
Citation: Wang, X.; Xue, G.; Huang,

S.; Liu, Y. Underwater Object

Detection Algorithm Based on

Adding Channel and Spatial Fusion

Attention Mechanism. J. Mar. Sci.

Eng. 2023, 11, 1116. https://doi.org/

10.3390/jmse11061116

Academic Editor: Fabio Bruno

Received: 26 April 2023

Revised: 15 May 2023

Accepted: 21 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Underwater Object Detection Algorithm Based on Adding
Channel and Spatial Fusion Attention Mechanism
Xingyao Wang 1, Gang Xue 1 , Shuting Huang 1,* and Yanjun Liu 1,2,*

1 Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
202120959@mail.sdu.edu.cn (X.W.); xuegangzb@163.com (G.X.)

2 Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education,
Shandong University, Jinan 250061, China

* Correspondence: hst@sdu.edu.cn (S.H.); lyj111yjslw@163.com (Y.L.);
Tel.: +86-152-7523-0512 (S.H.); +86-133-2513-6508 (Y.L.)

Abstract: Underwater target detection is the foundation and guarantee for the autonomous operation
of underwater vehicles and is one of the key technologies in marine exploration. Due to the complex
and special underwater environment, the detection effect is poor, and the detection precision is not
high. In this paper, YOLOv5 (You Only Look Once v5) is used as the overall structural framework
of the target detection algorithm, and improvement is made on the basis of its detection precision
in the underwater environment. Specifically, an attention mechanism (Channel and Spatial Fusion
Attention, CSFA) that fuses the channel attention and spatial attention is proposed and added to the
YOLOv5 network framework, enabling the network to focus on both the prominent features of the
detected object and the spatial information of the detected object. The proposed method was tested
on the underwater target detection dataset provided by the China Underwater Robot Professional
Competition. The experimental detection precision (P) reached 85%, the recall (R) reached 82.2%, and
the mean average precision (mAP) reached 87.5%. The effectiveness of the proposed method was
verified, and its underwater target detection performance was better than that of ordinary models.

Keywords: underwater target detection; YOLOv5; channel attention; spatial attention; attention
mechanism

1. Introduction

Marine resources have become an important support for economic development.
Therefore, countries worldwide have focused their scientific research on undersea technol-
ogy, and underwater vehicles have become the main means of undersea work. Underwater
vehicles can be used in technical fields, such as observation and survey work, seabed sam-
pling, construction and maintenance of seabed facilities, and the laying and maintenance of
seabed pipelines [1,2]. Autonomous underwater vehicles and remotely operated vehicles
equipped with intelligent underwater target detection systems [3–5] play an important role
in developing and protecting marine resources. Underwater target detection technology is
the foundation and guarantee for autonomous underwater vehicles work. However, the
complexity of the underwater environment and problems such as image blurring caused
by light absorption and scattering make the research on underwater target detection more
challenging.

In recent years, many scholars have launched exploration and research on underwater
target detection algorithms, part of scholars’ focus on optical image processing. For exam-
ple, Yang M et al. [6] systematically summarized a series of underwater image enhancement
and restoration algorithms, Han M et al. [7] summarized intelligent defogging and color
restoration algorithms for underwater images, and Liu R et al. [8] summarized a series of
underwater image enhancement algorithms. Han J et al. [9] proposed a fast and efficient

J. Mar. Sci. Eng. 2023, 11, 1116. https://doi.org/10.3390/jmse11061116 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11061116
https://doi.org/10.3390/jmse11061116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-2733-5770
https://orcid.org/0000-0001-5509-4022
https://doi.org/10.3390/jmse11061116
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11061116?type=check_update&version=2


J. Mar. Sci. Eng. 2023, 11, 1116 2 of 19

underwater image enhancement model based on conditional GAN with a good generaliza-
tion ability using aggregation strategies and concatenate operations to take full advantage
of the limited hierarchical features. Qi Q et al. [10] proposed an Underwater Image Co-
enhancement Network (UICoE-Net) based on an encoder–decoder Siamese architecture.
With the improvement of computers’ GPU computing power, target detection systems
based on neural networks have become the main research direction in computer vision [11],
which can be divided into two-stage and single-stage target detection frameworks. The
two-stage target detection algorithm is divided into two steps: first, region proposal (RP)
is performed, and then, sample classification is performed through convolutional neural
networks, such as R-CNN [12], Fast-RCNN [13], and Faster-RCNN [14].

Yuan Hongchun et al. [15] proposed a detection model specifically for fish by im-
proving the network structure of Faster R-CNN. Through two times of transfer learning
training networks, the detection precision has been improved. However, the region pro-
posal network (RPN) is still used, which is ineffective for processing hard samples. Many
anchor boxes are used during sampling, and most samples are invalid or low-quality.
Therefore, Song Shaojian et al. [16] proposed an underwater biological target detection
method based on Mask R-CNN. First, hard samples are enhanced, and then, the image is
enhanced using the multiscale retinal enhancement algorithm. Finally, underwater target
detection is achieved based on Mask R-CNN combined with transfer learning. However,
this method’s sampling anchor box ratio is fixed, and the detection effect for targets with
too large or too small aspect ratio is poor. Chen Yingyi et al. [17] proposed a fish detection
method based on convolution neural networks, which improved the fish recognition rate.
However, this network uses many pooling layers to scale images, which is easy to filter
small target information, resulting in small target miss detection. Cai Zhaowei et al. [18]
proposed the target detection method of Cascade RCNN, which improves the network’s
ability to perceive location information by continuously adjusting the threshold value of
the training hyperparameter IoU (Intersection over Union). However, this method uses a
three-level detector, with each layer performing repetitive feature extraction and image
scaling operations, resulting in a huge amount of computation, affecting the model’s rapid
convergence and detection speed. Zeng Lingcai et al. [19] proposed a method to add the
adversarial occlusion network (AON) to the standard Faster R-CNN detection algorithm
called the Faster R-CNN-AON network. The detection accuracy of this network is im-
proved compared to the standard Faster R-CNN network. Liu Jia et al. [20] proposed an
underwater object detection algorithm based on Faster R-CNN. First, the Swin Transformer
is used as the backbone network of the algorithm. Second, the deep and shallow feature
maps are superimposed and fused by adding the path aggregation network. Third, online
hard example mining makes the training process more efficient. Fourth, the ROI pooling
is improved to ROI align, eliminating the two quantization errors of ROI pooling and
improving the detection performance.

Different from two-stage target detection algorithms, a single-stage target detection
algorithm has a simple structure and is fast. It can directly identify the classification of
objects by extracting features from the network, such as a single shot multibox detector
(SSD) [21] and You Only Look Once (YOLO) [22] series of networks. Compared to other
target detection networks, improvements based on YOLO series networks are applied
more widely. Xu Jianhua et al. [23] proposed an improved underwater target detection
method based on YOLOv3 network, optimizing the network structure through multi-level
fusion, optimizing clustering candidate boxes and other methods, and improving the
overall precision to 75.1%. Mao Guojun et al. [24] improved the YOLOv4 network model
by constructing a module embedded at the end of the YOLOv4 network to discriminate
shallow marine organisms and accurately identify obscured targets, improving the detec-
tion precision. However, the detection speed has decreased due to adding a module and
a certain amount of parameters. Chen Lingyu et al. [25] improved the recognition accu-
racy and speed by replacing the upsampling module with the deconvolution module and
incorporating depthwise separable convolution into the YOLOv4 network structure. Lei
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Fei et al. [26] improved the accuracy of underwater target detection by replacing the basic
backbone network of YOLOv5 with the Swin Transformer, improving the path aggregation
network (PANet) method for multiscale feature fusion, and improving the confidence loss
function based on different detection layers. Qiang Wei et al. [27] proposed an underwater
target detection method based on improved SSD (Single Shot MultiBox Detector), which
uses feature pyramid network to adapt to target multiscale variation to a certain extent
and has a good fusion effect for large- and medium-sized target features. In contrast, small
target features are easy to lose, resulting in a low detection rate for small targets.

The attention mechanism originates from the study of human vision. When humans
observe an image, they do not observe every pixel of the entire image but instead focus
on specific parts according to their needs. Moreover, humans will learn from previously
observed images where their attention should be focused when observing images in the
future. Therefore, many scholars have applied attention mechanisms to computer vision
research, utilizing limited visual information reasonably, selecting prominent features in
the visual region, and then focusing on it. Adding an attention mechanism to a target
detection network is an important direction in the research of underwater target detection
algorithms. Zhao Xiaofei et al. [28] proposed FRANet (Feature Refinement and Attention
Mechanism Network), which combines an anchor box trimming module, a spatial attention
module, and a target detection module to form a cascade attention mechanism to solve the
problem of obscured and classification imbalance. However, stacking multiple modules
will inevitably increase computational consumption, and pooling in spatial attention will
lose some distinguishing features. Wei Xiangyu et al. [29] combined SENet [30] (Squeeze
and Extortion Networks) with YOLOv3 (You Only Look Once v3) [31] to enhance the
semantic information of deep features and fuse them with shallow features across layers to
address the problem of feature loss caused by fuzzy underwater disturbance and occlusion.
This method still does not solve the problem of pooling causing a loss of detail. Zou
Ziyin et al. [32] believed that labelling obscured objects in blocks would cause the network to
be unable to pay attention to important areas, so they concatenated CBAM (Convolutional
Block Attention Module) [33] and SENet to enhance spatial and channel features. CBAM
itself is a concatenation of channel attention and spatial attention, and concatenation of
SENet again can lead to the problem of channel information redundancy.

The channel attention mechanism obtains the importance of each feature channel
through learning and focusing on the relationships between channels in the feature map,
but it cannot capture feature information in the spatial dimension. The spatial attention
mechanism believes that the contribution of each region in the image to the task varies, and
the regions related to the task require special attention. Adding channel attention or spatial
attention to underwater target detection algorithms can improve the detection accuracy.
However, it can lead to losing spatial or channel feature information. Simply connecting
the two attention mechanisms in series or parallel can lead to a more complex network
structure, requiring more computing resources and higher computational complexity. On
the other hand, it can also result in the separation of channel and spatial information,
making it impossible to interact. Therefore, this paper proposes an attention mechanism
that fuses channel and spatial attention, which can obtain channel and spatial feature
information and facilitate cross-latitude information exchange. To address the challenges
of difficult detection, easily missed detection, and false detection of underwater targets,
an attention mechanism that fuses channel attention and spatial attention is added to the
YOLOv5 underwater target detection algorithm to achieve high-precision detection of
complex underwater scenes.

The other sections of this paper are as follows. Section 2 introduces the method
proposed in this paper and the improved YOLOv5 network structure. In Section 3, the
dataset and evaluation indicators were introduced. Section 4 is the experimental part of
this paper and analyzes the experimental results. Finally, Section 5 concludes this paper.
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2. Overview of Improved Network Structure
2.1. Channel and Spatial Fusion Attention Principle

The role of the channel attention mechanism is to obtain the importance of each
channel in the feature map and, then, use this importance to give a weight value to each
feature, thus letting the neural network pay attention to certain feature channels, enhance
the channels of the feature map that are useful for the current task, and suppress the feature
channels that are not useful for the current task. The role of the spatial attention mechanism
is to obtain the importance of the location information of the feature map and use this
importance to give a weight value to the feature, thus letting the neural network select
important spatial regions or directly predict the most relevant spatial locations.

Channel and Spatial Fusion Attention believes that channel attention and spatial
attention should not be simply connected in series or parallel but should interact with
information across dimensions. This paper uses the channel split module to divide the
input feature channel equally into two parts: one part for channel attention calculation
first. The dimension c1 × h × w (h, w, and c1 represent height, width, and number of
channels) of the input feature map needs to be reduced to c1 × 1× 1, which is achieved
through global pooling. Then, the obtained dimension c1 × 1× 1 is integrated into the fully
connected layer to learn the importance of each channel. Finally, after being activated by
the sigmoid function, different weights are assigned to the channels of the input feature
map through the scale operation. The other part for the spatial attention calculation first
performs average pooling and maximum pooling separately from the channel dimension
and adjusts the dimension from c2 × h× w reduced to 1× h× w, and then, they merge to
obtain a convolutional layer with a channel number of 2 (2× h× w). A spatial attention
with a channel number of 1(1× h× w) is obtained through another convolution. Finally,
after being activated by the sigmoid function, different weights are assigned to the spatial
dimensions of the input feature map through the scale operation. Then, a concat module
is used to connect the two parts after the calculation, and finally, a channel shuffle [34]
module is used for information interaction. The structure of Channel and Spatial Fusion
Attention is shown in Figure 1.

Currently, convolutional neural networks are composed of multiple blocks with the
same structure. ResNeXt [35] and MobileNet [36] propose that depthwise separable convo-
lution and group convolution achieve a trade-off between precision and computational cost.
However, these networks are not fully used 1 × 1 convolution (referred to as pointwise
convolution in MobileNet) because 1 × 1 convolution requires considerable complexity.
In order to solve this problem, the most direct method is to add group convolution to the
1 × 1 convolution, which will significantly reduce the computational complexity of the
convolution.

Of course, group convolution also has certain disadvantages because general con-
volutions always do full channel convolutions on input feature maps, a channel-dense
connection method. However, group conversion is a channel-sparse connection method.
Group convolution groups different feature maps of the input layer and, then, uses different
convolution kernels to convolve each group. The feature maps between different groups
do not communicate with each other, therefore reducing the network feature extraction
ability. As shown in Figure 2a, there are two group convolutions, GConv1 and GConv2.
The pink channel always processes only the pink information, and the yellow and green
parts are the same. Obviously, the output of a group is only related to the input within the
group, which causes the information flow between channel groups to be unable to flow
and weakens the information representation.
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In order to solve the side effects caused by group convolution, the channel shuffle
was proposed to help information flow between channels. As shown in Figure 2b, its
meaning is to “reorganize” the feature map after the group convolution, which can ensure
that the input of the group convolution to be used next comes from different groups so
that information can flow between different groups. This process is not random but rather
“evenly disrupted”.

The channel shuffle operation is shown in Figure 3. Assume a convolution layer with
a group of g whose output has g × n channels; first, reshape the output channel dimension
to (g; n), then perform a transpose operation, and finally, flatten it as the input for the next
layer. In addition, the channel shuffle is differentiable, which means it can be embedded in
the network structure for end-to-end training.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. Structural diagram of Channel Shuffle: (a) Group convolution; (b) Group convolution 
with Channel Shuffle (One color represents a group convolution). 

In order to solve the side effects caused by group convolution, the channel shuffle 
was proposed to help information flow between channels. As shown in Figure 2b, its 
meaning is to “reorganize” the feature map after the group convolution, which can ensure 
that the input of the group convolution to be used next comes from different groups so 
that information can flow between different groups. This process is not random but rather 
“evenly disrupted”. 

The channel shuffle operation is shown in Figure 3. Assume a convolution layer with 
a group of g whose output has g×n channels; first, reshape the output channel dimension 
to (g; n), then perform a transpose operation, and finally, flatten it as the input for the next 
layer. In addition, the channel shuffle is differentiable, which means it can be embedded 
in the network structure for end-to-end training. 

 
Figure 3. Channel shuffle operation diagram (One color represents a group convolution and 
different shades of the same color represent a channel) . 

2.2. Improved YOLOv5 Network Structure 
Glenn Jocher released YOLOv5 [37] in 2020. This paper adds an attention mechanism 

based on the YOLOv5 network structure. The YOLOv5 network comprises multiple 
modules, which can be divided into the backbone network for extracting basic features of 
the target and the YOLO head for further enhancing features and making predictions. The 
backbone network of YOLOv5 is composed of the CSPDarknet53 network composed of 
multiple residual convolution blocks, which is part of the whole model with the largest 
amount of parameters, and its ability to extract features is related to the detection 
precision of the whole model. The improvement of YOLOv5 in this paper is to replace the 
Bottleneck module in the CSP structure with the attention module. The improved 
YOLOv5 network structure is shown in Figure 4. 

Figure 3. Channel shuffle operation diagram (One color represents a group convolution and different
shades of the same color represent a channel).

2.2. Improved YOLOv5 Network Structure

Glenn Jocher released YOLOv5 [37] in 2020. This paper adds an attention mechanism
based on the YOLOv5 network structure. The YOLOv5 network comprises multiple
modules, which can be divided into the backbone network for extracting basic features of
the target and the YOLO head for further enhancing features and making predictions. The
backbone network of YOLOv5 is composed of the CSPDarknet53 network composed of
multiple residual convolution blocks, which is part of the whole model with the largest
amount of parameters, and its ability to extract features is related to the detection precision
of the whole model. The improvement of YOLOv5 in this paper is to replace the Bottleneck
module in the CSP structure with the attention module. The improved YOLOv5 network
structure is shown in Figure 4.

YOLOv5 uses the SPP [38] (Spatial Pyramid Pooling) module, FPN [39], and PANet [40]
module to extract features from three effective feature layers. SPP uses pooling at scales
13 × 13, 9 × 9, and 5 × 5 to increase the receptive field. Based on the feature pyramid,
PANet performs repeated upsampling and downsampling of feature maps of different
sizes, changing the original addition operation of PAN into connect, aiming to enhance the
diversity of features further, improve the robustness of the model, and thereby improve the
ability of the network to extract information. Finally, YOLOv5 uses three different scale
anchor boxes to limit the range of prediction objects, thereby achieving the purpose of
multiscale learning.
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3. Model Analysis
3.1. Data Set

The experimental dataset was from the Target Recognition Group of China Underwater
Robot Professional Competition (URPC), with 6575 underwater target images in four
classifications, as shown in Figure 5, including echinus, scallop, starfish, and holothurian.
The dataset distribution is shown in Figure 6. Figure 6a shows the distribution of the
number of detected targets. It can be seen from the figure that there are four classifications
in total. The vertical coordinate represents the number of labelled images for a certain class.
Therefore, 7899 echini, 1889 scallops, 2922 starfishes, and 1768 holothurians were labelled
in the training set, totaling 14,478 target objects. All sample images were labelled using
the Labelimg data label tool in the PASAL VOC sample set format, saved as the xml file,
and then transformed to the yolo label format, which was saved as the txt file. Figure 6b
shows the distribution of the size of the label box. As can be seen from the figure, the
scale of the detected target was relatively wide, and the proportion of small targets was
relatively large; Figure 6c shows the distribution of the center points of the normalized
label box. The coordinate axes 0 to 1 represented the position of the normalized label box
center coordinate points in the image. The center point coordinates in the figure covered the
entire image from 0 to 1. It can be seen that the distribution range of the center coordinates
(x, y) of the dataset were relatively wide, conforming to the characteristics of the random
distribution of underwater target features in the image. Figure 6d shows the height and
width distribution of the normalized label box. It can be seen that the distribution was
concentrated on smaller values, and the distribution was most dense when the proportion
reaches 0.0 to 0.2, indicating that the proportion of the target in the image was relatively
small. In order to enable the designed model to learn the dataset fully, this experiment
selected 70% of them as the training set and 30% as the test set. The training set contained
4538 images, and the test set contained 2037 images.
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3.2. Evaluation Metrics

There are two types of results for detecting underwater targets; one is to detect the
correct target, and the other is to detect erroneous interfering objects, such as reefs. This
paper used precision (P), recall (R), average precision (AP), and mean average precision
(mAP) as evaluation metrics, as shown in Equation (1). IoU (Intersection over Union) was
the ratio of the overlapping area and the combined area of the target predicted position
(Boxr) and the practical target position (Boxt), which was used to measure the precision of
target positioning. When IoU (experimental setting of 0.5) exceeded the set threshold value,
the detection model considered Boxr a target location and marked it as TP. Otherwise, it
was a non-target location, and the model marked it as FP.

IoU = (Boxt ∩ Boxr)/(Boxt ∪ Boxr), (1)

The precision (P) formula is as follows:
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P =
TP

TP + FP
, (2)

in the formula, TP (True Positive) represents the number of samples that correctly detect
underwater targets; FP (False Positive) represents the number of samples that incorrectly
detect underwater targets. The recall (R) formula is as follows:

R =
TP

TP + FN
, (3)

FN (False Negative) represents the number of samples where the target has not been
detected. The mean average precision (mAP) formula is as follows:

mAP =
∑c

j=1 AP

C
, (4)

AP =
∑n

i=1 P
N

, (5)

The AP value specifically represents the average value of the correct probability of
prediction for each class. N represents the total number of images containing target features,
P represents the probability of correct prediction of target features in each image, and ∑
represents the sum of correct prediction probabilities for each target. mAP is the average of
AP for all classes.

3.3. Model Training

Due to significant changes made to the YOLOv5 network model, it was necessary
to validate the convergence of three main loss functions, including anchor box loss (Box),
confidence loss (Objectness), and class loss (Classification). The situation after iterating 500
epochs is shown in Figure 7.
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From Figure 7, it can be seen that when training 500 epochs, Box, Objectness, and
Classification could converge stably, with errors below 0.06, in the corresponding validation
set (Val) loss function. The error of the three loss functions was also below 0.06, indicating
that the model could stably converge.

4. Experimental Results

Experiments have verified the feasibility of improving the YOLOv5 target detection
algorithm by adding an attention mechanism. The experimental results show that this
method can improve the precision of target detection in complex underwater environments.

4.1. Experimental Environment

The underwater target detection dataset is divided into a training set and a test set in
a 7:3 ratio. The basic parameter settings are shown in Table 1.

Table 1. Hyperparameter settings for network training.

Training Epochs Batch Size Learning Rate Weight Decay Momentum

500 16 0.01 0.005 0.9

The hardware environment of this experiment uses Intel (R) Core (TM) i9-11950H,
CPU@2.60GH, and NVIDIA RTX A3000 with 32 G of memory. The programming uses
Python 3.9. The model is optimized using the SGD (stochastic gradient descent) method.
The network designed in this paper is trained and learned using a deep learning framework
based on Pytorch. During the training process, the number of images per batch is 16, and
the model is circulated through 500 training epochs in the dataset. The initial learning
rate is set to 0.01, the weight decay is set to 0.0005, and the SGD momentum is set to 0.9.
The mean average precision of underwater target detection is the evaluation metric for the
model training results.

4.2. Ablation Experiment

In order to ensure the randomness of the experiment, 1110 images were randomly se-
lected from the testset to test the YOLOv5 model and the improvement points of this paper.
YOLOv5 represents that only the YOLOv5 model is used for experiments, YOLOv5+SE
represents adding the SE attention mechanism to the YOLOv5 model, YOLOv5+CBAM rep-
resents adding the CBAM attention mechanism to the YOLOv5 model, and YOLOv5+CSFA
represents adding the attention mechanism proposed in this paper to the YOLOv5 model,
which fuses the channel attention and spatial attention. The test results of the above model
are shown in Table 2 and the precision recall curve is shown in Figure 8.

As can be seen from Table 2, the precision of the YOLOv5 model is 91.2% while the
precision of the model designed in this paper is 94.2%. The precision has improved, but the
recall has decreased by 1.1 percentage points. Due to the addition of the model’s channel
attention mechanism and spatial attention mechanism and the increasing network layers,
when learning similar targets to the bottom layer of the neural network, the feature differ-
entiation is not large, resulting in the target being detected, but the class was incorrectly
detected, leading to a reduced recall. The mean average precision is 0.7 percentage points
higher than the YOLOv5, proving the improved model’s effectiveness.

Table 2. Improvement point ablation experiment.

Model P (%) R (%) mAP@0.5 (%)

YOLOv5 91.2 88.9 93.5
YOLOv5+SE 92 87.2 93.7
YOLOv5+CA 93 87.7 93.1

YOLOv5+CBAM 91.1 89.6 92.9
YOLOv5+CSFA(ours) 94.2 87.8 94.2
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4.3. Comparison with Other Models

In order to objectively validate the effectiveness of the model, the YOLOv5+CSFA
model and recent popular target detection models are compared on the dataset used in this
paper. The results are shown in Table 3.
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Table 3. Comparison results with other mod.

Model AP
(%, Holothurian)

AP
(%, Echinus)

AP
(%, starfish)

AP
(%, Scallop) mAP@0.5 (%)

RCNN [12] 68.2 80.4 78.9 69.3 74.2
Fast RCNN [13] 70.5 82.3 81.4 71.4 76.4

Faster RCNN [14] 74.1 85.5 84.4 75.2 79.8
YOLOv3 [31] 73.3 84.6 83.3 74.4 78.9

YOLOv3+SENet [29] 78 89.2 87.1 78.5 83.2
YOLOv4 [41] 78.2 90.7 86.4 78.3 83.4
YOLOv5 [37] 80 93.1 90.9 80.4 86.1
YOLOv6 [42] 78.4 93.5 91.5 78.8 85.5
YOLOv8 [43] 82.3 93.6 91.9 81.5 87.3

YOLOv5+CSFA(ours) 82.8 93.9 91.8 81.6 87.5

As can be seen from Table 3, compared to the popular two-stage target detection
network, the mean average precision of the method proposed in this paper shows a
significant advantage, which is 7.7 percentage points higher than the mAP of Faster RCNN.
Compared with previous single-stage network YOLO (v3, v4) series models, the mean
average precision is higher, which is 4.1 percentage points higher than the mAP of YOLOv4.
Compared with the YOLOv5 underwater target detection network model in the same
experimental environment and dataset, the mean average precision is 1.4 percentage points
higher. Compared with the single-stage network YOLO (v6, v8) series models proposed
in the past two years, the mean average precision is higher, which is 2 percentage points
higher than the mAP of YOLOv6 and 0.2 percentage points higher than the mAP of YOLOv8,
proving that the model has high precision in underwater target detection.

Figure 9 compares the precise recall curve between the improved YOLOv5 model and
the YOLOv5 model, the YOLOv6 model, and the YOLOv8 model. As can be seen from
the figure, the improved model achieves better detection results for all classes of targets.
The AP value of the echinus reaches 90.5%, that of the starfish reaches 91.8%, that of the
holothurian reaches 82.8%, that of the scallop reaches 81.6%, and the mAP value reaches
87.5%.

4.4. Grad-CAM Visualization

The cross-dimensional interaction provided by the channel and spatial fusion attention
is assumed to facilitate the network learning for more meaningful internal representations
of the images. The sample visualization of the Grad-CAM [44] technology was used to
verify this statement, which visualizes the gradients of the top-class prediction concerning
the input image as a colored overlay, as shown in Figure 10. Grad-CAM inputs the image
into CNN, propagates it forward to obtain the first element (the last layer’s output feature
map), and obtains the model output’s class logits (without softmax mapping). Then, it uses
the class logit to be the certitude for backpropagation to obtain the gradient of the final
layer of the output feature map concerning this class score. Finally, it calculates the average
value of the spatial dimension of the feature map gradient to obtain the second element: a
weight related to the class information and consistent with the number of channels in the
feature map.

As shown in Figure 11, the channel and spatial fusion attention can capture tighter
and more relevant bounds on the image of the underwater target detection dataset. In
certain cases, when using the channel and spatial fusion attention, YOLOv5 can identify
classes that the baseline model fails to predict correctly. These visualizations are beneficial
for understanding the inherent ability of the channel and spatial fusion attention, which
captures richer and more discriminative contextual information for specific target classes.
This property of the channel and spatial fusion attention is extremely favourable and
helpful in improving the performance of deep neural network architectures compared to
their baseline counterparts.
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and YOLOv5+CSFA.

4.5. Analysis of Detection Results

In order to more intuitively experience the detection results of the model, we randomly
select 4 more complex images from the dataset and compare them with the YOLOv5 model.
The selected original image is shown in Figure 12.
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As can be seen from Figure 12, echini, scallops, starfishes, and holothurians are
relatively blurred in the water and highly fused with the background, making detection
difficult. Figure 13 shows the detection results of the YOLOv5 model.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 21 
 

 

As can be seen from Figure 12, echini, scallops, starfishes, and holothurians are 
relatively blurred in the water and highly fused with the background, making detection 
difficult. Figure 13 shows the detection results of the YOLOv5 model. 

 
Figure 13. YOLOv5 Underwater Target Image Detection Results. 

The YOLOv5 model correctly detects all target marine organisms. Figure 14 shows 
the detection results of the YOLOv5+CSFA model. By comparing the underwater target 
detection results of YOLOv5+CSFA designed in this paper with YOLOv5, it can be seen 
that the predicted values of YOLOv5+CSFA next to the prediction box are mostly higher 
than the YOLOv5 model, which proves the effectiveness of the improved model. 

 
Figure 14. YOLOv5+CSFA Underwater Target Image Detection Results. 

For the detection results of fuzzy and small targets, the comparison with YOLOv5 is 
shown in Figures 15 and 16: 
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The YOLOv5 model correctly detects all target marine organisms. Figure 14 shows
the detection results of the YOLOv5+CSFA model. By comparing the underwater target
detection results of YOLOv5+CSFA designed in this paper with YOLOv5, it can be seen
that the predicted values of YOLOv5+CSFA next to the prediction box are mostly higher
than the YOLOv5 model, which proves the effectiveness of the improved model.
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For the detection results of fuzzy and small targets, the comparison with YOLOv5 is
shown in Figures 15 and 16:
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The left image in Figure 15 shows the detection results of YOLOV5, and the right
image shows the detection results of YOLOV5+CSFA. It can be seen from the figure that
YOLOv5+CSAF has detected the echinus that YOLOv5 failed to detect.

The left image in Figure 16 shows the detection results of YOLOv5, and the right
image shows the detection results of YOLOv5+CSFA. The above image contains images of
small underwater organisms. It can be seen that the right image has detected sea urchins that
the left image failed to detect, and most predicted values are higher than those in the left. It has
been proven that YOLOv5+CSFA is effective in detecting fuzzy and small underwater targets.

5. Conclusions

This paper improves the currently popular single-stage network YOLOv5 and applies
it to the field of underwater target detection. In this paper, experiments were conducted on
echinus, scallop, starfish, holothurian, and other difficult-to-capture undersea organisms,
verifying the high precision of the detection model and expanding the application scenarios
of underwater target detection algorithms. This paper compares the YOLOv5+CSFA
model with popular target detection models in recent years, and the results show that the
designed YOLOv5+CSFA model has a higher precision than other models. This paper
conducted ablation experiments on the improved strategy. The experimental results showed
that, compared to other attention mechanisms, the attention mechanism proposed in this
paper that fuses the channel attention and spatial attention improves the target detection
algorithm more significantly. The experimental results show that the detection results of
the YOLOv5+CSFA model in complex underwater environments have been improved. The
improved model is better than the general target detection model and is more robust in
complex underwater environments.

Due to the complex underwater environment, data collection is relatively difficult,
resulting in a slightly insufficient quantity and quality of the dataset. Therefore, part of our
future work will focus on collecting datasets and improving their quality. The research on
underwater image enhancement and restoration algorithms is one of the future research
directions. Underwater target detection technology is the foundation and guarantee for
achieving autonomous grasping operation of underwater manipulators. Therefore, another
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future research direction is to combine underwater target detection technology with deep
reinforcement learning of underwater robotic arms to achieve autonomous grasping of
underwater manipulators and conduct water tank experiments to verify grasping accuracy.
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