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Abstract: Autonomous underwater vehicles (AUVs) are an important equipment for ocean investiga-
tion. Actuator fault diagnosis is essential to ensure the sailing safety of AUVs. However, the lack of
failure data for training due to unknown ocean environments and unpredictable failure occurrences
is challenging for fault diagnosis. In this paper, a meta-self-attention multi-scale convolution neural
network (MSAMS–CNN) is proposed for the actuator fault diagnosis of AUVs. Specifically, a two-
dimensional spectrogram of the vibration signals obtained by a vibration sensor is used as the neural
network’s inputs. The diagnostic model is fitted by executing a subtask-based gradient optimization
procedure to generate more general degradation knowledge. A self-attentive multi-scale feature
extraction approach is used to utilize both global and local features for learning important parameters
autonomously. In addition, a meta-learning method is utilized to train the diagnostic model without
a large amount of labeled data, which enhances the generalization ability and allows for cross-task
training. Experimental studies with real AUV data collected by vibration sensors are conducted
to validate the effectiveness of the MSAMS–CNN. The results show that the proposed method can
diagnose the rudder and thruster faults of AUVs in the cases of few-shot diagnosis.

Keywords: fault diagnosis; few-shot diagnosis; meta-learning; self-attention

1. Introduction

The oceans contain a great number of natural resources and play a vital role in human
development, but ocean exploration remains challenging. As an efficient way of appre-
hending ocean exploration and utilization, AUVs have gained wide application in marine
ecological research, mineral resource exploitation, scientific exploration, and the military.
However, the complex marine environment poses significant challenges to AUV operations.
The unknown ocean conditions may cause equipment malfunction, leading to mission
failure or even equipment loss. Therefore, for the purpose of ensuring sailing safety, it is
important to identify the failures and diagnose the actuator faults of the AUVs.

In recent years, various researchers have conducted a significant number of stud-
ies in the field of actuator fault diagnosis of AUVs. The health status of the actuator is
diagnosed and identified by machine learning and deep learning methods. Fuzzy logic
torque controllers with nonlinear friction compensation are used to improve the deteri-
oration of trajectory tracking performance in rotating tandem elastic actuator systems
caused by these nonlinear elements and to optimize trajectory tracking performance [1].
To diagnose thruster faults in AUVs under noisy environments, Sun et al. [2] proposed a
thruster fault diagnosis method for AUVs based on deep neural networks and denoising
autoencoder. Liu et al. [3] proposed a deep reinforcement learning-based controller in
a simulation environment for studying the control performance of the vector thruster.
The information that can be measured by the sensors inside the AUVs is used as an input
parameter. Tsai et al. [4] proposed a fault diagnosis method for underwater thrusters based
on deep convolutional neural networks, where the raw data were transformed from the
time domain to the frequency domain by fast Fourier transform and used as the input to
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the neural network. Chu et al. [5] proposed an underwater thruster fault diagnosis method
based on the random forest regression and support vector machine, which mainly solves
the problem of insufficient diagnostic accuracy due to sample imbalance. Zhu et al. [6]
proposed a fault diagnosis method based on Bayesian networks to solve the problem of
difficulty in locating specific faults in the thrusters of autonomous underwater vehicles.
A deep belief network is introduced in the multi-sensor information fusion model to iden-
tify uncertain and unknown signal, continuously changing the failure modes of deep-sea
manned submersible thrusters [7]. The FDI method proposed by Talebi et al. [8] is used to
detect, isolate, and identify the severity of actuator failures in the presence of disturbances
and fault uncertainty in the model. To improve the performances of thruster fault diagnosis,
Tian et al. [9] proposed a possible fuzzy C-means algorithm for thruster fault classification.
Omerdic et al. [10] proposed a novel thruster fault diagnosis and adaptation system for
open-frame underwater vehicles. The FDS monitors the status of each thruster using a
fault detection unit associated with each thruster, which is capable of detecting the internal
and external fault states of the thruster. Raanan et al. [11] proposed a Gaussian particle
filtering algorithm to estimate the failure model of AUVs. The Bayesian algorithm is used to
implement the fault detection of AUV thrusters, and a nearest neighbor classifier is used to
accomplish the fault diagnosis. Ji et al. [12] proposed a new sequential convolutional neural
network (SeqCNN), where a model-free fault diagnosis method is based on deep learning
algorithms. The proposed SeqCNN aims to extract global and local features from state data
and classify the extracted information into different fault types. Yeo et al. [13] proposed a
system that can monitor the health of AUV thrusters using a convolutional neural network
(CNN). The acoustic signal of the thruster was used as input data to achieve the fault
diagnosis of the thruster of the AUVs. Tsai et al. [14] proposed a modified CNN based
on merging two signals to classify faults. Experimental results show that the proposed
multi-signal approach achieves excellent thruster fault diagnosis results. Kim et al. [15]
proposed a fault detection system in which new vibration data were generated using a
generative adversarial network (GAN) and was applied to a long short-term memory
neural network. In the fault detection experiments of the underwater thruster, the vibration
characteristics of the vibration sensor data obtained from the experiments and the data
generated by the GAN were compared and analyzed using the fast Fourier transform. To
study the model-free trajectory tracking control problem of AUVs, Bingul et al. proposed
a novel control structure based on the model-free control principle to ensure stable and
accurate trajectory tracking of AUVs in complex underwater environments [16].

The rudder is a kind of servo mechanism which is widely used in the control system of
aircraft, ships, missiles, navigators, etc. It receives control signals and drives the deflection
of the rudder plate to control the navigator’s attitude and trajectory. It is necessary to
analyze the state, static, and dynamic parameters of the rudder system during operation to
ensure the accurate control of the rudder system. Wang et al. [17] proposed a convolutional
neural network combining a particle swarm optimization algorithm and a grayscale opti-
mization algorithm to accomplish the automatic multi-fault classification of rudders. An
adaptive sampling algorithm (ASCIN) considering information instances was proposed by
Li et al. [18,19] The optimal parameters of ASCIN were searched by the whale optimization
algorithm to overcome the limitations of conventional detection devices. Zhou et al. [20]
proposed a deep neural network-based health monitoring method. Autoencoders were
used to reduce the feature dimensionality and combined with the SoftMax classifier for
health monitoring. Ren et al. [21] proposed a fault diagnosis method based on a Back Prop-
agation Neural Network (BPNN), which was optimized using the SODEBBO optimization
algorithm to accomplish the automatic classification of multiple faults in rudder testing.
Qin et al. [22] optimized the BPNN with particle swarm optimization hybrid fruit fly algo-
rithm to improve the diagnostic performance. Chang et al. [23] proposed a random forest
algorithm based on a shuffle frog-jumping algorithm to make the decision-making of the
model more efficient and accurate. Xu et al. [24] proposed the combination of a nonlinear
unknown input observer with adaptive thresholding, which helps to reduce the effect of
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model uncertainty. Chang et al. [25] proposed a machine learning method-based optimized
decision tree algorithm to solve the common decision difficulties caused by low-precision
decisions and high voting competition in tree models. Jiang et al. [26] used finite impulse
response and principal component analysis to solve the fault diagnosis problem of AUV
actuators under winding failure and improve the overall reliability of underwater vehicles.
Xuan et al. [27] proposed a fault diagnosis method based on convolutional neural networks
and autoencoders to solve the problem of fault detection and isolation in uncoupled fault
modes. Jia et al. [28] proposed an ensemble deep autoencoder based on an extreme learning
machine, which has significant advantages in handling imbalanced data.

However, in previous studies, machine learning and data augmentation methods
have been widely used for fault analysis and diagnosis. Traditional machine learning,
which heavily relies on a priori knowledge, often struggles with selecting appropriate
features and can result in poor performance. Data augmentation methods, on the other
hand, primarily generate more similar samples to expand the dataset, and while GAN
can also perform data augmentation, they inherently require a large amount of data to
accurately learn the data distribution of the samples. In practical underwater equipment
working environments, the equipment is often expensive, and simulating failures can incur
substantial costs, leading to sparse data. Consequently, data augmentation methods also
suffer from certain drawbacks.

A fault diagnostic method based on meta-deep learning is thus proposed in this paper
to achieve fault identification in the cases of a few-shot diagnosis. Specifically, the mechani-
cal equipment’s vibration signals are first collected to create a two-dimensional spectrogram
with time–frequency information. Next, a feature extraction model and classifier are built.
This model is optimized using a subtask-based gradient descent optimization approach,
in order to extract degraded information that can represent the fault status. Then, a multi-
scale self-attentive convolutional neural network is proposed for feature extraction, which
allows for the model to locate critical features and obtain various degradation indica-
tors considering both global and local information. The contributions of this work are
summarized as follows:

1. A diagnostic model that considers both global and local information in feature ex-
traction is developed by introducing the multi-scale deep learning method into the
self-attentive mechanism. The extracted features that are more suitable for character-
izing the health status of the AUV actuators can be automatically obtained for fault
diagnosis and classification.

2. The meta-learning approach is incorporated so that the diagnostic model can be
trained iteratively with few-shot and converge rapidly. The meta-learning approach
enables cross-task training and completes cross-device fault diagnostics by enhancing
the generalization abilities without requiring a large amount of labeled data.

3. A meta-self-attentive multi-scale deep learning method for actuator fault diagnosis
of AUVs is proposed to diagnose the rudder and thruster faults with a few-shot. Ex-
perimental studies demonstrate the effectiveness of the proposed method in actuator
fault diagnosis of AUVs.

The background information in Section 2 serves as the foundation for the remainder
of this essay. Our suggested few-shot identification method is thoroughly explained
in Section 3. The AUVs dataset is demonstrated in Section 4 along with a thorough
experimental validation that contrasts it with other diagnosis techniques. A summary of
this paper and a prognosis for further investigation are provided in Section 5.

2. Background

This section consists of three subsections that introduce the fundamental concepts
required to build the model. The first subsection explains the concept of small sample
learning and the objective function for model optimization. The second subsection covers
the method of meta-learning and the dataset division. Lastly, the third subsection discusses
the self-attentive mechanism concept and how to apply it.
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2.1. Few-Shot Learning

Few-shot learning attempts to overcome the problem of insufficient data, whereas
traditional machine learning and deep learning call for a high number of training samples
and will significantly worsen recognition performance in the event of insufficient training
samples. Nonetheless, in this instance, few-shot learning also produces good recognition
performance. From a learning task T [27], a small-scale training set Dtrain = {(xi, yi)}N

n=1,
and a test set Dtest = {xi}M

m=1, define P(x, y) is the joint probability distribution of x and

y,
_

h is the optimal hypothesis from x to y, while less-sample learning can obtained
_

h by

learning on Dtrain and testing on Dtest. To approximate
_

h, it determines a hypothetical
space H consisting of a hypothesis h(·; θ), which θ represents all the parameters used by h.
It can be thought of as an optimization process that finds H to obtain θ, holding the optimal
h∗ ∈ H in the training set.

The objective function, which is written as Equation (1), is the function that is typically
maximized or minimized to determine the corresponding parameter weights in traditional
machine learning and deep learning problems. Equation (2) gives a concrete representation
of the loss function.

min
θ

∑(xi ,yi)∈Dtrain
Loss(h(xi; θ), yi) (1)

Loss(h(xi; θ), yi) = −∑x(j),y(j)∈D fθ(x(j)) log(y(j)) (2)

where θ is defined as the parameter of the less-shot learning model.
The sample size N is much smaller in few-shot learning, leading to more pronounced

deviations between target values. The resulting model hN is likely to be overfitted, so it is
crucial to investigate appropriate methods for few-sample learning.

2.2. Meta-Learning

A large amount of data from a certain scenario is generally utilized to train a model
in machine learning, and the model needs to be retrained when the scenario changes.
However, this is not in line with the law of human learning knowledge, as humans and
even infants have the inherent ability to rapidly learn new concepts with a small number of
samples and accurately summarize them in unknown situations.

The intelligent recognition models currently established require large-scale data,
but the cost of obtaining these data is generally relatively high, resulting in unsatisfac-
tory recognition results. These basic recognition models are all focused on a specific task,
and when encountering cross-task situations, they need to acquire a large amount of data in
another task domain to retrain the network. This is in stark contrast to humans mastering
knowledge and migrating to uncharted territory. However, meta-learning [29] makes it
possible to discover prototypes in a given domain under specific tasks and optimize the
network by extracting general knowledge of different subtasks. The method can be seen
as a solution for few-shot learning, mining more valuable parameters and enhancing its
generalization ability among other differently distributed data [27].

The training unit is the task in meta-learning, which is generally divided into a
training task and a testing task. Many subtasks need to be prepared to learn the model,
aiming to learn better hyperparameters that are required to fit the new tasks. A learn-
ing task T = {y, f } consists of two parts: the label space y and the prediction function
f . The prediction function is trained on a given feature vector and label pair {xi, yi},
xi ∈ x, yi ∈ y.

2.3. Self-Attentive Mechanism

Attention is a complex cognitive function that is indispensable to humans, which
refers to the ability to choose some information while ignoring another. The ability of the
human brain to select, consciously or unconsciously, small portions of useful information
to focus on from this large amount of input and to ignore other information is known as
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attention. When using neural networks to process a large amount of input information,
you can also learn from the attention mechanism of the human brain and select only some
key information inputs for processing to improve the efficiency of neural networks. It is
also possible to improve the efficiency of the neural network by drawing on the attention
mechanism of the human brain when a neural network is used to process a large amount
of input information.

Let us use X = [x1, x2, · · ·, xN ] ∈ RD×N to represent N groups of input information,
where the D dimensional vector xn ∈ RD, n ∈ [1, N] represents a set of input information.
To save computing resources and reduce the amount of calculation, it is not necessary
to input all the information into the neural network, but only to select some task-related
information from X. The calculation of the attention mechanism can be divided into two
steps: one is to calculate the attention distribution on all input information, and the other
is to calculate the weighted average of the input information according to the attention
distribution. To select task-related information from input vector [x1, x2, · · ·, xN ], a task-
related representation called query vector needs to be introduced, and the correlation
between each input vector and query vector is calculated through a scoring function.

In order to improve the feature extraction ability of the model, the self-attentive
mechanism often adopts the Query-Key-Value (Query-KV) model. Given the query vector
qn ∈ Q, the output vector hn can be obtained by Equation (4).

αn,j = so f t max(s(k j, qn)) (3)

hn = att((K, V), qn) =
N

∑
j=1

αnjvj (4)

where n, j ∈ [1, N] is the position of the sequence of output and input vectors, αnj denotes
the weight of the first output concern to the first input, s(�) denotes the scoring function, k j
denotes the jth element of the value vector, and vj denotes the jth element of the value vector.

Generally, the scoring function is calculated using the method of scaling the dot

product, with the formula is s(h, q) = hTq√
D

, and the output sequence can be calculated as

H = so f t max(
KTQ√

Dk
)V (5)

where K, V, Q are the key, value, and query matrix, respectively.
√

Dk is a normalization
constant to ensure gradient stability.

3. Proposed Method

This section consists of three subsections that introduce the proposed method and the
steps involved in building the network model. The first subsection describes the overall
framework and implementation steps for the fault diagnosis of AUV actuators. The second
subsection explains the self-attentive multiscale feature extraction method. Lastly, the third
subsection explains the meta-learning optimization method in the case of a few-shot.

3.1. Research Steps of Intelligent Fault Diagnosis

This section proposes a fault diagnosis method based on meta-learning, which is
mainly applied to few-shot learning. Figure 1 represents the overall framework of few-shot
fault diagnosis consisting of six main steps.

First, the vibration data of the equipment movement are collected as the original signal.
The signal is normalized to avoid the presence of singular values that affect the convergence
speed of the network.

Then, the short-time Fourier transform is performed on the processed data to obtain
a two-dimensional feature map that contains time-domain information and frequency-
domain information, which is convenient for the subsequent feature extraction.
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Third, in contrast to the traditional deep learning fitting model, the training and testing
datasets are redefined to perform model fitting in a subtask-based learning approach.
The task-based training approach is to divide the data into two parts: the training task and
the testing task. The training dataset is usually a dataset from other related domains, which
is used to assist learning. In this part of the data, the support set serves as the learning
data for each subtask, while the query set is used for cross-subtask training to learn the
meta-knowledge of the model, aiming to obtain more sensitive parameter states of the
established meta-multi-scale feature extraction model. The division between the support set
and the query set is different in the test dataset. The former is to fine-tune the meta-learning
framework that is already fitted by the training task dataset, while the latter is to complete
a small number of predictions and verify the feasibility of the established model.

Fourth, a meta-learning model based on self-attentive multi-scale feature extraction is
proposed for the fault diagnosis problem of AUVs based on the industrial status of sparse
fault data, which can be used to achieve fault identification and health prediction for AUVs.

Fifth, the model is trained and fine-tuned using the data segment in the third step and
working on finding the optimal parameters.

Finally, the already fitted meta-learning network is used for fault diagnosis of the
autonomous underwater vehicle.

Figure 1. Framework for few-shot fault diagnosis.

3.2. Fault Diagnosis Model with Self-Attentive Multi-Scale Feature Extraction

In recent years, CNNs have been widely used in the field of fault detection of mechan-
ical equipment, which usually consists of convolutional layers, batch normalization layers,
and pooling layers, and has significant capabilities in extracting features. Although CNNs
can be found to perform well in this field, in some studies [30,31], the performance of this
method needs to be improved in the case of few-shot learning. This section will compre-
hensively use the knowledge of multi-scale kernel and self-attention mechanism to propose
a self-attention multi-scale feature extraction model for the fault diagnosis of AUVs with
a few-shot.

The proposed model contains three branches, i.e., three different convolution kernel
sizes. Different convolution kernels are performed on the input data to obtain different
types of features, and self-attention modules are added after the features are extracted
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by each convolution kernel. Multi-scale can take into account both global and local fea-
tures, and the attention mechanism enables the model to learn important information
autonomously and reduce the number of operations. To connect these three branches,
a concatenate layer is used directly to connect the three branches. However, the output
dimensions of different convolutional kernels are inconsistent, and pooling and batch nor-
malization layers need to be added before the concatenation layer to ensure dimensionality
consistency. Overall, the general architecture of the proposed model is shown in Figure 2,
and the detailed steps are as follows:

Figure 2. Self-attention multi-scale feature extraction model.

The original data are first subjected to a short-time Fourier transform. The basic idea is
to first multiply a function and a window function, then perform a one-dimensional Fourier
transform, and obtain a series of spectral information by sliding the window function.
These results are successively stitched together to obtain a two-dimensional time–frequency
map. The basic operation formula is as follows:

X(t, ω) =
∫ +∞

−∞
x(t)h(t−ω)e−jωtdt (6)

where x(t) is the time domain signal, h(t− ω) is the window function, and X is used to
represent the result of the short-time Fourier transform.

Input the spectrogram X to the multi-scale convolutional layer for feature extraction,
and the convolution calculation formula is as follows:

Z1(u, v) =
∞

∑
i=−∞

∞

∑
j=−∞

xi,j · k1
(u−i,v−j) (7)

Z2(u, v) =
∞

∑
i=−∞

∞

∑
j=−∞

xi,j · k2
(u−i,v−j) (8)

Z3(u, v) =
∞

∑
i=−∞

∞

∑
j=−∞

xi,j · k3
(u−i,v−j) (9)

among them, k1, k2, k3 represent three different convolution kernels, and Z1, Z2, Z3 represent
the results calculated by different convolution kernels.
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The results of the multi-scale convolution are down-sampled and normalized. The fea-
tures are activated in the batch normalization layer using the ReLU activation function.
The specific calculation formula is as follows:

(
_

Z1,
_

Z2,
_

Z3) = max pool(Z1, Z2, Z3) (10)

(A1, A2, A3) = ReLU(
_

Z1,
_

Z2,
_

Z3) (11)

where
_

Z1,
_

Z2,
_

Z3 denote the result of the pooling operation and A1, A2, A3 denote the
output after normalization, which is dimensionally consistent throughout the processing.

To further extract features, the model is equipped with the ability to extract important
features autonomously through the self-attentive module, using A1, A2, A3 features as
input. Then, the input sequence is A = [a1, a2, · · ·, aN ] ∈ RD×N and the output sequence is
H = [h1, h2, · · ·, hN ] ∈ RDv×N . The specific calculation process is as follows:

Each input ai is mapped to three different spaces. Figure 3 represents the transfor-
mation process to obtain the query vector qi ∈ RDk , the key vector ki ∈ RDk , and the
value vector vi ∈ RDv . For the whole input sequence A, the linear mapping process can be
abbreviated as Equations (12)–(14):

Q = Wk A ∈ RDk×N (12)

K = Wk A ∈ RDk×N (13)

V = Wv A ∈ RDv×N (14)

where Wq ∈ RDk×Dx , Wk ∈ RDk×Dx , Wv ∈ RDv×Dx are the parameter matrices of the linear
transformation, Q = [q1, q2, · · ·, qN ], K = [k1, k2, · · ·, kN ], V = [v1, v2, · · ·, vN ] denote the
matrices composed of query vector, key vector, and value vector, respectively.

For the query vector qn ∈ Q, the output vector hn can be obtained by using the
key-value pair attention mechanism of Equation (4).

Attention H1, H2, H3 can be obtained by Equations (3)–(5) and (11)–(13).
Use a concatenate layer to merge the features of the three branches and turn the

channel into a single-channel feature through point convolution, as follows:

H = concat(H1, H2, H3) (15)

The output features are further fed into the Softmax classifier for state identification
and fault classification after the above operations. For clarity, the detailed parameters of
the convolution part are given in Table 1.

Table 1. Parameters of the convolution part.

Convolution Category
Convolution Kernel
(Channel × Width

× Height)
Strides

Multi-scale Conv
Conv1 (3,3,3) (1,1)
Conv2 (3,5,5) (1,1)
Conv3 (3,7,7) (1,1)

Signal-scale Conv Conv4 (3,3,3) (1,1)
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Figure 3. The calculation process of self-attention model.

3.3. Meta-Self-Attentive Multi-Scale CNN

The commonly used methods are meta-learning and transfer learning in cross-domain
problems. From the left side of Figure 4, it can be seen that meta-learning summarizes N loss
values from N tasks, and then the total loss can be expressed as loss = ∑N

n=1 lossn(θ̂n). This
method takes into account the optimization process of each task. Although the obtained
optimal parameter θ∗ cannot perform well in every task, it can have good generalization
capability based on that parameter. A good recognition performance can be obtained by
fine-tuning the model with the support set of test samples for each task. The model is
trained mainly by obtaining the optimal parameter through the minimum loss function

loss(θ∗) = min{loss1(
_

θ
1
), loss2(

_

θ
2
), · · ·, lossN(

_

θ
N
)} of the N learning tasks. From the right

side of Figure 4, it can be seen that the calculation θ∗ is only the optimal parameter
_
θ

1
for

task 1. This will cause the optimization of other tasks to fall into local optimum.
The proposed self-attention multi-scale feature extraction model is described in

Section 3.2, which will be trained and learned, since the failure data of autonomous un-
derwater vehicles are very sparse in real-world environments. To cope with the few-shot
learning problem, we use a meta-learning strategy to optimize the model. As shown in
Figure 1, step 4 aims to generate a meta-deep learning model for generalization to the
actual industrial field to implement underwater vehicle actuator fault diagnosis. We need
to fit the model through a small number of datasets after establishing the fault diagnosis
model, aiming to find the optimal parameters and ensure better performance in the fault
diagnosis of underwater vehicles. Thus, the proposed model is trained with the training
dataset delineated in step 2 in Figure 1. The training dataset can also be referred to as the
source dataset and the test dataset becomes the target dataset; the whole training process is
shown in Figure 5.
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Figure 4. Difference between meta-learning and model pre-training.

Figure 5. The training process of MSAMS–CNN.

According to the learning method in Section 2.1, it is necessary to optimize the network
by minimizing the objective function, which is expressed as Equation (1).

Expected risk is the global concept that is used to measure the loss of the model
concerning the joint distribution P(x, y). Since P(x, y) is unknown, the problem can be
transformed into minimizing the expected loss on the training set. The problem then
translates into optimizing the model by averaging the losses on the training set, as in
Equation (16):

R(h) = Remp(h) =
1
N ∑N

n=1 L(y, h(x; θ)) (16)

where Remp is called empirical risk, and this training process is called empirical
risk minimization.
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In summary, the total error [30] can be decomposed into Equation (19).

εapp(H) = E[R(h∗)− arg min R(h)
f

] (17)

εest(H, N) = E[RN(h)− R(h∗)] (18)

E[RN(ĥ)] = εapp(H) + εest(H, N) (19)

where the approximation error εapp(H) measures the difference between the predicted and
actual values of the few-shot learning model in H. The estimation error εest(H, N) indicates
the difference between the estimated and actual coefficients of the model.

The rules for dividing the dataset are shown in Figure 6. We randomly select N
subtasks T = {T1, T2, · · ·, TN} from the training set, and the data are divided into the
support set and query set in each task Ti, i ∈ [1, N], represented as D = {DSupport, DQuery}.
Use the support set to complete the iterative optimization of each subtask, and obtain the
best parameter θ∗by Equation (20), in which i represents the ith task.

θ∗(i)(φ) = arg min Losstask(θ, φ, DSupport(i)
train ) (20)

Figure 6. Meta-learning data segmentation.

Using the query set of the training dataset to learn the meta-knowledge, the current
optimal parameters φ∗ are obtained by Equation (21). Since we are addressing a multi-
classification problem, the cross-entropy loss function is used. Equation (22) is the cross-
entropy loss function:

φ∗ = arg min
φ

N

∑
i=1

Lossmeta(θ∗(i)(φ), Dquery(i)
train ) (21)

Loss(θ∗, Dtrain) = −∑x(j),y(j)∈Dtrain fφi (x(j)) log(y(j)) (22)

where fφi (x(j)) represents the trained model, y(j) represents the sample label, and φi repre-
sents the model parameters updated by the ith task.

The performance needs to be tested under the test dataset after the model is fitted
under the training dataset. In general, the training data and the test data are from different
tasks. Since using the trained model directly on the test set does not work very well,
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the model parameters are first fine-tuned using the support set of the test dataset. Finally,
the model performance is tested using the query set of the test dataset.

θ∗ = arg min
θ

(θ, φ∗, DSupport
test ) (23)

For convenience, the above optimization process is organized into a pseudo-code,
as described in Algorithm 1.

Algorithm 1 meta-learning strategy

1: while not done do
2: repeat
3: random sample task Ti ∼ p(T) in total task
4: for each Ti in Dtrain do do
5: gain Dsupport

Ti
by sampling m input-output pairs from Dtrain;

6: evaluate models using cross-entropy loss;
7: update parameters θ with gradient optimization of Equation (20);
8: end for
9: gain Dquery

Ti
by sampling n input-output pairs from Dtrain;

10: update parameters φ using Dquery
Ti

in Equation (21);
11: for each Ti in Dtest do do
12: gain Dsupport

Ti
by sampling m input-output pairs from Dtest;

13: Fine-tuning self-attentive multi-scale model parameters θ̂ using Dsupport
Ti

from Dtest;
14: end for
15: gain Dquery

Ti
by sampling n input-output pairs from Dtest;

16: test model performance using Dquery
Ti

from Dtest;
17: until Accomplish a few-shot fault diagnosis.

4. Experimental Result
4.1. Dataset Introduction

This section uses the vibration data of the AUVs of Northwestern Polytechnical Univer-
sity to verify the proposed actuator fault diagnosis method. Therefore, a high-precision vi-
bration data acquisition experimental platform is established for data acquisition, as shown
in Figure 7. The data are divided into rudder vibration data and thruster vibration data,
and the sampling frequency is 25,600 Hz. These data are collected in the presence of other
device movements, and all data contain noise. Both data types are intended for model
training and testing.

The rudder and thruster do not have status feedback in the actual working environ-
ment, resulting in an unknown factor regarding whether they operate according to the
specified command during operation. Therefore, we need to use the vibration signals to
classify the commands of the rudder and thruster, and based on the classification results
we can conclude whether the actuator is faulty. The command distribution of the actuator
is shown in Table 2. There are 20 most common commands for thrusters and 12 for rudders,
where the minus signs all indicate reverse rotation. To make full use of the vibration data of
the actuator, the data are enhanced and resampled in the original data file, using a sliding
window with a window size of T and a step size of l. T moves from the start time of the file
to the end in step l, and the training and test samples are built. As shown in Figure 8, this
article sets T to 2048 and l to 1356.
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Figure 7. Physical view of data acquisition experiment platform.

Table 2. Distribution of instructions for implementing agencies.

Implementing Agency Command Distribution Data Name

Thruster (v)

−1 Thruster 1
−0.9 Thruster 2
−0.8 Thruster 3
−0.7 Thruster 4
−0.6 Thruster 5
−0.5 Thruster 6
−0.4 Thruster 7
−0.3 Thruster 8
−0.2 Thruster 9
−0.1 Thruster 10
0.1 Thruster 11
0.2 Thruster 12
0.3 Thruster 13
0.4 Thruster 14
0.5 Thruster 15
0.6 Thruster 16
0.7 Thruster 17
0.8 Thruster 18
0.9 Thruster 19
1 Thruster 20

Rudder (°)

0→30→0 Rudder 1
0→25→0 Rudder 2
0→20→0 Rudder 3
0→15→0 Rudder 4
0→10→0 Rudder 5
0→5→0 Rudder 6

0→−5→0 Rudder 7
0→−10→0 Rudder 8
0→−15→0 Rudder 9
0→−20→0 Rudder 10
0→−25→0 Rudder 11
0→−30→0 Rudder 12
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Figure 8. Schematic diagram of sample segmentation.

The typical instructions for the rudder and thruster of the AUV are shown in Table 2
together with the accompanying data files. With the use of these data, we have to produce a
meta-training set and meta-test set with various instructions representing various categories,
each of which contains some of the samples. The experiment is divided into two cases:
Case1 has the thruster as the source domain and the rudder as the target domain; Case 2
has the rudder as the source domain and the thruster as the target domain. The specific
dataset partitioning is shown in Table 3.

Table 3. Divide the data into meta-training sets and meta-test sets.

Datasets Data File Number of Samples
per Class

Case 1 Meta-training Thruster 50
Meta-test Rudder 50

Case 2 Meta-training Rudder 50
Meta-test Thruster 50

Figure 9 shows part of the time domain waveform of the rudder, which was collected in
the operating mode where the rudder and other mechanical devices are operating together.
It shows that the vibration signal of the rudder contains background noise, which will be
more challenging for the proposed fault diagnosis method. Figure 10 shows part of the time
domain waveform of the thruster, where the thruster and the other mechanical devices are
also in a commotion mode of operation and the vibration signal contains background noise.

(a) (b)

(c) (d)

Figure 9. Time domain waveform of rudder. (a) 0°→30°→0° Rudder signal. (b) 0°→20°→0° Rudder
signal. (c) 0°→−30°→0° Rudder signal. (d) 0°→−20°→0° Rudder signal.
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(a) (b)

(c) (d)

Figure 10. Time domain waveform of rudder. (a) 0.5 vs. Thruster signal. (b) −0.5 vs. Thruster signal.
(c) 0.8 vs. Thruster signal. (d) −0.8 vs. Thruster signal.

4.2. Benchmark Algorithms

To verify the effectiveness of the proposed actuator fault diagnosis method, four
ablation experiments were set up. Both the ablation experiments and the proposed model
use the actuator vibration data of the AUVs and are identical except for the different model
structures. The following four ablation experiments are presented:

CNN: First, a CNN is used to implement fault detection, and the model consists of
two convolutional layers, two pooling layers, two normalization layers, and two fully
connected layers. The convolution kernel size of both convolutional layers is 3 × 3.

Multi-scale CNN: The second ablation experiment uses a multi-scale convolutional
neural network as a model, consisting of two convolutional layers, two pooling layers, two
normalization layers, and two fully connected layers. However, the first convolutional layer
no longer uses a single-scale convolution kernel but uses a multi-scale convolution kernel
with a convolution kernel size of 3 × 3, 5 × 5, and 7 × 7, respectively. The convolution
kernel size of the second convolutional layer is 3 × 3.

Self-attention Multi-scale CNN: Based on the above model, the self-attention mechanism
is introduced after the first convolutional layer to further extract more valuable features.

Transfer Network: Based on the above model, the network training is performed using
the source domain data, waiting for the model to converge, and then directly using the
model for fault diagnosis in the target domain.

Recurrent Neural Networks (RNNs): An RNN classical network with an input layer,
hidden layer, and output layer set up to perform fault diagnosis and identification using
vibration data from underwater vehicles.

Long Short-Term Memory (LSTM): Based on the RNN network, it changes the way
data are transmitted internally by adding input and output gates as well as forgetting gates.
This network is used to perform fault diagnosis on the actuators of the underwater vehicle.

4.3. Experimental Results

The previous section introduces the acquisition of datasets, naming of data files, data
enhancement operations, and partitioning of meta-training datasets and meta-test datasets
using the experimental platform. Then, the meta-training dataset is used to iteratively train
the network to converge the model, and the computer software and hardware information
used are shown in Table 4. The model is fine-tuned using a support set of meta-test data to
fit the parameters to the optimal parameters used for the current task. The 100 diagnostic
experiments were performed on the query set, mainly to exclude the chance to ensure the
generality of the proposed network. The experimental results will be described in detail in
Sections 4.3.1 and 4.3.2.
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Table 4. Main parameters of software and hardware for this study.

CPU GPU Memory Operating System Deep Learning
Architecture

Intel i5-7300HQ GTX3090 24 GB Ubuntu 18.04 LTS Torch 1.11

4.3.1. Case I

The initial learning rate was discussed and validated by pre-experiments in the di-
agnostic experiments for Case 1, and the validation results are displayed in Figure 11.
Combining the aforementioned findings, 4× 10−3 and 3× 10−3 were chosen as the ini-
tial meta-learning rate and initial base learning rate, respectively. The proposed model
converged after 1000 iterations on the training dataset. The model was then fine-tuned
100 times on the support set of the test dataset, and the loss variation curves of the training
and testing processes are shown in Figure 12. A trained model was obtained and tested
using the query set of the test set after the fine-tuning of training and testing. From the
test results in Figure 13, it can be seen that there are 600 test samples in total, and the
number of correctly classified samples is 588, with an accuracy rate of 98%. Among them,
the classification accuracy of the six commands 5°, −10°, −15°, −20°, −25°, and −30° was
100%, which produced positive results.

(a) (b)

Figure 11. Case 1 learning rate discussion validates experimental results. (a) Meta-learning rate
discussion. (b) Base-learning rate discussion.

(a) (b)

Figure 12. Case 1 loss attenuation curve. (a) Iterative training loss attenuation curve. (b) Iterative test
loss attenuation curve.

To demonstrate the superiority of the proposed method, six ablation experiments were
conducted to classify and identify the vibration data of the underwater vehicle, with the
thruster data being the source domain and the rudder data being the target domain.
The specific results are shown in Figure 14, which indicates that the proposed method
achieves a significant advantage over the other methods. In addressing time-series data,
our proposed method outperforms RNN and LSTM, while the recognition ability of the
other six methods improves as the number of samples per class increases, but they are still
significantly lower than the recognition ability of our proposed method.



J. Mar. Sci. Eng. 2023, 11, 1121 17 of 22

Figure 13. Test confusion matrix for Case 1.

Figure 14. Results of ablation experiment in case 1.

4.3.2. Case II

The initial learning rate is discussed and investigated and experimentally validated
in the diagnostic experiment of Case 2. According to the results in Figure 15, 4× 10−4,
and 2× 10−3 were chosen as the initial meta-learning rate and initial base learning rate,
respectively. The loss variation curves of the training process and testing process of the
model are shown in Figure 16. A trained network is obtained after training and testing
fine-tuning, which is tested using the query set of the test set. From the test results of
Figure 17, it can be seen that there are 1000 test samples in total, and the number of correctly
classified samples is 979, with an accuracy rate of 97.9%. Among them, the classification
accuracy of the eight commands −0.5 v, −0.3 v, −0.1 v, 0.4 v, 0.5 v, 0.6 v, 0.7 v, and 0.8 vs. is
100%, which also produced positive results.
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(a) (b)

Figure 15. Case 2 learning rate discussion validates experimental results. (a) Meta-learning rate
discussion. (b) Base-learning rate discussion.

(a) (b)

Figure 16. Case 2 loss attenuation curve. (a) Iterative training loss attenuation curve. (b) Iterative test
loss attenuation curve.

Figure 17. Test confusion matrix for Case 2.

The proposed method’s superiority is demonstrated through six ablation experiments,
which aim to classify and identify the vibration data of the AUV, with the source domain
being the rudder data and the target being the thruster data. Comparative results of the
seven experiments are illustrated in Figure 18, where the proposed method outperforms
other methods with a significant advantage. Moreover, the proposed method exhibits
better performance in addressing the time-series problem, outperforming RNN and LSTM.
Although the recognition ability of the other six methods improves as the number of
samples per class increases, they are still significantly lower than the proposed method’s
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recognition ability. Notably, the proposed method displays less sensitivity to the number of
samples, suggesting that it has a distinct advantage in the few-shot problem.

Figure 18. Results of ablation experiment in case 2.

4.4. Discussion of Model Convergence Speed

To demonstrate the rapid convergence property of the proposed method, we compared
it with the transfer network, RNN, and LSTM architectures set up in Section 4.2. All
variables, except for the network model, were kept consistent and convergence time was
utilized as the performance metric for comparison. We conducted the experiments on a
computer with the same hardware configuration and used the thruster data as the source
domain data and the rudder data as the target domain data. The specific results are shown
in Figure 19.

Based on the experimental results, it is evident that the proposed method requires the
shortest amount of time for each training round, while the LSTM model takes the longest
time. This can be attributed to the fact that the proposed method is a shallow model with
fewer training parameters, which allows it to learn the optimal parameters more rapidly.
Moreover, as highlighted in Section 4.3, the proposed method exhibits fast convergence
and superior recognition performance.
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Figure 19. Comparison of convergence speed of different models.

5. Conclusions

In this paper, we propose the MSAMS–CNN fault diagnosis method, which can accom-
plish the fault diagnosis task of autonomous underwater vehicle actuators. Both self-attentive
mechanisms and multi-scale approaches are used in extracting vibration data features to
ensure that the extracted features can characterize the actuator fault states. Additionally, we
utilize a meta-learning training and testing strategy to fit and evaluate the proposed model,
effectively overcoming the issue of a limited AUV actuator dataset. Furthermore, the conver-
gence speed of our method is faster in comparison to other approaches. The trained model
demonstrates favorable generalization ability and is proficient in accomplishing cross-target
fault diagnosis tasks. Experimental results show that the method outperforms the set up
ablation experimental model in terms of diagnostic accuracy. In the future, the network needs
to be further investigated and improved to enhance the model fitting speed and accuracy and
to reduce the dependence on the computer hardware configuration.
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Abbreviations

MSAMS-CNN Meta-self-attention multi-scale convolutional neural network
CNN Convolutional neural network
AUVs Autonomous underwater vehicles
DNN Deep neural network
DAE Denoising autoencoder
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