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Abstract: Underwater target detection is the foundation and guarantee for the autonomous 

operation of underwater vehicles and is one of the key technologies in marine exploration. Due to 

the complex and special underwater environment, the detection effect is poor, and the detection 

precision is not high. In this paper, YOLOv5 (You Only Look Once v5) is used as the overall 

structural framework of the target detection algorithm, and improvement is made on the basis of its 

detection precision in the underwater environment. Specifically, an a�ention mechanism (Channel 

and Spatial Fusion A�ention, CSFA) that fuses the channel a�ention and spatial a�ention is 

proposed and added to the YOLOv5 network framework, enabling the network to focus on both the 

prominent features of the detected object and the spatial information of the detected object. The 

proposed method was tested on the underwater target detection dataset provided by the China 

Underwater Robot Professional Competition. The experimental detection precision (P) reached 85%, 

the recall (R) reached 82.2%, and the mean average precision (mAP) reached 87.5%. The effectiveness 

of the proposed method was verified, and its underwater target detection performance was be�er 

than that of ordinary models. 

Keywords: underwater target detection; YOLOv5; channel a�ention; spatial a�ention; a�ention 

mechanism 

 

1. Introduction 

Marine resources have become an important support for economic development. 

Therefore, countries worldwide have focused their scientific research on undersea 

technology, and underwater vehicles have become the main means of undersea work. 

Underwater vehicles can be used in technical fields, such as observation and survey work, 

seabed sampling, construction and maintenance of seabed facilities, and the laying and 

maintenance of seabed pipelines [1,2]. Autonomous underwater vehicles and remotely 

operated vehicles equipped with intelligent underwater target detection systems [3–5] 

play an important role in developing and protecting marine resources. Underwater target 

detection technology is the foundation and guarantee for autonomous underwater 

vehicles work. However, the complexity of the underwater environment and problems 

such as image blurring caused by light absorption and sca�ering make the research on 

underwater target detection more challenging. 

In recent years, many scholars have launched exploration and research on 

underwater target detection algorithms, part of scholars’ focus on optical image 

processing. For example, Yang M et al. [6] systematically summarized a series of 

underwater image enhancement and restoration algorithms, Han M et al. [7] summarized 

intelligent defogging and color restoration algorithms for underwater images, and Liu R 
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et al. [8] summarized a series of underwater image enhancement algorithms. Han J et al. 

[9] proposed a fast and efficient underwater image enhancement model based on 

conditional GAN with a good generalization ability using aggregation strategies and 

concatenate operations to take full advantage of the limited hierarchical features. Qi Q et 

al. [10] proposed an Underwater Image Co-enhancement Network (UICoE-Net) based on 

an encoder–decoder Siamese architecture. With the improvement of computers’ GPU 

computing power, target detection systems based on neural networks have become the 

main research direction in computer vision [11], which can be divided into two-stage and 

single-stage target detection frameworks. The two-stage target detection algorithm is 

divided into two steps: first, region proposal (RP) is performed, and then, sample 

classification is performed through convolutional neural networks, such as R-CNN [12], 

Fast-RCNN [13], and Faster-RCNN [14]. 

Yuan Hongchun et al. [15] proposed a detection model specifically for fish by 

improving the network structure of Faster R-CNN. Through two times of transfer learning 

training networks, the detection precision has been improved. However, the region 

proposal network (RPN) is still used, which is ineffective for processing hard samples. 

Many anchor boxes are used during sampling, and most samples are invalid or low-

quality. Therefore, Song Shaojian et al. [16] proposed an underwater biological target 

detection method based on Mask R-CNN. First, hard samples are enhanced, and then, the 

image is enhanced using the multiscale retinal enhancement algorithm. Finally, 

underwater target detection is achieved based on Mask R-CNN combined with transfer 

learning. However, this method’s sampling anchor box ratio is fixed, and the detection 

effect for targets with too large or too small aspect ratio is poor. Chen Yingyi et al. [17] 

proposed a fish detection method based on convolution neural networks, which improved 

the fish recognition rate. However, this network uses many pooling layers to scale images, 

which is easy to filter small target information, resulting in small target miss detection. 

Cai Zhaowei et al. [18] proposed the target detection method of Cascade RCNN, which 

improves the network’s ability to perceive location information by continuously adjusting 

the threshold value of the training hyperparameter IoU (Intersection over Union). 

However, this method uses a three-level detector, with each layer performing repetitive 

feature extraction and image scaling operations, resulting in a huge amount of 

computation, affecting the model’s rapid convergence and detection speed. Zeng Lingcai 

et al. [19] proposed a method to add the adversarial occlusion network (AON) to the 

standard Faster R-CNN detection algorithm called the Faster R-CNN-AON network. The 

detection accuracy of this network is improved compared to the standard Faster R-CNN 

network. Liu Jia et al. [20] proposed an underwater object detection algorithm based on 

Faster R-CNN. First, the Swin Transformer is used as the backbone network of the 

algorithm. Second, the deep and shallow feature maps are superimposed and fused by 

adding the path aggregation network. Third, online hard example mining makes the 

training process more efficient. Fourth, the ROI pooling is improved to ROI align, 

eliminating the two quantization errors of ROI pooling and improving the detection 

performance. 

Different from two-stage target detection algorithms, a single-stage target detection 

algorithm has a simple structure and is fast. It can directly identify the classification of 

objects by extracting features from the network, such as a single shot multibox detector 

(SSD) [21] and You Only Look Once (YOLO) [22] series of networks. Compared to other 

target detection networks, improvements based on YOLO series networks are applied 

more widely. Xu Jianhua et al. [23] proposed an improved underwater target detection 

method based on YOLOv3 network, optimizing the network structure through multi-level 

fusion, optimizing clustering candidate boxes and other methods, and improving the 

overall precision to 75.1%. Mao Guojun et al. [24] improved the YOLOv4 network model 

by constructing a module embedded at the end of the YOLOv4 network to discriminate 

shallow marine organisms and accurately identify obscured targets, improving the 

detection precision. However, the detection speed has decreased due to adding a module 
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and a certain amount of parameters. Chen Lingyu et al. [25] improved the recognition 

accuracy and speed by replacing the upsampling module with the deconvolution module 

and incorporating depthwise separable convolution into the YOLOv4 network structure. 

Lei Fei et al. [26] improved the accuracy of underwater target detection by replacing the 

basic backbone network of YOLOv5 with the Swin Transformer, improving the path 

aggregation network (PANet) method for multiscale feature fusion, and improving the 

confidence loss function based on different detection layers. Qiang Wei et al. [27] proposed 

an underwater target detection method based on improved SSD (Single Shot MultiBox 

Detector), which uses feature pyramid network to adapt to target multiscale variation to 

a certain extent and has a good fusion effect for large- and medium-sized target features. 

In contrast, small target features are easy to lose, resulting in a low detection rate for small 

targets. 

The a�ention mechanism originates from the study of human vision. When humans 

observe an image, they do not observe every pixel of the entire image but instead focus 

on specific parts according to their needs. Moreover, humans will learn from previously 

observed images where their a�ention should be focused when observing images in the 

future. Therefore, many scholars have applied a�ention mechanisms to computer vision 

research, utilizing limited visual information reasonably, selecting prominent features in 

the visual region, and then focusing on it. Adding an a�ention mechanism to a target 

detection network is an important direction in the research of underwater target detection 

algorithms. Zhao Xiaofei et al. [28] proposed FRANet (Feature Refinement and A�ention 

Mechanism Network), which combines an anchor box trimming module, a spatial 

a�ention module, and a target detection module to form a cascade a�ention mechanism 

to solve the problem of obscured and classification imbalance. However, stacking multiple 

modules will inevitably increase computational consumption, and pooling in spatial 

a�ention will lose some distinguishing features. Wei Xiangyu et al. [29] combined SENet 

[30] (Squeeze and Extortion Networks) with YOLOv3 (You Only Look Once v3) [31] to 

enhance the semantic information of deep features and fuse them with shallow features 

across layers to address the problem of feature loss caused by fuzzy underwater 

disturbance and occlusion. This method still does not solve the problem of pooling 

causing a loss of detail. Zou Ziyin et al. [32] believed that labelling obscured objects in 

blocks would cause the network to be unable to pay a�ention to important areas, so they 

concatenated CBAM (Convolutional Block A�ention Module) [33] and SENet to enhance 

spatial and channel features. CBAM itself is a concatenation of channel a�ention and 

spatial a�ention, and concatenation of SENet again can lead to the problem of channel 

information redundancy. 

The channel a�ention mechanism obtains the importance of each feature channel 

through learning and focusing on the relationships between channels in the feature map, 

but it cannot capture feature information in the spatial dimension. The spatial a�ention 

mechanism believes that the contribution of each region in the image to the task varies, 

and the regions related to the task require special a�ention. Adding channel a�ention or 

spatial a�ention to underwater target detection algorithms can improve the detection 

accuracy. However, it can lead to losing spatial or channel feature information. Simply 

connecting the two a�ention mechanisms in series or parallel can lead to a more complex 

network structure, requiring more computing resources and higher computational 

complexity. On the other hand, it can also result in the separation of channel and spatial 

information, making it impossible to interact. Therefore, this paper proposes an a�ention 

mechanism that fuses channel and spatial a�ention, which can obtain channel and spatial 

feature information and facilitate cross-latitude information exchange. To address the 

challenges of difficult detection, easily missed detection, and false detection of underwater 

targets, an a�ention mechanism that fuses channel a�ention and spatial a�ention is added 

to the YOLOv5 underwater target detection algorithm to achieve high-precision detection 

of complex underwater scenes. 
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The other sections of this paper are as follows. Section 2 introduces the method 

proposed in this paper and the improved YOLOv5 network structure. In Section 3, the 

dataset and evaluation indicators were introduced. Section 4 is the experimental part of 

this paper and analyzes the experimental results. Finally, Section 5 concludes this paper. 

2. Overview of Improved Network Structure 

2.1. Channel and Spatial Fusion A�ention Principle 

The role of the channel a�ention mechanism is to obtain the importance of each 

channel in the feature map and, then, use this importance to give a weight value to each 

feature, thus le�ing the neural network pay a�ention to certain feature channels, enhance 

the channels of the feature map that are useful for the current task, and suppress the 

feature channels that are not useful for the current task. The role of the spatial a�ention 

mechanism is to obtain the importance of the location information of the feature map and 

use this importance to give a weight value to the feature, thus le�ing the neural network 

select important spatial regions or directly predict the most relevant spatial locations. 

Channel and Spatial Fusion A�ention believes that channel a�ention and spatial 

a�ention should not be simply connected in series or parallel but should interact with 

information across dimensions. This paper uses the channel split module to divide the 

input feature channel equally into two parts: one part for channel a�ention calculation 

first. The dimension   (  ,  , and   represent height, width, and number of 

channels) of the input feature map needs to be reduced to , which is achieved 

through global pooling. Then, the obtained dimension   is integrated into the 

fully connected layer to learn the importance of each channel. Finally, after being activated 

by the sigmoid function, different weights are assigned to the channels of the input feature 

map through the scale operation. The other part for the spatial a�ention calculation first 

performs average pooling and maximum pooling separately from the channel dimension 

and adjusts the dimension from  reduced to , and then, they merge to 

obtain a convolutional layer with a channel number of 2 ( ). A spatial a�ention 

with a channel number of 1( ) is obtained through another convolution. Finally, 

after being activated by the sigmoid function, different weights are assigned to the spatial 

dimensions of the input feature map through the scale operation. Then, a concat module 

is used to connect the two parts after the calculation, and finally, a channel shuffle [34] 

module is used for information interaction. The structure of Channel and Spatial Fusion 

A�ention is shown in Figure 1. 
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Figure 1. Structural diagram of Channel and Spatial Fusion A�ention. 

Currently, convolutional neural networks are composed of multiple blocks with the 

same structure. ResNeXt [35] and MobileNet [36] propose that depthwise separable 

convolution and group convolution achieve a trade-off between precision and 

computational cost. However, these networks are not fully used 1 × 1 convolution 

(referred to as pointwise convolution in MobileNet) because 1 × 1 convolution requires 

considerable complexity. In order to solve this problem, the most direct method is to add 

group convolution to the 1 × 1 convolution, which will significantly reduce the 

computational complexity of the convolution. 

Of course, group convolution also has certain disadvantages because general 

convolutions always do full channel convolutions on input feature maps, a channel-dense 

connection method. However, group conversion is a channel-sparse connection method. 

Group convolution groups different feature maps of the input layer and, then, uses 

different convolution kernels to convolve each group. The feature maps between different 

groups do not communicate with each other, therefore reducing the network feature 

extraction ability. As shown in Figure 2a, there are two group convolutions, GConv1 and 

GConv2. The pink channel always processes only the pink information, and the yellow 

and green parts are the same. Obviously, the output of a group is only related to the input 

within the group, which causes the information flow between channel groups to be unable 

to flow and weakens the information representation. 
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Figure 2. Structural diagram of Channel Shuffle: (a) Group convolution; (b) Group convolution 

with Channel Shuffle (One color represents a group convolution). 

In order to solve the side effects caused by group convolution, the channel shuffle 

was proposed to help information flow between channels. As shown in Figure 2b, its 

meaning is to “reorganize” the feature map after the group convolution, which can ensure 

that the input of the group convolution to be used next comes from different groups so 

that information can flow between different groups. This process is not random but rather 

“evenly disrupted”. 

The channel shuffle operation is shown in Figure 3. Assume a convolution layer with 

a group of g whose output has g×n channels; first, reshape the output channel dimension 

to (g; n), then perform a transpose operation, and finally, fla�en it as the input for the next 

layer. In addition, the channel shuffle is differentiable, which means it can be embedded 

in the network structure for end-to-end training. 

 

Figure 3. Channel shuffle operation diagram (One color represents a group convolution and 

different shades of the same color represent a channel). 

2.2. Improved YOLOv5 Network Structure 

Glenn Jocher released YOLOv5 [37] in 2020. This paper adds an a�ention mechanism 

based on the YOLOv5 network structure. The YOLOv5 network comprises multiple 

modules, which can be divided into the backbone network for extracting basic features of 

the target and the YOLO head for further enhancing features and making predictions. The 

backbone network of YOLOv5 is composed of the CSPDarknet53 network composed of 

multiple residual convolution blocks, which is part of the whole model with the largest 

amount of parameters, and its ability to extract features is related to the detection 

precision of the whole model. The improvement of YOLOv5 in this paper is to replace the 

Bo�leneck module in the CSP structure with the a�ention module. The improved 

YOLOv5 network structure is shown in Figure 4. 
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Figure 4. Improved YOLOv5 network structure. 
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YOLOv5 uses the SPP [38] (Spatial Pyramid Pooling) module, FPN [39], and PANet 

[40] module to extract features from three effective feature layers. SPP uses pooling at 

scales 13 × 13, 9 × 9, and 5 × 5 to increase the receptive field. Based on the feature pyramid, 

PANet performs repeated upsampling and downsampling of feature maps of different 

sizes, changing the original addition operation of PAN into connect, aiming to enhance 

the diversity of features further, improve the robustness of the model, and thereby 

improve the ability of the network to extract information. Finally, YOLOv5 uses three 

different scale anchor boxes to limit the range of prediction objects, thereby achieving the 

purpose of multiscale learning. 

3. Model Analysis 

3.1. Data Set 

The experimental dataset was from the Target Recognition Group of China 

Underwater Robot Professional Competition (URPC), with 6575 underwater target images 

in four classifications, as shown in Figure 5, including echinus, scallop, starfish, and 

holothurian. The dataset distribution is shown in Figure 6. Figure 6a shows the 

distribution of the number of detected targets. It can be seen from the figure that there are 

four classifications in total. The vertical coordinate represents the number of labelled 

images for a certain class. Therefore, 7899 echini, 1889 scallops, 2922 starfishes, and 1768 

holothurians were labelled in the training set, totaling 14,478 target objects. All sample 

images were labelled using the Labelimg data label tool in the PASAL VOC sample set 

format, saved as the xml file, and then transformed to the yolo label format, which was 

saved as the txt file. Figure 6b shows the distribution of the size of the label box. As can be 

seen from the figure, the scale of the detected target was relatively wide, and the 

proportion of small targets was relatively large; Figure 6c shows the distribution of the 

center points of the normalized label box. The coordinate axes 0 to 1 represented the 

position of the normalized label box center coordinate points in the image. The center 

point coordinates in the figure covered the entire image from 0 to 1. It can be seen that the 

distribution range of the center coordinates (x, y) of the dataset were relatively wide, 

conforming to the characteristics of the random distribution of underwater target features 

in the image. Figure 6d shows the height and width distribution of the normalized label 

box. It can be seen that the distribution was concentrated on smaller values, and the 

distribution was most dense when the proportion reaches 0.0 to 0.2, indicating that the 

proportion of the target in the image was relatively small. In order to enable the designed 

model to learn the dataset fully, this experiment selected 70% of them as the training set 

and 30% as the test set. The training set contained 4538 images, and the test set contained 

2037 images. 

  
(a) (b) 
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(c) (d) 

Figure 5. The dataset contains four classifications, which are (a) holothurian, (b) echinus, (c) scallop, 

and (d) starfish. 

  

(a) (b) 

 
 

(c) (d) 

Figure 6. Dataset distribution: (a) Distribution of the number of targets of each classification; (b) 

Distribution of the label box size; (c) Distribution of the center points of the normalized label box; 

(d) The height and width distribution of the normalized label box. 
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3.2. Evaluation Metrics 

There are two types of results for detecting underwater targets; one is to detect the 

correct target, and the other is to detect erroneous interfering objects, such as reefs. This 

paper used precision (P), recall (R), average precision (AP), and mean average precision 

(mAP) as evaluation metrics, as shown in Equation (1). IoU (Intersection over Union) was 

the ratio of the overlapping area and the combined area of the target predicted position (

) and the practical target position ( ), which was used to measure the precision 

of target positioning. When IoU (experimental se�ing of 0.5) exceeded the set threshold 

value, the detection model considered  a target location and marked it as TP. 

Otherwise, it was a non-target location, and the model marked it as FP. 

, (1)

The precision (P) formula is as follows: 

, (2)

in the formula, TP (True Positive) represents the number of samples that correctly detect 

underwater targets; FP (False Positive) represents the number of samples that incorrectly 

detect underwater targets. The recall (R) formula is as follows: 

, (3)

FN (False Negative) represents the number of samples where the target has not been 

detected. The mean average precision (mAP) formula is as follows: 

, (4)

, (5)

The AP value specifically represents the average value of the correct probability of 

prediction for each class. N represents the total number of images containing target 

features, P represents the probability of correct prediction of target features in each image, 

and ∑ represents the sum of correct prediction probabilities for each target. mAP is the 

average of AP for all classes. 

3.3. Model Training 

Due to significant changes made to the YOLOv5 network model, it was necessary to 

validate the convergence of three main loss functions, including anchor box loss (Box), 

confidence loss (Objectness), and class loss (Classification). The situation after iterating 

500 epochs is shown in Figure 7. 

From Figure 7, it can be seen that when training 500 epochs, Box, Objectness, and 

Classification could converge stably, with errors below 0.06, in the corresponding 

validation set (Val) loss function. The error of the three loss functions was also below 0.06, 

indicating that the model could stably converge. 
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Figure 7. Convergence of the loss function. 

4. Experimental Results 

Experiments have verified the feasibility of improving the YOLOv5 target detection 

algorithm by adding an a�ention mechanism. The experimental results show that this 

method can improve the precision of target detection in complex underwater 

environments. 

4.1. Experimental Environment 

The underwater target detection dataset is divided into a training set and a test set in 

a 7:3 ratio. The basic parameter se�ings are shown in Table 1. 

Table 1. Hyperparameter se�ings for network training. 

Training Epochs Batch Size Learning Rate Weight Decay Momentum 

500 16 0.01 0.005 0.9 

The hardware environment of this experiment uses Intel (R) Core (TM) i9-11950H, 

CPU@2.60GH, and NVIDIA RTX A3000 with 32G of memory. The programming uses 

Python 3.9. The model is optimized using the SGD (stochastic gradient descent) method. 

The network designed in this paper is trained and learned using a deep learning 

framework based on Pytorch. During the training process, the number of images per batch 

is 16, and the model is circulated through 500 training epochs in the dataset. The initial 

learning rate is set to 0.01, the weight decay is set to 0.0005, and the SGD momentum is 

set to 0.9. The mean average precision of underwater target detection is the evaluation 

metric for the model training results. 
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4.2. Ablation Experiment 

In order to ensure the randomness of the experiment, 1110 images were randomly 

selected from the testset to test the YOLOv5 model and the improvement points of this 

paper. YOLOv5 represents that only the YOLOv5 model is used for experiments, 

YOLOv5+SE represents adding the SE a�ention mechanism to the YOLOv5 model, 

YOLOv5+CBAM represents adding the CBAM a�ention mechanism to the YOLOv5 

model, and YOLOv5+CSFA represents adding the a�ention mechanism proposed in this 

paper to the YOLOv5 model, which fuses the channel a�ention and spatial a�ention. The 

test results of the above model are shown in Table 2 and the precision recall curve is shown 

in Figure 8. 

Table 2. Improvement point ablation experiment. 

Model P (%) R (%) mAP@0.5 (%) 

YOLOv5 91.2 88.9 93.5 

YOLOv5+SE 92 87.2 93.7 

YOLOv5+CA 93 87.7 93.1 

YOLOv5+CBAM 91.1 89.6 92.9 

YOLOv5+CSFA(ours) 94.2 87.8 94.2 

As can be seen from Table 2, the precision of the YOLOv5 model is 91.2% while the 

precision of the model designed in this paper is 94.2%. The precision has improved, but 

the recall has decreased by 1.1 percentage points. Due to the addition of the model’s 

channel a�ention mechanism and spatial a�ention mechanism and the increasing 

network layers, when learning similar targets to the bo�om layer of the neural network, 

the feature differentiation is not large, resulting in the target being detected, but the class 

was incorrectly detected, leading to a reduced recall. The mean average precision is 0.7 

percentage points higher than the YOLOv5, proving the improved model’s effectiveness. 

 

(a) (b) 
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(c) (d) 

 

 

(e)  

Figure 8. Precision recall curve of ablation experiment: (a) YOLOv5, (b) YOLOv5+SE, (c) 

YOLOv5+CA, (d) YOLOv5+CBAM, and (e) YOLOv5+CSFA. 

4.3. Comparison with Other Models 

In order to objectively validate the effectiveness of the model, the YOLOv5+CSFA 

model and recent popular target detection models are compared on the dataset used in 

this paper. The results are shown in Table 3. 

Table 3. Comparison results with other mod. 

Model 
AP 

(%, Holothurian) 

AP 

(%, Echinus) 

AP 

(%, Starfish) 

AP 

(%, Scallop) 
mAP@0.5 (%) 

RCNN [12] 68.2 80.4 78.9 69.3 74.2 

Fast RCNN [13] 70.5 82.3 81.4 71.4 76.4 

Faster RCNN [14] 74.1 85.5 84.4 75.2 79.8 

YOLOv3 [31] 73.3 84.6 83.3 74.4 78.9 

YOLOv3+SENet [29] 78 89.2 87.1 78.5 83.2 

YOLOv4 [41] 78.2 90.7 86.4 78.3 83.4 

YOLOv5 [37] 80 93.1 90.9 80.4 86.1 

YOLOv6 [42] 78.4 93.5 91.5 78.8 85.5 

YOLOv8 [43] 82.3 93.6 91.9 81.5 87.3 

YOLOv5+CSFA(ours) 82.8 93.9 91.8 81.6 87.5 



J. Mar. Sci. Eng. 2023, 11, 1116 14 of 21 
 

 

As can be seen from Table 3, compared to the popular two-stage target detection 

network, the mean average precision of the method proposed in this paper shows a 

significant advantage, which is 7.7 percentage points higher than the mAP of Faster 

RCNN. Compared with previous single-stage network YOLO (v3, v4) series models, the 

mean average precision is higher, which is 4.1 percentage points higher than the mAP of 

YOLOv4. Compared with the YOLOv5 underwater target detection network model in the 

same experimental environment and dataset, the mean average precision is 1.4 percentage 

points higher. Compared with the single-stage network YOLO (v6, v8) series models 

proposed in the past two years, the mean average precision is higher, which is 2 

percentage points higher than the mAP of YOLOv6 and 0.2 percentage points higher than 

the mAP of YOLOv8, proving that the model has high precision in underwater target 

detection. 

Figure 9 compares the precise recall curve between the improved YOLOv5 model 

and the YOLOv5 model, the YOLOv6 model, and the YOLOv8 model. As can be seen from 

the figure, the improved model achieves be�er detection results for all classes of targets. 

The AP value of the echinus reaches 90.5%, that of the starfish reaches 91.8%, that of the 

holothurian reaches 82.8%, that of the scallop reaches 81.6%, and the mAP value reaches 

87.5%. 

(a) (b) 

(c) (d) 

Figure 9. Precision Recall Curve: (a) The YOLOv5 model; (b) Improved YOLOv5 model; (c) The 

YOLOv6 model; (d) The YOLOv8 model. 
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4.4. Grad-CAM Visualization 

The cross-dimensional interaction provided by the channel and spatial fusion 

a�ention is assumed to facilitate the network learning for more meaningful internal 

representations of the images. The sample visualization of the Grad-CAM [44] technology 

was used to verify this statement, which visualizes the gradients of the top-class 

prediction concerning the input image as a colored overlay, as shown in Figure 10. Grad-

CAM inputs the image into CNN, propagates it forward to obtain the first element (the 

last layer’s output feature map), and obtains the model output’s class logits (without 

softmax mapping). Then, it uses the class logit to be the certitude for backpropagation to 

obtain the gradient of the final layer of the output feature map concerning this class score. 

Finally, it calculates the average value of the spatial dimension of the feature map gradient 

to obtain the second element: a weight related to the class information and consistent with 

the number of channels in the feature map. 

 

Figure 10. Grad-CAM Visualization. 

As shown in Figure 11, the channel and spatial fusion a�ention can capture tighter 

and more relevant bounds on the image of the underwater target detection dataset. In 

certain cases, when using the channel and spatial fusion a�ention, YOLOv5 can identify 

classes that the baseline model fails to predict correctly. These visualizations are beneficial 

for understanding the inherent ability of the channel and spatial fusion a�ention, which 

captures richer and more discriminative contextual information for specific target classes. 

This property of the channel and spatial fusion a�ention is extremely favourable and 

helpful in improving the performance of deep neural network architectures compared to 

their baseline counterparts. 
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Figure 11. Obtain a random sample result for each class from the validation set and compare 

YOLOv5 and YOLOv5+CSFA. 

4.5. Analysis of Detection Results 

In order to more intuitively experience the detection results of the model, we 

randomly select 4 more complex images from the dataset and compare them with the 

YOLOv5 model. The selected original image is shown in Figure 12. 

 

Figure 12. Original underwater target image. 
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As can be seen from Figure 12, echini, scallops, starfishes, and holothurians are 

relatively blurred in the water and highly fused with the background, making detection 

difficult. Figure 13 shows the detection results of the YOLOv5 model. 

 

Figure 13. YOLOv5 Underwater Target Image Detection Results. 

The YOLOv5 model correctly detects all target marine organisms. Figure 14 shows 

the detection results of the YOLOv5+CSFA model. By comparing the underwater target 

detection results of YOLOv5+CSFA designed in this paper with YOLOv5, it can be seen 

that the predicted values of YOLOv5+CSFA next to the prediction box are mostly higher 

than the YOLOv5 model, which proves the effectiveness of the improved model. 

 

Figure 14. YOLOv5+CSFA Underwater Target Image Detection Results. 

For the detection results of fuzzy and small targets, the comparison with YOLOv5 is 

shown in Figures 15 and 16: 
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Figure 15. Comparison of Fuzzy Target Detection. 

The left image in Figure 15 shows the detection results of YOLOV5, and the right 

image shows the detection results of YOLOV5+CSFA. It can be seen from the figure that 

YOLOv5+CSAF has detected the echinus that YOLOv5 failed to detect. 

 

Figure 16. Comparison of Small Target Detection. 

The left image in Figure 16 shows the detection results of YOLOv5, and the right 

image shows the detection results of YOLOv5+CSFA. The above image contains images 

of small underwater organisms. It can be seen that the right image has detected sea urchins 

that the left image failed to detect, and most predicted values are higher than those in the 

left. It has been proven that YOLOv5+CSFA is effective in detecting fuzzy and small 

underwater targets. 

5. Conclusions 

This paper improves the currently popular single-stage network YOLOv5 and 

applies it to the field of underwater target detection. In this paper, experiments were 

conducted on echinus, scallop, starfish, holothurian, and other difficult-to-capture 

undersea organisms, verifying the high precision of the detection model and expanding 

the application scenarios of underwater target detection algorithms. This paper compares 

the YOLOv5+CSFA model with popular target detection models in recent years, and the 

results show that the designed YOLOv5+CSFA model has a higher precision than other 

models. This paper conducted ablation experiments on the improved strategy. The 

experimental results showed that, compared to other a�ention mechanisms, the a�ention 

mechanism proposed in this paper that fuses the channel a�ention and spatial a�ention 

improves the target detection algorithm more significantly. The experimental results 

show that the detection results of the YOLOv5+CSFA model in complex underwater 

environments have been improved. The improved model is be�er than the general target 

detection model and is more robust in complex underwater environments. 

Due to the complex underwater environment, data collection is relatively difficult, 

resulting in a slightly insufficient quantity and quality of the dataset. Therefore, part of 

our future work will focus on collecting datasets and improving their quality. The 
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research on underwater image enhancement and restoration algorithms is one of the 

future research directions. Underwater target detection technology is the foundation and 

guarantee for achieving autonomous grasping operation of underwater manipulators. 

Therefore, another future research direction is to combine underwater target detection 

technology with deep reinforcement learning of underwater robotic arms to achieve 

autonomous grasping of underwater manipulators and conduct water tank experiments 

to verify grasping accuracy. 
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