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Abstract: The limited number and under-representation of side-scan sonar samples hinders the
training of high-performance underwater object detection models. To address this issue, in this paper,
we propose a diffusion model-based method to augment side-scan sonar image samples. First, the
side-scan sonar image is transformed into Gaussian distributed random noise based on its a priori
discriminant. Then, the Gaussian noise is modified step by step in the inverse process to reconstruct a
new sample with the same distribution as the a priori data. To improve the sample generation speed,
an accelerated encoder is introduced to reduce the model sampling time. Experiments show that
our method can generate a large number of representative side-scan sonar images. The generated
side-scan sonar shipwreck images are used to train an underwater shipwreck object detection model,
which achieves a detection accuracy of 91.5% on a real side-scan sonar dataset. This exceeds the
detection accuracy of real side-scan sonar data and validates the feasibility of the proposed method.

Keywords: diffusion model; sample augmentation; object detection; side scan sonar

1. Introduction

As humans continue to exploit marine resources, more and more detection techniques
are being applied to underwater object detection [1], maritime search [2], marine engi-
neering [3,4], and archaeological excavation [5]. Among these technologies, side-scan
sonar systems are widely used for underwater object detection due to their low cost and
high sweep and resolution [6]. Deep learning-based methods for object detection [7] have
achieved performance that far surpasses traditional methods on a variety of public datasets.
However, deep learning, especially deep convolutional neural network (DCNN) techniques,
require a large number of representative samples to train object detection models [8]. Due to
the high measurement cost and limited number of maritime events, the number of samples
of side-scan sonar images is small and weakly representative. This limits the development
of DCNN for underwater object detection.

To address the limited number of side-scan sonar image samples, some researchers
have used image feature extraction and image transformation enhancement methods to
increase the number of samples [9,10]. However, these generated samples are not suffi-
ciently representative as they ignore variations in imaging conditions and environments.
While solving the under-sample size problem, it does not help improve the accuracy of
underwater object recognition, and the geometric transformation is prone to overfitting
the recognition model. Additionally, many researchers have used style transfer and optical
images to synthesize side-scan sonar images [11–14]. However, direct style transfer using
optical images does not consider the side-scan sonar imaging mechanism, resulting in
poorly represented single-style generated samples and limited improvement in object detec-
tion model performance. Huang et al. [15] proposed a comprehensive sample augmentation
method for side-scan sonar targets, backgrounds, textures, resolutions, and noise using a
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wreck as an example. However, this method is tedious and requires a lot of time for data
collection and cleaning. In addition to sample augmentation using optical images and style
transfer methods, various deep generation models have also achieved better results in the
field of sample augmentation [16,17]. Generative adversarial networks (GAN) [18], autore-
gressive models [19], normalizing flows [20], and variational auto-encoders (VAEs) [21]
have generated numerous high-quality image samples. Bore et al. [22] implemented a
side-scan sonar map simulation for a specific measurement environment using conditional
adversarial generative networks. However, this method requires measured seafloor topog-
raphy at the corresponding location and side-scan sonar images for training the generative
model, which is a demanding condition to implement. Jiang et al. [23] proposed a semantic
image synthesis model based on adversarial generative networks that can quickly generate
a completely new image based on a hand-drawn semantic segmentation map and any real
side-scan sonar target image. However, the generated images are limited in terms of style
and representation due to the limitations of the masks.

With the advancement of correlated iterative generation models, denoising diffu-
sion probability models have shown their ability to produce samples comparable to
GANs [24,25]. Diffusion models [26] aim to transform the prior data distribution into
random noise that matches the Gaussian distribution and then gradually correct the trans-
formation to reconstruct a completely new sample with the same prior data distribution.
However, this requires several iterations to generate a high-quality sample. For denoising
diffusion probabilistic models (DDPM) [27], its generation process approximates the reverse
of the forward diffusion process and generally requires thousands of iterations. Diffusion
models tend to take more time in sample generation compared to GANs. For this reason,
we propose a side-scan sonar sample generation method based on the denoising diffusion
implicit models (DDIM) [28] generation model with the introduction of an accelerated
encoder [29] in this paper. This reduces the number of sampling steps in the diffusion
model and accelerates image generation.

2. Methods
2.1. Diffusion Mode

The diffusion model [26] gradually changes the image into a Gaussian noise image
by defining a forward process that continuously adds noise and then gradually denoises
the Gaussian noise by defining an inverse process to obtain the sampled image. Both
processes are defined in DDPM as a parametrized Gaussian Markov chain [27]. In the
forward sampling process, the training data is assumed to satisfy the distribution x0 ∼ q(x).
The forward process sequentially adds Gaussian noise to the samples sequentially at
T time steps.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βt I) (1)

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1) (2)

The variance used for each step is {βt ∈ (0, 1)}t
t=1 denotes the learning variance for

the different steps that satisfy β1 < β2 < . . . < βT . Eventually, if T is large enough, the final
obtained xT then completely loses the features of the original data and becomes a random
noise [25].

Its inference distribution depends on the edge distribution q(xt|x0) , rather than acting
directly on the joint distribution q(x1:T |x0) . This indicates that DDPM, a hidden variable
model, can have many inference distributions to choose from, as long as the inference
distribution satisfies the edge distribution. For this reason, in the DDIM [28] the inference
distribution is redefined in:

qσ(x1:T |x0) = qσ(xT |x0)
T

∏
t=2

q(xt−1|xt, x0) (3)
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At this point qσ(xT |x0) = N (
√

αTx0, (1− αT)I) , and for all t ≥ 2, to satisfy.

qσ(xt−1|xt, x0) = N (xt−1;
√

αt−1x0 +
√

1− αt−1 − σt2 xt −
√

αtx0√
1− αt

, σ2
t I) (4)

where the variance σ2
t is a real number, the inference distribution qσ(x1:T |x0) defined in

Equation (3) has satisfied the marginal distribution qσ(xt|x0) = N (xt;
√

αtx0, (1− αt)I) [28],
and the mean value of qσ(xt−1|xt, x0) is also defined as a combined function dependent
on x0 and xt, at which point the generation process can be optimized according to the
optimization method in DDPM.

The diffusion process is adding noise to the data and the inverse process is a denoising
process. If the true distribution of each step of the inverse process q(xt−1|xt) is known,
then starting from a random noise xT ∼ N (0, I) and gradually denoising it will generate a
true sample, so the inverse process is also the process of data generation.

Based on the above principles, the optimization process is constructed using a neural
network, using the neural network εθ to predict the noise, and then, according to the form
of qσ(xt−1|xt, x0) , in the generation phase, the generation can be divided into three parts,

where one is generated by the predicted x0 = xt−
√

1−αtεθ(xt ,t)√
αt

, the second is generated by

the part pointing to xt =
√

1− αt−1 − σ2
t .εθ(xt, t), and the third is the random noise σtεt; at

this time, εt is the noise not related to xt, and then from the predicted x0, xt and the random
noise σtεt can be generated from xt xt−1:

xt−1 = x0 + xt + noise

=
√

αt − 1
(

xt−
√

1−αtεθ(xt ,t)√
αt

)
+
√

1− αt−1 − σ2
t .εθ(xt, t) + σtεt

(5)

During the generation process, variations in the random noise σtεt introduce signifi-
cant uncertainty in the target generation. At this point, εt is a noise unrelated to xt. The
difference in the value taken for σt determines the value of the random noise.

σ2
t = η.

√
(1− αt−1)/(1− αt)

√
(1− αt/αt−1) (6)

When η = 1, at this time, σ2
t = βt, and the generation process at this time is affected by

random noise; when η = 0, at this time there is no random noise in the generation process;
it is a deterministic process once the initial random noise xT is determined, and there is no
random noise in the generation process, and then the generation result can be determined.

2.2. DPM-Solver

In the generative process, the model sampling has to start from pure noise and then
keep denoising step by step to finally obtain the target image. DDPM needs to sample
1000 steps to get a higher quality image [27]. The DDIM also needs to sample at least 50 to
100 steps to obtain a higher quality image [28] to increase the sample generation speed. In
this paper, the DPM-Solver is integrated into DDIM. The DPM-Solver [29] is an efficient
solver specifically designed for diffusion models, which does not require any additional
training and can obtain very high quality samples in only 10 to 15 steps, which can greatly
improve the model generation speed.

DDIM does not have an explicit forward process in the training process to this point,
and a shorter sampling step can be defined compared to DDPM [28]. That is, a subse-
quent τ = [τ1, τ2, . . . , τS] of length S is sampled from the original sampling sequence
[1, . . . , T]. The forward generation process of x is defined as a Markov chain and satisfies
q(xτi

∣∣x0)N (xt;
√

ατi x0, (1− ατi )I) . The generation process is shown in the Figure 1.
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Then the generative process can also be replaced by a reverse Markov chain of subse-
quences τ. The generative process then becomes

xτi−1 =
√

ατi − 1

(
xτi −

√
1− ατi εθ(xτi , τi)√

ατi

)
+
√

1− ατi−1 − σ2
τi .εθ(xτi , τi) + στi ε (7)

The DPM-Solver [21] is based on the semi-linear structure of the diffusion model and
by computing the linear terms in the ODE [30] in an exact and analytic way,

dxt

dt
= f (t)xt +

g2(t)
2σt

εθ(xt, t) (8)

xt = e
∫ t

s f (τ)dτxs +
∫ t

s

(
e
∫ t

s f (r)dr g2(τ)

2στ
εθ(xτ , τ)

)
dτ (9)

xt is the exact solution at the time of t, and the remaining integral term is a com-
plex integral with respect to time. This integral can be computed to compute all known
terms as much as possible, approximating only the neural network part and minimizing
discretization errors by the maximum procedure of

xti−1→ti =
αti

αti−1

x̃ti−1 − αti

k−1

∑
n=0

ε̂θ
(n)(x̂λti−1

, λti−1)
∫ λti

λti−1

e−λ

(
λ− λti−1

)n

n!
dλ +O(hk+1

i ) (10)

Among them, λt = log(αt/σt), and the derivation of DPM-solver proves that DDIM
corresponds to the first-order ODE solver of diffusion ODE [30,31], while the DPM-Solver
gives the corresponding higher-order solver that allows about 10 steps of sampling to
reach a sampling comparable to the 1000 steps of DDPM. To improve the model generation
speed, we use the third-order form of the DPM-Solver to obtain the generation results of
the diffusion model.

2.3. Model Structure

The diffusion model uses the UNet model [32,33] structure to implement the process of
diffusion through the encoder–decoder structure. The model builds the network structure
by using the Resnet Block module [34] and uses the attention mechanism to regulate the
model output. At the encoder structure, the model uses a convolutional model for down-
sampling. In the structure of the decoder, upsampling is performed using the interpolate
function to amplify the details of the image with reduced image information loss. The
network structure of the diffusion model is shown in Figure 2.
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Figure 2. Network structure of diffusion model.

The Resnet Block1 module uses a typical residual structure and is used for feature
extraction, while the Resnet Block2 module is used for feature fusion. The model loses
image information and decreases image resolution when downsampling, and then allows
the low-resolution image containing high-level abstract features to become high-resolution
while retaining the high-level abstract features when upsampling and then does a concate-
nate operation with the high-resolution image of the low-level surface features on the left
side, thus retaining more dimensional information. However, when doing fusion in the
Resnet Block2 module, the dimensionality of the module input feature map and the feature
map after two convolutions are different, so it is necessary to perform dimensionality
reduction in the shortcut branch 1 × 1 convolution structure. The schematic diagram of the
module structure is shown in the Figure 3.
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In the Resnet Block, the output of the residual network is expressed as

Hres(x) = x + F(x) (11)

Here, x is the input of the residual module, F(x) is the output of the residual backbone
network, and Hres(x) is the output of the residual module. During downsampling and
upsampling, the attention mechanism is added after the Resnet Block, and the resulting
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attention map is superimposed with the backbone feature map in a similar manner to
residual learning, and the output at this point can be represented as follows.

Hatt(x) = M(Hres(x)) + Hres(x) (12)

M(Hres(x)) is the output result of the attention module, at which time the effective
features in the output feature map can be enhanced by superimposing Hres(x) and finally by
superimposing the attention module in different downsampling and upsampling processes
to gradually improve the expressive power of the network.

During model training, to better predict the noise, the model computes the error
between the output noise of the diffusion model and the true noise as loss and updates the
parameters in the UNetModel structure by backpropagation.

Loss(θ) =
(

ε− εθ(
√

αtx0 +
√

1− αtε, t)
)2

(13)

The Gaussian distribution εθ is the noise predicted by the neural network model for
the generative process of model denoising, and the goal of the diffusion model training is
to learn the mean squared error between Gaussian noise ε and εθ .

2.4. Model Training and Sample Generation Process

The goal of diffusion model training is to learn the inverse of the forward process,
i.e., to train the probability distribution pθ(xt−1|xt) . By traversing backward through
the training process, new data samples can be regenerated x0. The overall training and
generation process of the model is shown in the Figure 4.
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Figure 4. Schematic diagram of the training and generation process of the diffusion model.

In the training process, the network performs model update by predicting Gaussian
noise, and the generation process is the inverse process of training. Firstly, a noisy image
conforming to the Gaussian distribution is randomly generated, and the diffusion model
trained with discrete time tags is wrapped into a diffusion generation model accepting
continuous time series as input by the DPM-Solver accelerated encoder, and a fast decoder
for the diffusion model is built, after which, by step-by-step denoising optimization, image
details are gradually added, and then a high-quality target image is generated.
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3. Experimental Validation

In the process of side-scan sonar underwater object detection, factors such as image
quality, target shadow, target background (topography and terrain), noise, and resolution
can affect the accuracy of object detection. To verify the performance of the diffusion model
in side-scan sonar sample augmentation, we designed a variety of comparison experiments.
A diffusion model training set with three types of targets: shipwreck, container and pipe are
built. The backgrounds for each class of targets were made as diverse as possible, containing
different terrain and landform information. The training set samples contain various noise
and resolution information. A total of 314 wrecks, 98 containers, and 503 pipelines were
collected, part of which is shown in Figure 5. The hardware configuration used for model
training was an Intel® Xeon® E5-2650 v4@2.20 GHz CPU and a GeForce GTX 1080Ti GPU.
The software environment used is Pytorch 1.6.0, Cuda 10.1 and Python 3.7 on a Windows
10 operating system.
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3.1. Evaluation Metrics

Image generation mainly evaluates the quality of generated images in terms of sharp-
ness, diversity of features, and structural similarity. In this paper, we choose to evaluate the
quality of generated images in terms of Fréchet inception distance (FID), kernel maximum
mean discrepancy (MMD), peak signal-to-noise ratio (PSNR), learned perceptual image
patch similarity (LPIPS), and structural similarity (SSIM). FID is used to calculate the dis-
tance between the real image set and the synthetic image set in the feature space. Firstly,
the features of the two images are extracted separately using the inception network trained
on the public large data set, then the feature space is modeled using the Gaussian model,
and finally the distance is calculated based on the mean and covariance of the Gaussian
model. MMD is based on the statistical test of maximum mean squared difference, which
measures the similarity between two feature distributions by mapping the set of real images
and the set of synthetic images to a kernel space with a fixed kernel function and then by
computing the mean difference between the two distributions. PSNR can calculate the
mean squared error between two images and then calculate the peak SNR to compare
the training set and generated images for evaluation. SSIM is structurally similar, which
defines structural information from the viewpoint of image composition as a property that
reflects the structure of objects in a scene independently of luminance and contrast and
models distortion as a combination of three different factors: luminance, contrast, and
structure. The mean is used as an estimate of luminance, the standard deviation as an
estimate of contrast, and the covariance as a measure of structural similarity. LPIPS is used
to measure the difference between two images. The metric learns the inverse mapping of
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the generated image to the real image, forcing the generator to learn the inverse mapping
to reconstruct the real image from the fake image and prioritizing the perceived similarity
between them, and LPIPS is more consistent with human perception. In this case, the value
of SSIM ranges from 0 to 1, and the larger it is, the more similar the images are. The SSIM
value is one if the two images are exactly the same. FID, MMD, and LPIPS are all smaller
and better. The larger the PSNR value, the smaller the difference between the two images
and the better the quality of the generated images.

3.2. Experimental Design and Image Generation

The image size set during the training of the diffusion model has a large impact on
the image generation quality. The larger the image size, the more resources are consumed
to train the model, and at the same time, the model needs a larger training set to learn
more information. In order to verify the quality of the generated samples of the model
under different image sizes, we set three different generated sample sizes during the
model training, which are 64 × 64, 128 × 128, and 256 × 256. The model is saved every
5000 iterations during training and the corresponding training parameters are set for
different training set model classes and different generation sizes. The parameters of each
model are set as listed in Table 1.

Table 1. Diffusion model training parameters settings.

Group Training Set Category Batch Size Image Size

T1 Shipwreck, Container, Pipeline 40 64 × 64

T2 Shipwreck 11 128 × 128

T3 Shipwreck 3 256 × 256

The GPU used in this training process is GeForce GTX 1080Ti, and because of the
limited computing power of the graphics card, it is necessary to reduce the number of
batches in training when training the large-size sample model. At the same time, the
large-size sample generation needs to contain more images with more details and requires
more iterations to ensure the quality of the generated samples.

Sample generation is performed using the model trained by T1, and the generation
size of the image is 64 × 64, and the generation target category contains wrecks, containers,
and pipelines. Some of the generated samples are shown in Figure 6.
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Figure 6. This is a demonstration of the effect of multi-class image generation using the T1 model
((a) is the generated image of a container, (b) is the generated image of a pipe, and (c) is the generated
image of a shipwreck).

As can be seen from Figure 6, the generated samples and the real side-scan sonar
images have extremely strong similarity in style despite the small size of the generated
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target. The morphology of the generated container samples is consistent with structural
information, the sizes are diverse, and the relative positions of the target shadows and water
column regions are consistent with side-scan sonar operation. For the generated pipeline
samples, the target background presents different topographic and geomorphological
information, the pipeline outline is clear, and the pipeline distribution on the seabed has
extremely strong continuity, which is consistent with the pipeline characteristics. The
resulting wreck samples are rich in the structure, attitude, and shape of the wreck targets.

Using the model trained by T2 for sample generation, the generation size is 128 × 128,
the generation category contains only wrecks, and the generated samples are shown in
Figure 7.
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Figure 7. This is a 128 × 128 size image of the shipwreck target generated using the T2 model.

As can be seen in Figure 7, the wrecks in the generated samples have richer texture
details. An enlarged view of the wreck target shows that the generated wreck has a detailed
structure with a reasonable distribution of shadow and the extremely strong correlation
between the structure and location of the target, which is consistent with the side-scan
sonar image mechanism.

Using the model trained by T3 for sample generation, the generation size is 256 × 256,
the generation category contains only wrecks, and the generated samples are shown in
Figure 8.
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As can be seen from Figure 8, compared with the 64 × 64 and 128 × 128 size wreck
targets, the 256× 256 wreck has richer local details and clearer contours, and has a very high
similarity to the real ship structure, and the geometric relationship between the generated
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targets and shadows is consistent with the side-scan sonar imaging mechanism. The image
background texture and noise are almost identical to the real side-scan sonar images, and
the generated samples at this time visually meet the requirements of side-scan sonar sample
augmentation.

3.3. Qualitative Analysis

Based on three sets of comparison experiments, FID, MMD, PSNR, SSIM, and LPIPS
are computed for different classes and different sizes of generated images, where SSIM
is better for values closer to 1, PSNR is better for larger values, and the remaining three
metrics are better for smaller values. The final experimental results are shown in Table 2.

Table 2. Experimental results of different size models on FID, MMD, PSNR, SSIM and LPIPS.

Model Target FID MMD PSNR SSIM LPIPS

T1

Shipwreck 138.56 0.2357 11.1764 0.1753 0.3942

Container 108.869 0.2324 10.0542 0.2512 0.426

Pipeline 102.656 0.2343 15.1054 0.208 0.2921

T2 Shipwreck 153.59 0.1194 10.6517 0.1769 0.4415

T3 Shipwreck 153.75 0.0601 10.3241 0.18114 0.4969

As can be seen from Table 2, the FID evaluation index, T1, as a small size generation
model, has higher generation quality. At the same generation size, the structure of contain-
ers and marine cables is simpler, and the distance between the real and synthetic images
in the feature space is smaller. In the MMD index, the MMD score gradually decreases
with the increase of the generated image size, which may be because the large size model
has longer training time and learns more feature distributions of the real data. In the
PSNR index, the container generation quality is better in T1. The scores of the remaining
categories and T2 and T3 are more similar, which also proves that the generative quality of
the generated images and the real images are more similar. In the SSIM score index, the
scores achieved by the three models are lower, which indicates that there is a big difference
in the structural similarity between the generated images and the real images. In the LPIPS
index, it can be found that the scores of the three models are more similar and all of them
are less than 0.5, which also indicates that there is a partial perceptual similarity between
the generated image and the original image, and the generation effect is consistent with
human perception.

3.4. Wreck Object Detection Model Training

To verify the feasibility and effectiveness of the generated samples in the training of
the underwater object detection model. We use the DDIM+DPM-Solver to train the wreck
sample generation model with a training set of 205 real side-scan sonar wreck samples. The
wreck generation models of two sizes, 256 × 256 and 128 × 128, are trained respectively.

After that, two wreck sample generation models are used for wreck sample image
generation. A total of 8765 augmented samples, 2971 of 256× 256 size and 5794 of 128 × 128
size, were selected for the training of the side-scan sonar wreck object detection model. The
test set is all real side-scan sonar images, which are not involved in the training process of
the diffusion model. The labels of the training set and test set samples are automatically
labeled by the neural network, and the control test groups are set as shown in Table 3.

For the above four groups of control experiments, the wreck object detection model
was trained using YOLOv5 network, where batch size = 16 and input image size = 256× 256.
The rest are the default settings of the network. To verify generalization on augmented data,
the model performance is evaluated using the object detection general metrics, prediction,
recall, and mAP, and the model training results are shown in Table 4 for each group.
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Table 3. Different control experimental settings.

Group Training Set Number Test Set Number

G1 SSS Images 205 SSS Images 81

G2 Generate images (128 × 128/256 × 256) 8765 SSS Images 81

G3 Generate image (128 × 128) 5794 SSS Images 81

G4 Generate image (256 × 256) 2971 SSS Images 81

Table 4. Results of different control tests.

Group Training Set Prediction Recall

G1 SSS Images 0.888 0.84

G2 Generate images (128 × 128/256 × 256) 0.93 0.851

G3 Generate image (128 × 128) 0.929 0.702

G4 Generate image (256 × 256) 0.922 0.755

For G1, the model was trained with real side-scan sonar images, and the model
accuracy is only 0.888 because of the limitation of the sample number, and the model
performance is limited because of the limited number of samples in the training set. G2
is the model trained with total generated images, and at this time, the prediction, recall,
and mAP all surpass the model trained with real SSS images, which verifies the feasibility
of the method in this paper and effectiveness of the method in this paper, but for G3
and G4, the generated images of two sizes are trained separately, and the accuracy of the
model decreases. The reason for this is that the generated data are automatically labeled
by the network, which may lead to inaccurate labeling, and the data volume of the two
sizes is small. Therefore, the model performance degrades when the two sizes are trained
separately, while the large amount of data compensates for the impact of labeling errors on
the model performance when they are trained together.

To further investigate the effectiveness of the wreck detection model trained by the
generated data, 80 real SSS images were selected for detection using the above four groups
of models, and the confidence of the detected wrecks was counted, and the results of the
comparison experiments for each group are shown in Figure 9.

Figure 9a shows the detection results of model G1. The model was trained using the
SSS wreck samples, and the detection accuracy of the model is more scattered, and the
false detection rate is the highest due to the insufficient number of samples and limited
representativeness of the training set, and the detection effect is poor. Figure 9b shows the
detection results of model G2. The confidence of the model was trained using the total
amplification samples for wreck detection and mostly stays around 0.9, with a relatively
concentrated target confidence and the lowest false detection rate, and the model performs
better. Figure 9c,d show the detection results of models T3 and T4; it is obvious that the
confidence detected by the remaining two groups of group models is relatively scattered,
and the confidence of detection is relatively low with a higher false detection rate. The
generalization and effectiveness of the shipwreck detection model obtained by training on
the total generated data is validated by comparison.
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Figure 9. This is the detection result of 80 images of unfamiliar shipwrecks using four sets of models
((a) shows the detection results using the G1 model, (b) shows the detection results using the G2
model, (c) shows the detection results using the G3 model, and (d) shows the detection results using
the G4 model).

4. Discussion

Deep-learning-based underwater object detection essentially involves extracting target
features from a large training set. In this paper, we use a diffusion model to generate
side-scan sonar images and perform the construction of a shipwreck detection model based
on the generated samples. Although the generated data is visually extremely similar to
the real data. However, we find that the amplified sample features (shape, pose, color,
size, etc., of the wreck) are extremely similar to the training data. The amplified sample
approximates a random combination between different features from multiple samples of
the training data. This ensures to some extent the rationality of the generated images and
enhances the diversity of the samples. In practical tasks, the larger the size of the generated
images, the more training sets and resources are required and consumed. Therefore, we
propose to build the corresponding generative model according to the actual requirements.
In the generation process, although we take accelerated sampling, the sample generation
speed of the diffusion model still needs to be further improved.

The generative process of the diffusion model starts from a pure noisy image and is
optimized by successive sampling of the model to finally generate the target sample. In the
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whole process, the generated images are affected by various factors, and the adjustment
model input, random noise, and sampling steps can affect the generation results, so we
hope to combine with the actual task when adopting our method, and we discuss the effects
brought by different influencing factors on the generated samples separately.

4.1. Difference between Different Sampling Steps

The diffusion model starts from a pure noisy image, and then continuously denoises
it step by step to finally obtain the target image. This process takes a lot of time. To this
end, different sampling steps are set for the DDIM and DDIM+DPM-Solver, respectively, to
compare the quality of generated images, and the generated samples are shown in Figure 10.
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Figure 10. This is the effect of different sampling methods on the quality of the generated images.

As can be seen from Figure 10, the targets generated by the DDIM+DPM-Solver are
more detailed and of higher quality targets than the DDIM at sampling steps 10 and 20.
The difference between the samples generated by the two methods gradually decreases
when the number of sampling steps exceeds 50. By comparison, it can be found that
sample generation can be accelerated using DDIM+DPM-Solver, providing the possibility
to generate a large number of side-scan sonar target samples.

4.2. Effect of Different Noise Inputs on Sample Generation

The diffusion model sampling starts from a pure noise image. Two different random
noises will produce different images, and a fused image will be generated by generating
a new noise by spherical linear interpolation of the two random noises. In Equation (5),
we can see that it σtεt represents the effect of random noise on the generation results, and
in Equation (6), we can change the value of random noise by adjusting the value of η. In
order to explore the effect of different noise inputs on sample generation, we want to shield
the random noise, Settings η = 0, eliminating the effect of random noise in the generation
process. The generated sample is shown in Figure 11.

Each row of images in Figure 11 represents a set of results with correlated noise output.
it can be seen that the samples generated by the initial noise with correlations have some
similarity. This is because we eliminate the effect of random noise in the generation process,
and the generation process is deterministic once the initial noise is determined. Therefore,
for correlated initial noise, the final generation effect is also of some relevance.
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4.3. The Effect of Random Noise on Sample Generation

Diffusion model image generation is dominated by three parts, where for the random
noise σtεt, by setting different η can affect the value of σt, from which in turn affects the
result of target generation. To further explore the impact of the change of random noise on
the sample generation, the following control test was set for the different values of η. The
generated results are shown in Figure 12.
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As can be seen in the figure, the generated image changes locally at this point as the
value of η changes. This is because the change in the value of η during the generation
process affects the value of the random noise σtεt during the generation process. However,
the sample generation also depends on the predicted x0 and xt. Therefore, the change in η
will only have a local change on the sample.

5. Conclusions

In this paper, we present a method for generating samples of side-scan sonar images
based on a diffusion model. The model generates entirely new samples with the same
distribution based on a priori data distribution features using a diffusion model, and to
improve the sample generation speed, we introduce an accelerated encoder. With our
approach, a large number of side-scan sonar images with strong representations can be
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generated quickly. Compared to other existing SSS image generation methods, our method
does not require tedious data collection and data cleaning, and the implementation process
is simple. Experimental results show that the generated data have excellent similarity to
the real SSS images in terms of texture, noise, background, and resolution. At the same
time, the sample generation results can be controlled by fine-tuning the model input and
random noise during generation. Finally, the generated wreck samples and YOLOv5
network are used to train the underwater wreck detection model, and the generated data
achieve high accuracy and low false-detection rate when comparing the SSS training results.
Experimental results show that the problem of small number of samples and insufficient
representation of SSS data can be effectively compensated using our method.
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