity increased. Eventually, when the hydrate saturation increased to a certain value,
the pore space was no longer connected and the saturation exponent as well as resistivity
tended toward infinity.
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4.2. Five Distribution Morphologies of Hydrates in the PF Mode

The resistivity of different hydrate distribution morphologies in the PF mode was
also positively correlated with hydrate saturation, but the degree of positive correlation
varies considerably (Figure 11). Due to the different skeleton arrangements, the resistivity
variance with hydrate saturation for both models was not exactly the same even for the
distribution morphologies of hydrate in the PF mode. When hydrate saturation was
less than 0.2, the resistivity of Model A essentially remained constant. Once the hydrate
saturation exceeded 0.2, the resistivity began to vary obviously. The degree of resistivity
variation with hydrate saturation was square, circle, ellipse, ellipse-90◦ and square-45◦

in descending order. For Model B, the hydrate saturation with 0.3 was a critical value:
below 0.3, the resistivity fluctuated only a little, and above 0.3, the resistivity progressively
grew with hydrate saturation. Among them, the ellipse-90◦ distribution morphology had
a rapid rise in resistivity after the hydrate saturation was greater than 0.5. Moreover, the
square and square-45◦ distribution morphologies had opposite forms of curve changes
in the two skeleton models, owing to the fact that Model B was obtained after rotating
Model A by 45◦.

The electric field intensities of the PF modes varied similarly, so the electric field
intensities of each distribution morphology in the PF modes are not described in this
section. For the PF mode (square), Model A had less of an effect on electrical conduction
when hydrate saturation was low. When hydrate saturation increased to 0.375, the four
angles of hydrate mainly obstructed the electrical conduction, and the current density
between the four angles and the skeleton grains became larger (Figure 12a). Model B
took the vertical gap between the skeleton grains and the hydrate as the main conduction
channel. As the hydrate saturation increased, the flow space became smaller and the
current density at the gap rose (Figure 12b). Comparing the two models, it can be found
that the current density distribution of Model A was more concentrated and the resistivity
rose more quickly.
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Figure 12. Current density diagram in the PF mode (square) with different sediment skeleton
arrangements and hydrate saturations: (a) Model A and (b) Model B.

Figure 13 shows the current density distribution of the two models for the PF mode
(square-45◦). Model A takes the gap between two vertical skeleton grains as the main
conduction channel. While at the top and bottom vertices of the hydrate, the current
density becomes locally larger, indicating that the current will gather at this place to pass
during the conduction process. With increasing hydrate saturation, the main conduction
channel gradually changed to the gap between the hydrate and skeleton grains, as well
as the top and bottom vertices of the hydrate. In Model B, the current density was more
concentrated even if the hydrate saturation was 0.25. As the saturation increased, the
electrical conduction channel became smaller and the electric current was more intensively
passed through the throat.
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Figure 13. Current density diagram in the PF mode (square-45◦) with different sediment skeleton
arrangements and hydrate saturations: (a) Model A and (b) Model B.

Due to the difference in skeleton arrangement, Model A occupied the gap between
two vertical skeleton grains as the main conduction channel, while Model B occupied
the vertical gap between the skeleton grains and the hydrate. As the hydrate saturation
kept growing larger, the conducting path changed and gradually became smaller, which
is reflected in the concentration of current density at the local pore-throat. The current
density of Model A became strong quicker at the same saturation, indicating that the PF
mode (ellipse) had a greater effect on Model A (Figure 14). When the hydrate distribution
morphology was ellipse-90◦, the current density of Model B was already large at a hydrate
saturation of 0.25 (Figure 15), showing that Model B was more sensitive to the PF mode
(ellipse-90◦).
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The above analysis shows that the skeleton arrangement and hydrate distribution mor-
phology had different effects on the electrical conduction path. The growth of hydrates in
the sediment pore space led to the reconstruction of the pore structure, and the conduction
channel of the electric current became complicated, which in turn affected the electrical
properties of the sediment. With the increasing hydrate saturation, the electrical conduction
path changed, which in turn led to a larger resistivity. When hydrate saturation increased
to a certain value, it resulted in severe blockage of electrical conduction channels and a
rapid increase in current density at the pore-throat.

4.3. Saturation Exponent n in the Archie Formula

Typically, the resistivity of reservoir samples at several hydrocarbon saturations is
measured in the laboratory to calibrate the value of n in the Archie formula. Initially,
Pearson measured ice-bearing sandstones to estimate the n of gas hydrate and eventually
obtained n = 1.9, which was then widely used in the hydrate industry over the following
decades [60]. However, n = 1.9 is an empirical value and the n value in a hydrate envi-
ronment is related to the hydrocarbon reservoir. It depends on the sediment pore shape,
pore connectivity, conductive pore water distribution, hydrate occurrence pattern and
distribution morphology, etc.

The relationship between the resistivity index and water saturation (RI–Sw) was fitted
to the Archie formula to obtain the empirical parameter value n. The log–log plots (RI–Sw)
for Model A and Model B are shown in Figures 16 and 17, respectively, which do not exactly
follow the Archie phenomenon. From the above analysis, it is known that the effect on
resistivity is not significant when the hydrate saturation is below 0.2. If a low hydrate
saturation is considered, it will lead to a poor n and interfere with the prediction of hydrate
saturation. Therefore, only a hydrate saturation above 0.2 was considered when fitting the
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saturation exponent n in this paper. Both plots show that the curves of the GC mode and the
PF mode (circle) basically overlap and they are in the middle of the other PF modes. Both
models had large values for n for the PF mode (ellipse-90◦), indicating that this hydrate
growth mode had a large effect on electrical conduction. These modes with the largest
or the smallest n all belonged to the PF mode. Table 1 shows the statistical n values for
different hydrate occurrence patterns and distribution morphologies of both models. In
general, the variation range of n for Model B was larger, demonstrating that the skeletal
structure of Model B was more susceptible to the growth of hydrate compared to Model A.
In other words, the resistivity of Model B was somewhat more sensitive to changes in
hydrate saturation. These phenomena suggest that the arrangement of skeleton grains also
has an impact on the resistivity of the hydrate-bearing reservoir.
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Saturation exponents n fitted in this paper were compared with previous work using
both experimental resistivity measurements of hydrate synthesis in the laboratory and
actual reservoir resistivity logging data (Figure 18). The data from Ren et al. (2010) [61]
and Chen et al. (2013) [62] are laboratory measurements. Mallik 5L-38 is the permafrost
Mallik Gas Hydrate Production Research Well in the Northwest Territories in Canada, and
the two marine wells WR313-H and GC955-H are part of the Gulf of Mexico Gas Hydrate
Joint Industry Project. These three wells comprise field measured data, all from Cook and
Waite (2018) [63]. The hydrate saturation of the actual reservoir resistivity logging data was
greater than 0.4, and the hydrate saturation of the experimental resistivity measurement
data was mainly less than 0.4. Since the in situ sediments had obvious differences from the
laboratory samples in terms of porosity and degree of cementation and compaction, the
saturation exponents n corresponding to the in situ data were higher than the experimental
data. When the hydrate saturation was higher than 0.4, the trend of actual reservoir
resistivity logging data was similar to that of the GC mode, and the saturation exponent
was slightly larger than that of the GC mode. For high hydrate saturation (Sh > 0.4), the
saturation exponent n could be taken as 2.42 ± 0.2, with 0.2 being the difference between
the mean value of saturation exponents n of Model A and Model B. It can be observed that
the hydrate occurrence pattern and distribution morphology were dominated by the GC
and special PF modes at high hydrate saturation. In Figure 18, experimental data points
are within the PF mode and outside the GC mode. When the hydrate saturation was lower
than 0.4, the saturation exponent was smaller and dominated by the PF modes.
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4.4. Analyses of Influencing Factors

As solid crystalline substances, hydrates can occupy or block the electrical conduction
channels of porous media, so the electrical characteristics of hydrate-bearing reservoirs
are very different from those of other reservoirs. To further explore the hydrate-bearing
reservoir electrical conduction mechanism, Model A was used as an example to analyze
the influence of conductivity, porosity, tortuosity and the pore-throat on resistivity in
this section.

In the case of high initial porosity of the reservoir, the electrical conductivity of
seawater had little effect on the resistivity (Figure 19). As the initial porosity of the reservoir
decreased, the ion flow space became smaller, and the electrical effect on the sediment
gradually became stronger. The effects on the electrical properties of sediments were
basically similar for the seawater conductivity of 2 S/m, 3 S/m and 5 S/m. When the
porosity was higher than 0.5, it could be considered to have had the same degree of
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influence, demonstrating that the differences between the mineralization of seawater
under high porosity can be neglected in terms of the electrical properties of sediments. In
contrast, the seawater conductivity of 1 S/m was significantly different from them, and this
phenomenon gradually became obvious as the initial porosity of the reservoir decreased,
especially when the porosity was below 0.4.
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Figure 19. The effect of the electrical conductivity of seawater and porosity on resistivity.

The selected occurrence pattern was the PF mode (circle), and the hydrate saturation
was negatively correlated with the porosity and resistivity of the sediments (Figure 20).
When the hydrate saturation was 0.1 or 0.2, the resistivity was low regardless of the
sediment porosity, and it can be concluded that hydrate-bearing reservoirs are hardly
identified only through electrical property information at the saturation of less than 0.2.
However, when the hydrate saturation was higher than 0.4, the resistivity of the sediment
significantly differed from the original resistivity, i.e., there was a significant electrical
logging response in the field exploration data, especially when the porosity was below 0.5.
The effect of different hydrate saturation on resistivity varied greatly when porosity was
low, and resistivity was similar when porosity was high. In summary, porosity had little
effect on low hydrate saturation but drastically affected high hydrate saturation.
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Figure 20. The effect of hydrate saturation and porosity on resistivity.

Since the skeleton of Model A was uniformly arranged and the tortuosity of the GC
and LB modes were kept at 1.0 and 1.4, respectively, without further change, only the
different distribution morphologies of hydrate in the PF mode are shown in Figure 21.
With increasing hydrate saturation, the tortuosity of different distribution morphologies
gradually grows and appears as obvious differentiation phenomena. In particular, the
tortuosity of the PF mode (ellipse) rose most slowly with hydrate saturation, and the
PF mode (square) was the fastest. As explained in Figure 10a, the order of tortuosity and
resistivity ranking for different distribution morphologies at the same hydrate saturation
was not completely the same. For example, the resistivity of the PF mode (square-45◦) in
Figure 10a changed most slowly, while the slowest change in tortuosity in Figure 20 was
in the PF mode (ellipse), indicating that tortuosity was not the main factor affecting the
electrical properties of the sediments.
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Figure 21. Tortuosity of five hydrate distribution morphologies with different saturations.

As we know, hydrate growth in the sediment pore space will result in the reconstruc-
tion of the pore structure, and we had to take into account the effect of pore and throat sizes
on electrical properties. A new pore space and throat channel of different sizes were formed
by different occurrence patterns and distribution morphologies of hydrate, as shown in
Figure 22. Notably, the PF mode (ellipse) and PF mode (ellipse-90◦) had the same pore
and throat. Due to the LB mode’s hydrate growing in the middle of the skeletal grains
and occupying all the pore space of the sediment, this mode was no longer considered.
The variation in the pore and throat at different hydrate saturations was statistically ana-
lyzed, and the pore space and throat channel gradually decreased with increasing hydrate
saturation (Figure 23). Since the PF modes of hydrate mainly grew in the pore space, all
newly generated pores were relatively small, while in the GC mode, hydrate was mainly
wrapped around the outside of the skeletal grains, which had less influence on the pores.
The change in the hydrate pore size in the PF mode was divided into two stages. When the
hydrate saturation was small, we regarded the circle tangent of both the skeleton grains
and hydrate as a pore. Further, when the hydrate saturation reached 0.4, the pore size
decreased sharply, so only the tangent to the hydrate was considered and no longer the
tangent to the skeleton grains. Comparison with Figure 10a showed that even though the
newly generated pore size of the GC mode did not vary strongly with hydrate saturation,
the resistivity was relatively sensitive to hydrate saturation, which means that the pore size
affected the electrical conduction mechanism but was not its main factor. The influence
of hydrate saturation on the throat was relatively significant, and the size of the throat
gradually tended toward zero with the increase in saturation, where the PF (square) mode
had the greatest influence on the throat. The variation in throat size with hydrate saturation
was basically the same as resistivity with hydrate saturation in Figure 23, which indicates
that throat size is one of the most essential parameters affecting the electrical characteristics
of hydrate-bearing reservoirs.
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Figure 22. The newly generated pores and throats formed by different occurrence patterns and
distribution morphologies of hydrate: (a) GC mode; (b) PF (circle) mode; (c) PF (square) mode; (d) PF
(square-45◦) mode; (e) PF (ellipse) mode and (f) PF (ellipse-90◦) mode.
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5. Discussion and Limitations

To facilitate the study of the electrical properties of hydrate in different occurrence
patterns and distribution morphologies, homogeneous sediments were simulated but the
influence of free gas on the electrical property relationship was not considered in this paper.
Since the model simulated in this paper is homogeneous, the difference between the 2D and
3D models is not obvious. Meanwhile, we mainly simulated hydrate-bearing sediments
of medium fine sandstone. Due to the high salinity of seawater, hydrates in the sea are
predominantly ionically conductive, and pores and throats are their main conduction
channels. Actual marine sediment is heterogeneous and contains many impurities, which
mainly affect the distribution of pores and throats. The complex pore structure significantly
impacts the electrical properties of the sediment, and it is necessary to study electrical laws
based on the actual composition of seabed sediment. Currently, digital core technology
is an important means to study this factor. The lower part of the hydrate reservoir was
close to a gas source, and there was a large amount of free gas, which can be regarded as an
insulator. The migration and distribution of free gas may have hindered the migration of
charged particles and caused an increase in resistivity. Meanwhile, once the temperature
and pressure conditions changed, hydrate also dissociated and changed from a solid to gas
state. Therefore, future work could focus more on the study of the electrical properties of
hydrate reservoirs under the co-existence of solid–liquid–gas phases, as well as complex
pore structures.

6. Conclusions

Based on the study of marine hydrate-bearing sediments, constant current field theory
was used for simulation to construct numerical samples of hydrate with different occurrence
patterns and distribution morphologies, and the electrical conduction mechanism in the
pore scale of hydrate-bearing sediments was investigated. The following conclusions
were obtained:

(1) The changes in resistivity can be roughly divided into three stages for multiple
occurrence patterns and distribution morphologies. In the first stage, when the
hydrate saturation was below 0.2, the effect on electrical conduction was almost
negligible. In the second stage, resistivity grew slowly in the range of a hydrate
saturation of 0.2~0.4. Finally, resistivity increased rapidly with hydrate saturation
when the hydrate saturation reached above 0.5.
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(2) For the LB mode, resistivity was relatively high even when the hydrate saturation was
low, which is quite different from the other two modes. The resistivity of different
distribution morphologies of hydrate in the PF mode varied greatly with hydrate
saturation, and even with the same hydrate distribution morphology, the resistivity
changes in the two models were not completely the same.

(3) The saturation exponent n, which was obtained by the fitting relationship between
the resistivity index and water saturation, varied widely for different distribution
morphologies of the PF mode. After a comparison with previous work, it is suggested
that for sediments with a high hydrate saturation (Sh > 0.4), the saturation exponent n
can be taken as 2.42 ± 0.2.

(4) The skeleton grain arrangement of the sediment, initial porosity, hydrate saturation,
conductivity of seawater, tortuosity, pore and throat size all complicate the conduc-
tive mechanism of electric current, which in turn affects the electrical properties of
hydrate-bearing sediments, with the size of the throat being the most critical factor
affecting resistivity.
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