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Abstract: Sea surface temperature (SST) is crucial in ocean research and marine activities. It makes
predicting SST of paramount importance. While SST is highly affected by different oceanic, atmo-
spheric, and climatic parameters, few papers have investigated time-series SST prediction based
on multiple features. This paper utilized multi features of air pressure, water temperature, wind
direction, and wind speed for time-series hourly SST prediction using deep neural networks of
convolutional neural network (CNN), long short-term memory (LSTM), and CNN–LSTM. Models
were trained and validated by different epochs, and feature importance was evaluated by the leave-
one-feature-out method. Air pressure and water temperature were significantly more important than
wind direction and wind speed. Accordingly, feature selection is an essential step for time-series
SST prediction. Findings also revealed that all models performed well with low prediction errors,
and increasing the epochs did not necessarily improve the modeling. While all models were simi-
larly practical, CNN was considered the most suitable as its training speed was several times faster
than the other two models. With all this, the low variance of time-series data helped models make
accurate predictions, and the proposed method may have higher errors while working with more
variant features.

Keywords: sea surface temperature; time-series prediction; CNN; LSTM; CNN–LSTM

1. Introduction

The water temperature at the ocean’s surface is called sea surface temperature (SST).
It is one of the most fundamental parameters for understanding, monitoring, and fore-
casting the exchange of energy, momentum, and moisture between the oceans and the
atmosphere [1]. In addition, SST data are essential for a wide variety of research fields,
including evaluation of climate and ocean models, observational quantification of climate
change and variability, ocean ecology, oceanography, and geology [2]. SST change has
noticeable impacts on global climate, marine ecosystems, and biological systems. Therefore,
SST prediction is practical in various environmental studies, such as predicting marine
disaster prevention, global warming, fishing, mining, and ocean military affairs [3].

Studies on SST prediction are mainly categorized into numerical (physic-based) and
data-driven techniques [4]. The numerical methods utilize physics and mathematics by
formulating the equations to forecast [5]. They focus on many parameters and com-
plex equation operations and need several engineering calculations to extract evolution
trends [6]. In addition to their complexity, these methods demand great computational
time and effort [7], and their accuracy is highly dependent on the spatial domain [6,8,9].
The latest studies have increasingly applied data-driven approaches. These methods aim
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to learn SST patterns from collected data and use them to predict the future. Applied
data-driven methods include machine learning and statistical techniques [5], such as the
Markov model [10], time-series and linear regression analysis [11], support vector machines
(SVM) [12], neural networks [13–15], etc.

In contrast to numerical methods, neural network models use observed data to au-
tomatically calculate and adjust model parameters, making them practical for time-series
prediction at different scales [1]. Neural network models work convincingly, considering
the flexibility and ability to model complex patterns. Expanding the meteorological ground
measurement sites has significantly enhanced the precision, accuracy, and variety of meteo-
rological data [8]. This has put forward higher requirements for time-series prediction of
SST using deep neural networks.

H. O. Aydınlı et al. [16] employed recurrent neural network (RNN) long and short-
term memory (LSTM) for time-series daily SST prediction. Adam stochastic optimization
was applied in this study, and the proposed approach was promising for accurate and
practical forecasting. L. Xu et al. [17] aimed for spatiotemporal time-series prediction of SST
using regional Convolution long short-term memory. This study considered the regional
distribution information and daily SST prediction performed well. C. Xiao et al. [5] utilized
different machine learning methods of Adaboost, LSTM, LSTM-Adaboost, and optimized
support vector regression (SVR), and optimized the feed forward back propagation neural
network for short and mid-term SST forecasting. It was found that LSTM-Adaboost
outperformed other methods as this combination avoids overfitting. C. Xiao et al. [18] used
convolutional neural network and long short-term memory (CNN–LSTM) and SVR for
short and mid-term spatiotemporal SST prediction using time-series satellite data. Results
indicated that CNN–LSTM outperformed SVR and was highly promising for short and
mid-term daily SST forecasting. Q. Zhang et al. [14] performed short and long-term SST
prediction using SVR, multi-layer perceptron regression, and LSTM. The results showed
that LSTM had low prediction errors and outperformed other methods.

Different architectures of neural network models have been utilized for SST pre-
diction [5], including the ordinary feed-forward neural network [7], the wavelet neural
network [13], the nonlinear autoregressive neural network [19], the LSTM [14], convolu-
tional neural network (CNN) [20], and the CNN–LSTM [21]. Each neural network model
benefits from its specific architecture.

LSTM can learn long-term dependencies and performs effectively with a wide range of
issues, and with its recurrent structure, it can remember further periods. While the previous
machine learning methods (e.g, ordinary neural networks) may face difficulty extracting
the long-term SSTs data, the LTSM model enhances prediction quality and accuracy by
fetching temporal dependencies among these data [22]. The CNN model is suitable for
learning complex features [23]. It can extract the features of sequence multivariable samples,
enabling it to act well for time-series forecasting [24]. The CNN–LSTM merges CNN and
LSTM architectures and benefits from both. In conclusion, the CNN and the CNN–LSTM
networks are as successful as LSTM in time-series SST prediction.

As mentioned above, different neural network techniques have been evaluated for
SST prediction. In addition to the modeling approach, modeling features play a vital role
in final prediction accuracy [25,26]. SST is directly related to oceanic, atmospheric, and
climatic parameters. Thus, SST prediction based on these parameters is essential [27,28]. To
the authors’ knowledge, no similar study has been found targeting SST prediction using
the multi features: SST, air pressure, water temperature, wind direction, and wind speed.
The main objective of this paper is to propose a modeling approach for time-series hourly
SST prediction based on the CNN, LSTM, and CNN–LSTM methods. Short-term (hourly)
SST forecasting is a particular need for daily life since, in recent years, the global trend of
frequent extreme climatic disasters has been observed [6,29]. The modeling was applied to
two 10-year datasets from South Korea. The findings may be practical for planners and
decision-makers and can be helpful for future works that aim for time-series prediction
with deep neural networks.



J. Mar. Sci. Eng. 2023, 11, 1136 3 of 18

2. Materials and Methods
2.1. Study Area and Dataset

This study used two datasets from the South Korea Hydrographic and Oceanographic
Agency. The first dataset, DT_0001, was measured at the Incheon station located at the
latitude of 37.380◦ and the longitude of 126.611◦. The second dataset, DT_0008, was
measured at the Ansan station located at the latitude of 37.271◦ and the longitude of
126.770◦ (Figure 1). These 2 stations are part of 46 operating tide stations in South Korea
that are used for accurate and online monitoring of marine and meteorological parameters
for marine safety and research. They are equipped with different digital devices, including
GNSS (Global Navigation Satellite System), digital float level gauge, radar type level gauge,
laser type level gauge, pressure level gauge, the CT sensor, a meteorological sensor, etc.
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Figure 1. Location map of the study area.

These datasets contained measured minute-by-minute parameters of SST, air pressure,
water temperature, wind direction, and wind speed from 1 January 2012 12:00:00 AM to
4 January 2022 12:00:00 AM. Therefore, hourly data records were generated by averaging
features. The statistical information and time-series of hourly data records are given in
Table 1 and Figure 2, respectively. Water temperature was measured with the CT sensor
fixed at the datum level inside a cylinder (the water height above the datum level varied
due to tides and waves).
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Table 1. Details of datasets used in the modeling before preprocessing.

Datasets

DT_0001 DT_0008

Number of Data Records 83592 87575

Features

SST (◦C)
Mean: 11.48 STD: 10.13 Mean: 12.29 STD: 10.18

Max: 38.57 Min: −43.50 Max: 35.48 Min: −43.90

Air pressure (hPa)
Mean: 1015.01 STD: 8.29 Mean: 1015.91 STD: 8.77

Max: 1059.69 Min: 913.00 Max: 1042.62 Min: 914.20

Water temperature
(◦C)

Mean: 13.75 STD: 8.48 Mean: 14.18 STD: 8.72

Max: 31.45 Min: −1.60 Max: 31.93 Min: −5.00

Wind direction (Deg)
Mean: 194.38 STD: 96.68 Mean: 173.99 STD: 97.61

Max: 356.00 Min: 0.00 Max: 359.00 Min: 0.00

Wind speed (m/s)
Mean: 3.51 STD: 2.12 Mean: 2.06 STD: 1.56

Max: 43.07 Min: 0.00 Max: 18.68 Min: 0.00
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2.2. Methodology

The general framework of this study is shown in Figure 3. It includes five main steps of
data collection, data preparation, time-series modeling, prediction assessment, and feature
importance evaluation as follows:

• Data collection: Two datasets, including five parameters of SST, air pressure, water
temperature, wind direction, and wind speed, were obtained from the Korea Hydro-
graphic and Oceanographic Agency. These parameters were selected according to
deficiencies in the literature;

• Data preparation: Datasets were preprocessed to normalize features and remove out-
liers. Then, data records were transformed into a time-series format for
supervised learning;

• Time-series modeling: SST time-series modeling was performed using three deep
learning methods—CNN, LSTM, and CNN–LSTM—with different epochs of 10, 20,
and 50;

• Prediction assessment: Time-series prediction of SST was performed with created
models. Then, models were validated using mean absolute error (MAE) and mean
squared error (MSE) metrics;

• Feature importance evaluation: The leave-one-feature-out (LOFO) method was uti-
lized with MEA and MSE metrics to understand the relative importance of features
in modeling.
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2.3. Materials
2.3.1. Convolutional Neural Network (CNN)

One of the species of deep learning models is the CNN network. This model can learn
abstracted features [23] and is practical for analyzing visual images [28,30]. In addition,
the CNN model also has a layer that can learn the features of sequence multivariable data,
which makes it suitable for any prediction task. The structure of a typical CNN model is
shown in Figure 4. Accordingly, the CNN network comprises several layers, including a
convolutional layer, a pooling layer, a flattening layer, and a fully connected layer [31].
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The convolutional layer is the primary part of the CNN network that works on sliding
windows and weight sharing to decline processing complexity. A kernel function is used
in this layer to extract different features from the input data. The proofing layer is next.
This layer is created to decrease the feature map size by decreasing the connection between
layers and executing feature maps separately. The proofing layer seeks to effectively train
the model by decreasing the dimensionality and extracting the prevailing features [32].
Applying the flattening layer before proceeding with the fully connected linked layer is
essential to make a one-dimensional vector. This is because the fully connected linked layer
includes weights and biases with the neurons to link the neurons between the different
layers [31].

2.3.2. Long Short-Term Memory (LSTM)

The LSTM is a particular kind of RNN introduced by Hochreiter and Schmidhuber [33].
The standard RNN model cannot learn long-term dependence. Accordingly, LSTM was cre-
ated to solve the problem of long-term dependence and to deal with the vanishing gradient
issue. The LSTM contains memory cells and gates to adjust the network’s information and
recall information over long periods [31].

Generally, an LSTM model includes memory blocks or cells. These cells have two
states, including the cell state and the hidden state. In the LSTM network, cells make
significant decisions by storing or ignoring information about essential components called
gates. The gates are formed as forget, input, and output gates. According to the architecture
of the LSTM network shown in Figure 5, the operation of the LSTM model has three steps:
first, the network performs with the forget gate to investigate what sort of information
should be ignored or stored for the cell state. The computation begins with considering the
input at the current time step (xt) and the previous value of the hidden state (h(t−1)) with
the sigmoid function (S) as follows [31]:

ft = S
(

w f ·
[

h(t−1), xt

]
+ b f

)
. (1)

In the second step, the network computation continues by converting the old cell state
(C(t−1)) into a new state (Ct). This procedure chooses which new information has to be
included in the long-term memory. To obtain the new cell state value, the computation
process should consist of the reference value from the forgetting gate, the input gate, and
the cell update gate value as follows [31]:

it = S
(

wi·
[

h(t−1), xt

]
+ bi

)
(2)

C′t = T
(

wc·
[

h(t−1), xt

]
+ bc

)
(3)

Ct =
(

C(t−1)· ft

)
+
(
it·C′t

)
. (4)
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After the cell status update is finished, the last step is to indicate the value of the hidden
state (ht). The objective of this process is for the hidden state to operate as the network’s
memory, including information about previous data, and used for predictions. According
to the following equations, to define the value of the hidden state, the computation should
have the reference value of the new cell state and the output gate (ot) [31]:

ot = S
(

wo·
[

h(t−1), xt

]
+ bo

)
(5)

ht = ot·T(Ct). (6)

In the above equations, ft, it, and ot are the outputs of sigmoid functions (S). They are
between 0 and 1 and control the information that is forgotten in the old cell state (C(t−1)),
the stored information (C’t) in the new sell state (Ct), and the output information (ht) from
the cell. wf, wi, wc, and wo are the weights used for the concatenation (shown by []) of the
new input xt and output of the previous cell. The corresponding biases are defined by bf, bi,
bc, and bo [1].

2.3.3. Convolutional Neural Network and Long Short-Term Memory (CNN–LSTM)

The CNN–LSTM is a hybrid model that utilizes the capacities of CNN to learn the
internal representation of time-series data and obtain essential features such as LSTM to
detect short-term and long-term dependencies [34]. The CNN–LSTM model is an extension
of encoder–decoder architecture. The encoder section includes one-dimensional CNN
layers, and the decoder consists of LSTM layers. The one-dimensional CNN performs well
for time-series problems as the convolution kernel goes into a firm direction to automatically
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extract unseen features in the time direction. Accordingly, LSTM receives the extracted
features from the CNN to provide sequence prediction [24].

2.3.4. Validation Metrics

The MAE and MSE were the validation metrics used to assess the models’ performance.
These two metrics are suitable for investigating the modeling error. MAE and MSE are equal
to the mean absolute and mean squared values of errors between the real and predicted
values, respectively. MAE is practical for evaluating the mean prediction errors and is not
sensitive to significant errors. In contrast, MSE is sensitive to outliers and does not consider
similar error weights. Accordingly, using these two metrics for prediction validation gives
essential information. MAE and MSE are calculated using the following two equations,
respectively [35]:

MAE =
1
n

n

∑
i=1
|yi − yi| (7)

MSE =
1
n

n

∑
i=1

(yi − yi)
2 (8)

where n is the number of samples, yi is the predicted value, and yi is the actual value.

3. Results

First, modeling datasets were transformed into a time-series supervised learning
format to create predictive models. The modeling inputs were SST (t − 1), air pressure
(t − 1), water temperature (t − 1), wind direction (t − 1), and wind speed (t − 1), and
the modeling target was SST (t) (t is the time step). Each time, models were trained and
validated with 85% and 15% of one dataset, respectively. To train predictive models, first,
data were preprocessed. The data preprocessing included the following steps:

• Nan values were replaced with the bfill method;
• Any feature record outside the range of (mean − 3 × STD, mean + 3 × STD) was

considered an outlier and replaced with the bfill method;
• All features were normalized in the [0, 1] range.

Table 2 shows the statistical information of preprocessed data records for each season.
CNN, LSTM, and CNN–LSTM models were created using the Google laboratory environ-
ment and Keras python library. In the Google laboratory, the GPU was set as the hardware
accelerator. Models were created with the root mean square error loss function, time steps
of 24, batch size of 32, and different epochs of 10, 20, and 50. Models’ architectures are
shown in Table 3.

Models were validated using MAE and MSE metrics. Table 4 illustrates MAE and MSE
values of train and test data. No significant errors were observed in the predictions, and
no considerable difference was between the models’ validation metrics. On average, for
the DT_0001 dataset, the MAE of train data were 0.0066 (CNN), 0.0081 (LSTM), and 0.0203
(CNN–LSTM); the MAE of test data were 0.0067 (CNN), 0.0085 (LSTM), and 0.0219 (CNN–
LSTM); the MSE of train data were 0.0001 (CNN), 0.0001 (LSTM), and 0.0008 (CNN–LSTM);
and the MSE of test data were 0.0001 (CNN), 0.0002 (LSTM), and 0.0009 (CNN–LSTM),
respectively. Correspondingly, 0.0096 (CNN), 0.0102 (LSM), and 0.0118 (CNN–LSTM);
0.0097 (CNN), 0.0106 (LSTM), and 0.0125 (CNN–LSTM); 0.0002 (CNN), 0.0002 (LSTM),
and 0.0002 (CNN–LSTM); 0.0002 (CNN), 0.0002 (LSTM), and 0.0003 (CNN–LSTM) were
similar values for the DT_0008 dataset. Increasing the epochs did not necessarily improve
modeling, and prediction errors for both datasets were similar. For CNN, LSTM, and
CNN–LSTM, the highest difference between MAE and MSE values of different epochs did
not reach 0.002, 0.003, and 0.007, respectively. However, CNN, LSTM, and CNN–LSTM
were the most accurate models. The lowest errors were related to CNN with 10 epochs,
and the highest errors were related to CNN–LSTM with 10 epochs. In addition, LSTM and
CNN–LSTM similarly needed almost twice as much time as CNN to be trained.
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Table 2. Statistical information of preprocessed data records for each season.

Datasets Features Winter Spring Summer Autumn

DT_001

SST

STD 0.09 0.09 0.05 0.14

Min 0.09 0.30 0.57 0.07

Max 0.62 0.85 1.00 0.81

Air pressure

STD 0.11 0.11 0.10 0.12

Min 0.11 0.00 0.00 0.10

Max 0.94 0.83 0.68 1.00

Water
temperature

STD 0.06 0.13 0.05 0.18

Min 0.06 0.22 0.60 0.11

Max 0.46 0.77 1.00 0.77

Wind direction

STD 0.30 0.22 0.25 0.31

Min 0.30 0.00 0.00 0.00

Max 1.00 1.00 0.99 1.00

Wind speed

STD 0.22 0.19 0.18 0.21

Min 0.22 0.00 0.00 0.00

Max 1.00 1.00 1.00 1.00

DT_008

SST

STD 0.10 0.10 0.06 0.15

Min 0.10 0.17 0.49 0.01

Max 0.70 0.91 1.00 0.86

Air pressure

STD 0.12 0.11 0.11 0.11

Min 0.12 0.01 0.00 0.03

Max 0.99 0.78 0.66 1.00

Water
temperature

STD 0.08 0.12 0.05 0.17

Min 0.08 0.31 0.00 0.10

Max 0.47 0.81 1.00 0.79

Wind direction

STD 0.29 0.24 0.25 0.27

Min 0.29 0.00 0.00 0.00

Max 1.00 1.00 1.00 0.99

Wind speed

STD 0.21 0.22 0.22 0.21

Min 0.21 0.00 0.00 0.00

Max 1.00 1.00 1.00 1.00

We plotted models’ predictions to understand if they follow the trends of real sample
values. Figures 6–8 show predictions of 200 train and test samples by CNN, LSTM, and
CNN–LSTM models with different epochs, respectively. There were slight differences
between predicted and real values of train samples in CNN–LSTM outputs, and it is
evident that all predictions followed real values trends.
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Table 3. Architecture of CNN model.

CNN

Model: Sequential

Layer (type) Output shape Parameter

Conv1D (None, 32, 64) 704

Conv1D (None, 22, 64) 8256

MaxPooling1D (None, 11,64) 0

Flatten (None, 704) 0

Dense (None, 50) 35,250

Dense (None, 1) 51

Total parameters: 44,264
Trainable parameters: 44,261
Non-trainable parameters: 0

LSTM

Model: Sequential

Layer (type) Output shape Parameter

LSTM (None, 24, 128) 68,608

Dropout (None, 24, 128) 0

Activation (None, 24, 128) 0

LSTM (None, 128) 131,584

Dropout (None, 128) 0

Dense (None, 1) 129

Total parameters: 200,321
Trainable parameters: 200,321
Non-trainable parameters: 0

CNN–LSTM

Model: Sequential

Layer (type) Output shape Parameter

Conv1D (None, 23, 64) 704

Conv1D (None, 22, 64) 8256

MaxPooling1D (None, 11,64) 0

LSTM (None, 11, 128) 98,816

LSTM (None, 11, 128) 131,584

Flatten (None, 1408) 0

Dense (None, 64) 90,176

Dropout (None, 64) 0

Dense (None, 16) 1040

Dropout (None, 16) 0

Dense (None, 1) 17

Total parameters: 330,593
Trainable parameters: 330,593
Non-trainable parameters: 0
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Table 4. Validation of deep neural network models using train and test data.

Model Epoch Train Time
(min)

DT_0001 Dataset DT_0008 Dataset

MAE MSE MAE MSE

Train Data Test Data Train Data Test Data Train Data Test Data Train Data Test Data

CNN
10 ≈1′ 0.0066 0.0068 0.0001 0.0001 0.0086 0.0089 0.0002 0.0002

20 ≈2′ 0.0069 0.0070 0.0001 0.0001 0.0105 0.0104 0.0002 0.0002

50 ≈5′ 0.0063 0.0064 0.0001 0.0001 0.0096 0.0097 0.0002 0.0002

LSTM
10 ≈2.5′ 0.0094 0.0099 0.0002 0.0002 0.0110 0.0117 0.0002 0.0003

20 ≈5′ 0.0066 0.0070 0.0001 0.0001 0.0099 0.0100 0.0002 0.0002

50 ≈13′ 0.0083 0.0086 0.0001 0.0002 0.0097 0.0100 0.0002 0.0002

CNN–
LSTM

10 ≈3′ 0.0242 0.0261 0.0010 0.0011 0.0109 0.0116 0.0002 0.0003

20 ≈5′ 0.0192 0.0204 0.0006 0.0007 0.0139 0.0145 0.0003 0.0004

50 ≈12′ 0.0176 0.0191 0.0007 0.0008 0.0105 0.0113 0.0002 0.0002
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To better understand which parameter was more practical in modeling, we applied
the LOFO method. LOFO computes the importance of a set of modeling features based
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on a selected validation metric by iteratively removing one feature from the set and vali-
dating the model performance. MAE and MSE metrics were used to calculate the features’
importance with LOFO. Results are indicated in Figure 9. Other observations were almost
similar except for LOFO results based on the MAE metric for CNN–LSTM. Air pressure
and water temperature with similar weights were more important than wind direction and
wind speed for SST prediction.
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4. Discussion

This study applied three deep learning models—CNN, LSTM, and CNN–LSTM—to
two datasets for time-series hourly SST prediction. Datasets were pre-processed before
modeling to avoid disturbing the training step, and models were trained with different
epochs. Predictive supervised models are general with respect to new data when prediction
errors of test data are low [36]. Similarly, validation results of all models revealed that
prediction errors of test data were as slight as prediction errors of train data, and their
generalizability was confirmed.

Temperature time-series prediction becomes more challenging when the time sequence
becomes larger [37]. SST variance is lower with a minor time sequence, and slight variations
make predicting the future much more accessible. In this study, there were rarely sharp
changes in time-series hourly SST data, and it helped proposed deep learning models to
perform well for short-term prediction. Long-term forecasting is more complicated, but
deep learning methods have also performed well for long-term temperature prediction [38].
However, time-series prediction of more variant parameters may be more challenging for
deep learning models.

Consistent with previous works [39–41], increasing epochs did not necessarily decline
modeling errors. This is because too few epochs may prevent a deep learning model from
converging, and too many epochs may prevent it from overfitting [42]. Although CNN,
LSTM, and CNN–LSTM methods had similar performance and the difference between their
prediction errors was not remarkable, CNN can be considered the more suitable method
for further studies. Compared to LSTM and CNN–LSTM, CNN had slightly lower errors
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but significantly higher learning speed. However, there are different findings in the liter-
ature that evaluated these models’ performance for temperature prediction [20,38,43–46].
Moreover, as CNN–LSTM is a hybrid model that exploits the benefits of both CNN and
LSTM to improve its prediction accuracy, it was expected that CNN–LSTM would per-
form more accurately than the other models [34]. However, our findings, in line with
previous works [47,48], showed that single deep neural network models (CNN and LSTM)
with proper architectures could perform more accurately than their merged hybrid model
(CNN–LSTM).

The fact that neural network models depend highly on the architecture [49–51] can
explain the different findings about the accuracy of CNN, LSTM, and CNN–LSTM models
in temperature prediction. For example, a too-small bath size can decrease the loss function
resulting in the model’s lack of convergence, and a too-large batch size can decrease the
training rate, increasing training time. A large time step may lead to some information
being lost, whereas a small time step may lead to data redundancy and reduced training
speed [42].

Since oceans have extensive and complex dynamic systems, the distribution and
variation of SST are dependent on different factors. Multi variable SST prediction is
a suitable technique for overcoming this issue [52]. Accordingly, we utilized different
parameters for time-series SST prediction. While prediction errors were slight, the LOFO
method was applied to evaluate modeling feature importance. Results indicated that air
pressure and water temperature had similar weights and were significantly more important
than wind direction and wind speed. However, there are different statements about
important features that affect SST in the literature [52–54]. Wind speed affects the vertical
heat flux, which could change SST [55]. Previous works observed SST-induced wind speed
and wind direction perturbations [56–58]. However, the uniform seasonal distribution of
these parameters can limit their effect on SST [55].

Similarly, we observed that the range of wind speed and wind direction values were
almost similar in different seasons. It should also be noted that seasonal variation of wind
direction and wind speed can be different for different regions [53], and the geographical
location of the data affects the SST prediction [17]. Nevertheless, all mentioned effective
parameters in the literature could not be applied in modeling as many modeling features
may hinder the performance of machine learning models. The best option is to perform a
feature selection method before training the models.

All created models generally had accurate predictions and followed real data trends
well. The proposed models could learn the relationships between SST, air pressure, water
temperature, wind direction, and wind speed and extract the information from many data
records. They were also practical for SST prediction in different geographical situations, as
low prediction errors were observed for both used datasets. Our findings confirmed that
deep learning models could be promising tools to predict time-series hourly SST prediction.
With all this, it should be noted that data-driven methods such as deep learning models
depend on the precision and accuracy of training samples. In this study, we assumed high
precision and accuracy of the samples. However, we had no information about the exact
water depth at which the CT sensor measured the water temperature parameter. In future
works, applying optimization methods for tuning deep neural network models for more
accurate predictions can be investigated.

5. Conclusions

This study utilized CNN, LSTM, and CNN–LSTM models for hourly SST forecasting.
Data records included multivariate features and were obtained from two different stations.
The conclusions are as follows:

• According to validation metrics, the highest MAE (0.0261) and MSE (0.0011) for the
DT_001 dataset and the highest MAE (0.0145) and MSE (0.0004) for the DT_0008 dataset
were related to CNN–LSTM by 10 epochs and CNN–LSTM by 20 epochs, respectively.
Considering the calculated MAE and MSE values, the usability of proposed network



J. Mar. Sci. Eng. 2023, 11, 1136 16 of 18

architectures and modeling features for hourly SST prediction is confirmed. We
introduced CNN as a more practical method as it was faster than the other two
models. Nevertheless, all three models showed high-performance levels and had
slight prediction errors.

• We observed different findings about the validation of CNN, LSTM, and CNN–LSTM
models in similar works as neural network architecture differed. This indicates the
high importance of adjusting neural network layers.

• Low variant time-series SST data enhanced the modeling. Therefore, the proposed
approach may have higher prediction errors if data becomes more variant.

• The LOFO method indicated that on average, air pressure (0.441) and water tempera-
ture (0.423) had remarkably higher feature importance weights than wind direction
(0.072) and wind speed (0.064). However, there were different statements about the
effectiveness of these features in the literature. The best choice is to perform a feature
selection method before time-series SST modeling.

• Generally, applying deep neural networks is a suitable method for time-series predic-
tion as it can explain complex relationships between different features.
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