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Abstract: Efficiently salvaging shipwrecks is of the utmost importance for safeguarding shipping
safety and preserving the marine ecosystem. However, traditional methods find it difficult to salvage
shipwrecks in deep water. This article presents a novel salvage technology that involves multiple
hydraulic claws for directly catching and lifting a 2500-ton shipwreck at 600 m depth. To ensure
lifting stability, a semi-active heave compensation (SAHC) system was employed for each lifter to
mitigate the effects of sea waves. However, the response delays arising from the hydraulic, control,
and filtering systems resist the heave compensation performance. Predicting the barge motion to
mitigate measuring and filtering delays and achieve leading compensation is necessary for the salvage.
Therefore, a multivariate long short-term memory (LSTM) based neural network was trained to
forecast the barge’s heave and pitch motions, exhibiting satisfactory results for the next 5 s. According
to the results of numerical simulations, the proposed LSTM-based motion predictive SAHC system
demonstrates remarkable effectiveness in compensating for shipwreck motion.

Keywords: shipwreck salvage; semi-active heave compensation; motion prediction; LSTM neural
network; machine learning

1. Introduction

Nowadays, the demand for resources has led to a rapid expansion in both marine
trade and scientific exploration, resulting in the construction of larger and more numerous
vessels and offshore facilities. Unfortunately, it has also led to a significant increase in
serious shipping incidents, with approximately 1000 such incidents occurring each year,
which poses a threat not only to the marine ecosystem but also to the safe navigation of
other vessels [1]. Therefore, removing these wrecks as quickly as possible is crucial to
mitigate their impact on the environment and marine transportation.

Shipwrecks in shallow regions can be salvaged through traditional methods, including
reestablishing buoyancy by attaching salvage pontoons around the hull and draining
water from closed cabins or providing extra lifting force by floating cranes [2]. These
methods, however, have obvious flaws. For instance, severely damaged shipwrecks cannot
be drained to the extent necessary to achieve appropriate buoyancy, and fragile structures
are also challenging to hoist using a floating crane. Furthermore, the majority of mono-hull
or sheer-leg floating cranes in use currently lack the lifting capacity necessary to handle
large shipwrecks weighing more than 10,000 tons [3]. For larger shipwrecks, a salvage
technique named twin-barge synchronous lifting can be used. China’s Shanghai Salvage
Bureau successfully salvaged the integral Korean M.V. Sewol from a 44 m depth by using
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the technique in 2017, with an 11,000-ton maximum lifting capability [4]. It used two barges
spread across the water on either side of the shipwreck to share the load and installed
66 hydraulic strand jacks on them to provide lifting force. To cope with the sea-wave
impacts, each hydraulic lifter also used a passive heave compensator (PHC) to reduce
tension fluctuation on the slings [5]. Zhang et al. in-depth analyzed the performance of
this salvage structure and revealed the effect of applying PHCs [6]. Compared with the
traditional method, the twin-barge synchronous lifting has a significantly larger carrying
capacity and better load stability for shallow regions. In contrast, however, deep water
shipwreck salvage is a more challenging problem that needs to be solved.

Salvaging shipwrecks in deep water faces many difficulties. A significant challenge
is the requirement for divers’ intervention, which is limited by the depth and duration of
the diving work. For example, the salvage of the Russian submarine Kursk, which sank in
100 m of seawater with a weight of approximately 9500 tons, required a salvage barge and
26 lifting jacks. To attach lifting slings at that depth, divers had to dive and drill a total of
26 connecting holes on the wreck surface [7]. This project took approximately five months
and required a significant amount of funding. Therefore, developing a large claw system
that can catch the shipwreck mechanically, and without the need for divers, would be an
efficient and convenient solution for deep salvage. A historical case that used a similar
technique was recovering the Soviet submarine K-129 from the Pacific Ocean floor in 1974,
about which detailed information was provided by Polmar and White [8]. Simply put, the
U.S. government developed a massive mechanical salvage cradle to secretly recover the
K-129 submarine. The cradle consisted of an integrated framework that could support the
submarine, hydraulic claws to secure it, and hydraulic legs to pull it from the seabed soil.
The project cost USD 500 million, which is roughly equivalent to the effort it took to put
a man on the moon [9]. However, during the lifting process, one of the claws snapped
under the weight, resulting in only part of the submarine being recovered [10]. There
could be multiple reasons for the claw’s failure, such as insufficient structural strength or
uneven weight distribution. While this attempt at deep-sea salvage was impressive, it also
highlighted the fact that an integrated claw structure is overly complex and can result in
unpredictable failures. Therefore, the claw salvage system should be designed as separate
structures, with each claw functioning as a single unit, allowing for the combination of
multiple claws to catch and lift shipwrecks.

Another key factor that could improve deep-sea salvage is heave compensation tech-
nology, which was also critical to the success of the salvage case mentioned above. The
salvaging vessel will experience six degrees of motion under the influence of harsh sea
waves and winds, resulting in excessive tension fluctuations on the lifting slings. They
can also lead to unstable shipwreck motion in multiple degrees of freedom (DOFs) and
amplified effects. Heave compensation, widely applied in various marine engineering
fields, can effectively decouple the load motion and tension fluctuation from the motion of
the working vessel and improves operating efficiency and time windows [11]. There are
three types of heave compensation: passive, active (AHC), and semi-active [12]. PHC is a
type of passive mechanical system that is mainly composed of a load-bearing hydraulic
cylinder and gas–liquid accumulators. It can absorb and buffer load force fluctuations
like a hydraulic spring by compressing the gas inside the accumulator, and improve the
amplitude–frequency characteristic of the system by reducing the lifting stiffness funda-
mentally. The studies by Hatleskog et al. and Ni et al. indicated that PHC is more suitable
for compensating for high wave frequency far from its natural frequency [13,14]. The PHC
systems for the synchronous strand jack lifting in the M.V. Sewol salvage project, proposed
by Wang et al., ensured successful operation [15]. However, despite PHC’s simplicity and
cost-effectiveness, its compensating effect is limited compared with AHC and SAHC.

AHC and SAHC include a complete hydraulic or electronic actuator and closed-loop
control system. They can detect the motion of the working point by IMUs and control the
actuator to directly compensate for it, resulting in excellent efficiency [16]. The primary
drawback of AHC is that its actuation and power systems need to match the payload
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weight, which limits its load capacity. SAHC combines PHC and AHC to overcome
these limitations, resulting in a structure that boasts both high load capacity and excellent
compensating effects. Currently, high-precision compensators with large load capacities
are primarily implemented using SAHC solutions. For example, Niu et al. presented an
SAHC system for a 3000 m, 200-ton lifting winch, and full-scale experiments demonstrated
a 92.9% displacement compensation efficiency [17]. Quan et al. performed a scale model
test of an SAHC for deep-sea tethered ROV, the test results indicated that SAHC has better
efficiency in dealing with load resonance at critical depth than PHC [18]. Moreover, many
novel control algorithms were designed to enhance the performance of SAHC systems,
such as the nonlinear controller by Do et al., the model-predictive controller by Woodacre
et al., and the H infinity robust controller by Zhang et al. [19–21], etc. For safety and steady
working, it is essential to apply SAHC in deep water claw salvage operations. However,
electro-hydraulic systems will be subject to various delay factors, the most significant of
which comes from measurement noise filtering. The hydraulic control systems’ frequency
response and the uncertainty in the sea waves can also contribute a lot. There is a need to
predict the vessel’s motion and implement advance heave compensation to make up for
the system delays.

Based on theoretical differences, there are three distinct approaches for predicting ship
motion: Kalman filtering, time series, and machine learning neural network [22]. Kalman
filtering methods necessitate the accurate hydrodynamic model of the vessel, which limits
their practical implementation [23,24]. Time-series methods are more suitable for engineer-
ing predictions, as they rely only on historical and current motion data of the vessel rather
than its system model. Several time-series models, including the classic auto-regressive
(AR) model, and its extensions such as auto-regressive moving average (ARMA) and auto-
regressive integrated moving average (ARIMA), are widely used [25–27]. However, ship
motion exhibits non-stationary and nonlinear features, which conflict with the assumptions
of stationary and explicit relationships between input and output datasets [28]. Neural
networks possess the ability to effectively fit nonlinear systems without prior knowledge
and can also manage multi-input multi-output predictions. When compared to tradi-
tional feed-forward neural networks, recurrent neural networks (RNNs), particularly those
represented by long short-term memory (LSTM), demonstrate superior performance in
capturing correlations between input motion sequences [29,30]. The studies in predicting
semi-submersible and FPSO motion based on LSTM neural network presented by Guo et al.
showed very good performance [31–33].

In this paper, a multi-claw shipwreck salvaging system for 600 m deep water with
LSTM-based motion predicting SAHCs is presented. The SAHCs aimed to achieve a stable
shipwreck salvage process for deep water. The LSTM-based neural network was mainly
used to predict the barge’s heave and pitch motions in the next few seconds and tackle
time delays raised by hydraulic and noise filtering systems. In Section 2, the working
principle of the salvage system are described, and each part is mathematically modeled.
In addition, the barge’s heave and pitch motion data under nine different sea conditions
are also obtained in Section 2 through hydrodynamic simulation, for network training and
simulation inputting. In Section 3, the predictive neural network model is designed and
tested for finding the best structure. Finally, numerical simulations based on mathematical
models, including the shipwreck’s 2-DOF dynamic, lifting slings, SAHCs, and controller
are carried out for validation and evaluation purposes in Section 4. From the simulation
results, some key contributions could be drawn out:

• The system delays introduced by the hydraulic SAHC system and the noise filtering
system seriously affect the compensation of the SAHCs to the shipwreck motion;

• The delay introduced by noise filtering is commonly significant. In this study, the
hydraulic control system alone has a delay of 0.6 s, which can reach more than 3 s
when filtering is present;
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• When facing deep water, the effect of PHC is insignificant because the lifting slings
are already sufficiently flexible. However, applying SAHC can effectively reduce the
shipwreck’s motion;

• The proposed LSTM-based neural network can effectively predict the heave and pitch
motions of the barge 5 s into the future based on the historical data, which is sufficient
for the compensation system;

• Motion prediction is necessary for systems lagged by noise filtering. SAHC without
motion prediction is invalid when the noise exists.

2. System Modeling and Analysis

Establishing a mathematical model of a system is fundamental for conducting numer-
ical simulations. This section provides a detailed description of the salvage system and
establishes mathematical models for each component to facilitate subsequent numerical
simulations. Additionally, this section includes a hydrodynamic analysis to obtain the mo-
tion data of the barge in various sea states. The resulting datasets will be used to train the
neural network and serve as inputs for the numerical simulations in subsequent sections.

2.1. Claw Salvaging System

Figure 1 shows a schematic diagram of the multi-claw salvage system with SAHCs.
The system consists of a salvage barge anchored to the water surface above the target
shipwreck, deploying salvage claws at spaced intervals in the longitudinal direction. A
synchronous strand jack lifting system, similar to that used in the salvage operations of
the M.V. Sewol and the Kursk submarine, is used for shipwreck lifting [4,7]. This system
comprises multiple hydraulic jacks that can work independently or be synchronized under
computer control and is commonly used in the construction and marine industries [34].
However, this article mainly focuses on the predictive heave compensation system’s effect
on a 600 m depth payload, disregarding the lifting effect and not considering the hydraulic
jacks’ function.
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Figure 1. Schematic diagram of the multi-claw salvage system with SAHCs and strand jack lifters.

As mentioned earlier, a vessel operating in sea waves will experience motion in
six DOFs. Generally, the anchoring system can limit the salvage barge’s translational and
rotational DOFs parallel to the water surface, such as surge, sway, and yaw, but it is unable
to effectively restrict heave, roll, and pitch. Since the lifting devices on the barge are
distributed longitudinally, the heave and pitch of the barge will cause a more significant
vertical displacement at each lifter point. Therefore, an SAHC is installed between each
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strand jack and the barge deck. The compensation system will measure the real-time heave
and pitch motions of the barge, calculate the vertical displacement of each lifting point,
and control the SAHC cylinders to action. The cylinders will adjust their length to reverse
the displacement caused by the heave and pitch motions, ensuring that the lifters remain
stable during the salvaging process.

This study considers a shipwreck model with a submerged weight of 2500 tons and
dimensions of 90 × 20 × 8 m (Lw × Bw × Hw). Nine salvage claws are symmetrically
distributed along the longitudinal direction with a 10 m interval for salvage. Each claw
weighs 240 tons and can provide a load capacity of 500 tons. Each lifting sling consists of
eight 50 mm wire ropes, with a total weight of approximately 54 tons for the 600 m length.
Therefore, the static load of each lifting sling is 518 tons, and the static load of each SAHC
and lifter needs to be added to the sling weight, which is a total of 572 tons. To ensure safe
operation, a salvage barge similar to the one used in the Sewol ferry salvage operation was
chosen, which has dimensions of 140 × 56 × 8.88 m (Lb × Bb × Hb) and a displacement of
26,159 tons, with more specific parameters recorded in [4].

2.2. Mathematical Modeling

To perform a numerical simulation of the system, it is necessary to establish a mathe-
matical model that can accurately describe the system’s dynamic and motion laws. The
salvage system consists of two rigid bodies: the salvage barge and the shipwreck. In the
simulation, the heave and pitch motions of the barge, which are obtained from the hydro-
dynamic analysis, will serve as the input signals for the numerical simulation. The motion
of the shipwreck, sling tensions, and compensation systems will be iteratively calculated in
response to barge motion inputs. The main focus of the simulation results will be the heave
and pitch motions of the shipwreck and the tension variations in the slings.

Before establishing the mathematical model, certain simplifying assumptions should
be considered:

1. Neglecting the dynamic effect of the shipwreck on the barge motion, since the barge
has a larger inertia;

2. Assuming the shipwreck approximates a cuboid;
3. Considering the lifting sling as a linear spring model without banding and tilting;
4. Ideal gas with isothermal compression in the accumulators;
5. Only the heave and pitch motions are considered for both the barge and shipwreck.

2.2.1. Barge–Shipwreck Motion Analysis

As shown in Figure 2, the barge and the shipwreck have their local coordinate systems,
represented as XbObZb and XwOwZw, respectively. The heave displacements relate to the
initial time and are denoted as zb(t) and zw(t) for the barge and the shipwreck, respectively.
The pitch angles are denoted as θb(t) and θw(t), respectively. The origin positions of all lifter
points in XbObZb and the positions of all lifted points in XwOwZw are assumed to be known
and denoted as

Bo =

[
b1

xo b2
xo · · · bi

xo
b1

zo b2
zo · · · bi

zo

]T

and Wo =

[
w1

xo w2
xo · · · wi

xo
w1

zo w2
zo · · · wi

zo

]T

(1)

where the superscript represents the number of the lifting sling, and the subscript represents
the position component.
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When the barge and shipwreck motions occur, the new positions can be calculated by[
B
W

]
=

[
Bo 1

Wo 1

][
T(θb, zb)
T(θw, zw)

][
1 0 0
0 1 0

]T

(2)

where T is the spatial transformation matrix. The term 1 = [1 1 . . . 1]T is one’s vector with i
elements, whose purpose is to homogenize the position matrices Bo and Wo, allowing them
to undergo heave transformations by T matrix. It should be emphasized that the vacancies
in the matrix are all 0, with omission for brevity. The spatial transformation matrix T
includes heave and pitch transformations and is a function of the heave displacement and
pitch angle, that is

T(θ, z) =

 cos θ sin θ 0
− sin θ cos θ 0

0 z 1

 (3)

2.2.2. Lifting Sling Tensions

Each lifting sling performs as a linear spring model, whose tension should relate to its
elongation. Due to the assumption that lifting slings remain vertical, each elongation at any
time only equals the differential between the vertical displacements of its top and lower
end-point. Denoting the compensation displacements of SAHCs are xc = [xc

1, xc
2, . . . , xc

i]T,
then the elongations of all slings can be expressed as

∆l = ∆Bz − ∆Wz + xc (4)

where ∆Bz are the vertical displacements of the points B related to its origin point Bo, and
the same for ∆Wz. They can be calculated by[

∆Bz
∆Wz

]
=

[
B− Bo

W−Wo

][
0
1

]
(5)

Then, the sling tensions are expressed as

Fs = ks∆l (6)

where ks is the equivalent stiffness of a single lifting sling.

2.2.3. Shipwreck Heave and Pitch Dynamics

The shipwreck is subjected to four main forces: buoyancy, gravity, sling tensions, and
water resistance. During the lifting process, uneven sling tensions will cause translational
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and rotational accelerations in the heave and pitch motions. Firstly, the dynamic equation
describing the heave motion of the shipwreck can be given by

kaddmw
..
zw + Dz

.
zw
∣∣ .
zw
∣∣ = 1TFs + Fb −mwg (7)

where kadd is the additional mass factor, mw is the mass of the shipwreck, Dz is the drag
coefficient, Fb is the buoyancy, and g is the acceleration due to gravity.

The drag force in the heave direction is proportional to the square of an object’s heave
velocity. It also depends on the water density, ρsea, and the projected area perpendicular to
the object’s velocity direction. In fluid mechanics, the drag force is mainly comprised of
pressure drag resulting from the difference in pressure between the front and back of the
object, and a portion of the friction drag from the sides. The drag coefficient is given by

Dz = 0.5CDρseaLwBw cos θw (8)

where CD is a shape coefficient.
The dynamic equation describing the shipwreck’s pitch motion can be given as

kadd Iw
..
θw + Dr

.
θw

∣∣∣ .
θw

∣∣∣ = 1TMs (9)

where Iw is the moment of inertia for the pitch motion of the shipwreck, Dr is the drag
torque of pitch motion, and Ms = [Ms

1 Ms
2 . . . Ms

i]T is the torque vector on the shipwreck’s
rotation center caused by the sling tensions.

The sling tension torque can be expressed by

Ms = Wnx ◦ Fs (10)

where nx = [1 0]T is a normal vector along the x-axis, and # is the Hadamard product,
which multiplies two vectors element-wise.

Since torque is related to both force and the length of the moment arm, the shipwreck
will experience different values of drag torque at different turning radii. In order to calculate
this, the total drag torque will be obtained through the integration of the drag torque at
each turning radius. For an infinitesimal element of length dr located at a distance r from
the center of the shipwreck’s pitch rotation, its normal velocity is

v =
.
θwr (11)

Then, its normal drag force can be expressed as

dD = 0.5CDρseav|v|(drBw) (12)

By substituting the normal velocity, its drag torque can be expressed as

dMD = rdD = 0.5CDρsea
.
θw

∣∣∣ .
θw

∣∣∣Bwr3dr (13)

Finally, the pitch drag torque can be integrated as

MD = 2
∫ Lw/2

0
dMD =

1
64

CDρseaBwL4
w

.
θw

∣∣∣ .
θw

∣∣∣ (14)

from which Dr = 1/64CDρseaBwLw
4 can be obtained.

2.2.4. SAHC

A single SAHC system consists of two integrated cylinders for load bearing, an active
hydraulic system with a 3-position 4-way proportional valve for continuous flow rate
control, and a passive power system with multiple gas accumulators, as illustrated in
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Figure 3. The integrated cylinder has a compact structure with three isolated chambers,
two active chambers with the same effective areas, and a passive chamber. The active
chambers are linked to the proportional valve for active displacement control, while the
passive chamber is connected to gas accumulators for payload bearing.
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Figure 3. Schematic diagram of an SAHC hydraulic system.

The hydraulic system as a whole is divided into a passive part and an active part. The
working pressure of the passive chambers and accumulators is mainly generated by gas
compression, which is caused by the displacement of the cylinder. According to Boyer’s
law, that the state of an adiabatic gas can be expressed as P1V1

n = P2V2
n, the passive

working pressure can be derived as

Pp = P0

(
V0

V0 + 2Apxc

)n
(15)

where P0 is the initial pressure of the accumulators, V0 is the total gas volume in the
accumulators, Ap is the effective area of the passive chamber, and n is the adiabatic index.

The initial pressure of the accumulators should support the combined weight of the
shipwreck mw and the lifting sling ms, which is

P0 = (mw + ms)g (16)

The active part functions as a cylinder system controlled by a proportional valve,
enabling continuous regulation of the speed and motion direction of the cylinder by
adjusting the valve opening. The area of each active chamber is denoted as Aa, and the oil
pressure and flow rate of the inlet chambers are denoted as P1 and q1, respectively. The oil
pressure and flow rate of the outlet chambers are denoted as P2 and q2, respectively. The
positive direction of the flow rate is defined as the flow direction when cylinder extension
(xc > 0). Then, considering the oil compression, the flow continuity equations of two active
chambers can be expressed as

q1 = 2
(

Aa
.
xc +

V1

βe

.
P1

)
and q2 = 2

(
Aa

.
xc −

V2

βe

.
P2

)
(17)

where V1 = V10 + Aaxc and V2 = V20 − Aaxc are the oil volumes of the inlet and outlet
chambers, V10 = V20 are the initial oil volumes of the inlet and outlet chambers, and βe is
the oil bulk modulus.

Additionally, the flow rates across the proportional valve are related to the valve
opening xv, which can be expressed as

q1 = Cdωxv

√
2|Ps − P1|

ρoil
sgn(Ps − P1) and q2 = Cdωxv

√
2|P2|
ρoil

sgn(P2) (18)
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where Cd is the orifice flow coefficient, ω is the throttle area gradient, ρoil is the oil density,
and sgn(·) is the sign function.

Since the response speed of the spool is significantly faster than the action frequency
of the hydraulic system, the dynamic characteristics of the spool can be neglected. The
pressures in the two chambers can be determined by solving a first-order nonlinear differ-
ential equation system that combines the continuity equations of the hydraulic cylinder
and the flow equations of the valve, concerning the piston displacement xc and the valve
opening xv. These equations can be solved iteratively in the numerical simulation.

Finally, the dynamic equation that describes the piston motion of the SAHC can be
expressed as

mc
..
xc + bc

.
xc = 2Aa(P1 − P2) + 2ApPp − Fs (19)

where mc is the total mass of the piston and attachments, and bc is the damping coefficient
of the compensator.

Afterward, the compensating displacements of all the SAHCs will continue to update
the sling tensions, completing the closed loop of the numerical calculation.

2.3. Barge Motion Hydrodynamic Analysis

The objective of the hydrodynamic analysis is to generate time-series data of the
salvage barge’s heave and pitch motions under various sea conditions. The majority of
these data will be used to train a motion predictive LSTM neural network, while the
remaining data will serve as input for the numerical simulation of the barge’s motion.
Figure 4 illustrates the chosen sea conditions according to the actual wave scatter statistics
and their dataset purposes, where the wave parameters are described by JONSWAP [35].
The sequence data for each sea condition will comprise 2000 s of time-series data for the
barge’s heave and pitch motions, sampled at intervals of 0.1 s.
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Figure 4. Considered sea conditions in the hydrodynamic analysis for the salvage barge and
their purposes.

In the hydrodynamic analysis, only the head sea condition is applied, since we just
focus on the heave and pitch motions of the barge. For simulated shipwreck weight, a static
downward force equal to the shipwreck gravity is exerted under the barge. In addition,
a four-point mooring system is also applied to keep the barge stable [36]. Other major
parameters of the barge and the mooring system are listed in Table 1 below.

Table 1. Parameters for barge hydrodynamic analysis.

Salvage Barge Mooring System

Size (m) 140 × 56 × 8.88 Line type Catenary stud chain
Pitch inertial (kg·m2) 4.3 × 1010 Mooring radius (km) 2.4

Draft (m) 3.6 Chain length (m) 2560
Displacement (t) 26159 Unit mass (kg/m) 107

Mooring system Chain diameter (mm) 70

Stiffness (kN/m) 4.9 × 105
Maximum expected tension (kN) 4196Pre-tension (kN) 746.7
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Figure 5 shows the response amplitude operators (RAOs) of the salvage barge’s
motions in different wave periods, obtained through hydrodynamic analysis. It is observed
that the pitch motion exhibits a peak value at around 12 s, indicating its significant influence
during this wave period. Although time-domain motion figures can also be provided, due
to their vast number only the figures of the testing set are presented in Figure 6.
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3. LSTM-Based Barge Motion Prediction

The LSTM neural network is an upgraded version of the traditional recurrent neural
network (RNN). Unlike feed-forward neural networks, the traditional RNN can utilize
its previous step information as internal memory for the current network. This allows it
to extract time features from the input sequence, making it more suitable for time-series
prediction. Its parameter size is only related to the feature size of the sequential input data,
but not the time length, giving it the advantage of allowing different sequential lengths
in the same network. However, the information of the data far from now may be lost in
the internal memory with each iteration, and problems such as gradient vanishing and
exploding may occur during the backpropagation process, decreasing the accuracy and
applicability of the traditional RNN. To address these issues, long short-term memory
(LSTM) was proposed, with the key improvement being the addition of a memorization
and forgetting mechanism in the recurrent processing.

3.1. LSTM-Based Motion Predictive Neural Network

The LSTM is a variant of RNN which has three tunable gates: the input gate, the
forget gate, and the output gate [37]. As shown in Figure 7, the input gate, denoted by
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it, determines which information from the input should be added to the cell state, while
the forget gate ft controls which information should be discarded from the cell state. The
output gate ot regulates how the information in the cell state should affect the output at the
next time step. With the cooperation of these three gates, the LSTM network can retain and
forget the previous data information, and decide which information to add or output based
on the current input data, thus better handling long-term dependencies in time series. The
formulas of an LSTM cell are shown below:

it = σ(Wxixt + bxi + Whiht−1 + bhi)

ft = σ
(

Wx f xt + bx f + Wh f ht−1 + bh f

)
gt = tanh

(
Wxgxt + bxg + Whght−1 + bhg

)
ot = σ(Wxoxt + bxo + Whoht−1 + bho)
ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct)

(20)

where W and b are the weights and bias matrices of a network cell, respectively, σ(·) is the
sigmoid active function, gt is the cell gate, ct is a recurrent cell state that is responsible for
recording long-term relationships, and ht is the hidden state and also the cell output. For
each W and b, the first subscript annotates the vector it multiplies, with x representing the
input vector x and h representing the hidden state h. The second subscript indicates which
gate it belongs to, including i (input gate), f (forget gate), g (cell gate), and o (output gate).
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Figure 8 illustrates the structure of the proposed LSTM-based motion predictive neural
network. For motion prediction, we expect the predictive neural network could accept the
historical sequences of the barge’s heave and pitch motions, then output their predicted
future sequences. Therefore, an LSTM recurrent layer aimed at inputting the sequential
vectors of each step, containing one heave and one pitch datapoint, is first constructed in
the network. The input size for the LSTM layer is n × 2, which represents two features in
one recurrent step and a total of n input steps. Although the sequence length allowed by
LSTM is arbitrary, only the equal length is used for training and testing in this paper. By
repeatedly self-iterating, the LSTM layer fully extracts the dependent information of the
motion sequences and gives the final step’s hidden state as the layer output, which is a
vector with a length equal to the LSTM cell size. Then, containing past information, the
layer output will pass three fully connected layers and be reshaped to an output vector
combining the sequential predictions of the heave and pitch. For this paper, we set the
predictive horizon as far as a fixed 5 s, meaning that the network outputs future sequential
data of 50 points heave then 50 points pitch at one time (m = 50). By splicing the output
tensor, the predictive motion sequences could be obtained.
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The major layer parameters of the proposed network are listed in Table 2, where the
size of the LSTM cell is 1024 and the sizes of the first two fully connected layers are 512. The
size of the last fully connected layer is 100, which is used to reshape the output tensor. The
trained process uses the Adam method with a decaying learning rate to ensure accuracy.
The entire training set was shuffled into mini-batches and repeated training for 20 epochs,
with an initial learning rate of 0.0001 and a decay of 0.4 times after every 4 epochs.

Table 2. Layer parameters of the LSTM-based predictive neural network, with the mini-batch size
denoted by p.

Layer Sequence Layer Tensor Size

1 Sequential input P × 2 × n
2 LSTM layer P × n × 1024
3 LSTM last output P × 1024
4 Fully connected layer P × 512
5 Fully connected layer P × 512
6 Output layer P × 2m

3.2. Network Training and Testing

The datasets used in the predictive neural network are shown in Figure 4, consisting
of eight sequences for training and one for testing. The test set data is not used for training
due to the difficulty in obtaining on-site sea state information during actual salvaging
operations. The training sets are randomly shuffled and split into input and output tensor
pairs. The output tensor size is fixed at 100 elements, with 50 elements of the sequential
heave and 50 elements of the sequential pitch. To evaluate the effect of input tensor length,
networks with varying lengths of input sequences are first trained and tested.

The root-mean-square error (RMSE) performance of the networks was evaluated and
the results are presented in Figure 9. Each evaluation was averaged over multiple training
sessions. The left side of the figure shows the predictive performance of the networks with
different input time sizes for varying prediction horizons, while the right side displays the
corresponding error box plots. It is expected that the prediction errors of all the networks
increase with the prediction horizon. The best prediction performance for heave is achieved
with the input time sizes of 25 s and 30 s, while the former is better for pitch prediction.
Therefore, it can be concluded that an input time size of 25 s, which represents an input
length of 250 points, is more suitable for improving the prediction accuracy of the proposed
neural network.
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After fixing the input length (n = 250) and the prediction length (m = 50), the predictive
neural network is fully trained and the results of continuous motion prediction for the
testing set are presented. Figure 10 displays the sequential input and prediction output
curves at a specific moment, while Figure 11 shows the continuous rolling predictions for
the barge’s heave and pitch, with prediction horizons of 0.5 s, 2 s, and 5 s. Although the 5 s
prediction shows some deviations at the peaks compared to the ground-truth data, it is still
considered acceptable.
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4. Simulation Results and Analysis

In this section, the numerical simulation of the salvage system is implemented for
testing the compensation and motion prediction performance. The involved numerical
models were introduced in Section 2.2. The simulation parameters which have not yet
been mentioned are listed in Table 3. Furthermore, the heave compensation system uses
traditional PID controllers for position closed-loop control, which can ensure the basic
dynamic tracking ability of the compensation cylinders.

Table 3. Key parameters of the salvage system for numerical simulation.

Parameter Unit Value Notation

Shipwreck motion
dynamic

Pitch inertial kg·m2 1.7 × 109 Iw
Additional coefficient 1.5 kadd

Lifting sling

Wire rope diameter mm 50
Wire rope number 8
600 m sling mass t 53.98 ms

Sling stiffness kN/m 1.31 × 103 ks

Passive part of SAHC
Cylinder total area m2 0.25 Ap

Accumulator volume L 1500 Vp
Adiabatic index 1.4 n

Active part of SAHC

Source pressure MPa 20 Ps
Cylinder total area m2 0.25 Aa

Orifice flow coefficient 0.6 Cd
Throttle gradient m 0.0628 ω

Oil density kg/m3 860 ρoil
Oil bulk modulus MPa 1000 βe

SAHC
Piston total mass kg 5000 mc

Damping coefficient N/(m/s) 1 × 104 bc
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The working process of the predictive compensation system can be summarized as
follows: first, the heave and pitch signals of the barge are measured. Next, the LSTM-
based neural network is used to predict the future heave and pitch values according to the
historical sequential signals. Then, the predicted results are transformed into displacement
compensation values for each SAHC through coordinate transformation. Finally, the
controllers are ordered to perform the necessary compensation actions on the SAHCs.

It is important to reiterate that the purpose of barge motion prediction is to compensate
for the hysteresis in the compensation system, which may arise from various factors such
as the PID controller, hydraulic system response, dynamic characteristics of the salvage
system, and filtering process of the motion measurements. However, we believe that the
filtering process of the sensor has a greater impact. Therefore, in the following analysis, we
will consider the effects of both situations, with and without measurement noise.

4.1. Influence of Lead/Lag Compensation

Before testing the effectiveness of predictive heave compensation, the time-delay char-
acteristics of the SAHC system without motion prediction were analyzed. The simulation
results are presented in Figure 12, which demonstrates the effect of changing the time posi-
tion of the barge signal input to the SAHC system. A positive value on the horizontal axis
indicates that the compensation amount lags behind the actual movement of the barge, and
a negative value indicates that the compensation amount is ahead of the actual movement
of the barge. By analyzing the standard deviation changes in the shipwreck motion in each
corresponding case, it can be concluded that both the compensation lag and premature
lead compensation can intensify the motion of the wreck. Furthermore, it was found that
the minimum motion result was obtained at 0.6 s of lead compensation, rather than 0 s.
This indicates that the system has a 0.6 s delay from the barge motion measurement to
the SAHC’s displacement acting, highlighting the importance of motion prediction and
advancing compensation.
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4.2. Predictive Compensation without Measuring Noise

Based on the barge motion without noise pollution, this section simulates and com-
pares the heave and pitch time-domain motions of the barge in different heave compen-
sation modes: non-compensation, PHC mode, original SAHC mode without prediction,
and SAHC mode with prediction. The results are displayed in Figure 13, from which the
following conclusions can be drawn:
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and SAHC mode with motion prediction (pts denotes t seconds prediction).

In the absence of heave compensation, the heave and pitch motions of the shipwreck
are significant. Even with the passive mode, only the pitch motion is slightly weakened.
This limited performance is primarily due to the reduced sling stiffness of the 600 m length,
and cannot be further reduced by the PHCs.

Compared to the non-compensation condition, the original SAHC mode without
motion prediction can significantly reduce both the heave and pitch motions of the ship-
wreck, with standard deviation (STD) decrements of about 67.59% and 53.77%, respectively.
Furthermore, when motion predictions are applied, the motion STDs are further reduced
by about 66.89% and 68%, with a 0.6 s prediction. However, when the prediction time is
switched to 1 s, the motions become significant, which is consistent with the results shown
in Figure 12.

4.3. Predictive Compensation with Measuring Noise

In this section, it is assumed that the motion signal of the barge is contaminated by
white noise and should be filtered before being input into the predictive neural network.
Therefore, a second-order low-pass filter is used to filter the motion signal, and its transfer
function is given by

H(s) =
ωn

2

s2 + 2ωns + ωn2 (21)

where ωn is the cut-off frequency, whose value is set as ωn = 0.8.
Figure 14 presents a comparison between the original data of the barge’s heave and

pitch, the noisy data, and the filtered data. The filtering process introduces a delay of
approximately 2.5 to 3 s to the original data. It should be noted that this delay can be
further reduced by using a better filter, such as the Kalman filter.
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The filtered data is input into the neural network for motion prediction, and the
predicted result is used as the expected compensation amount of the SAHC system. The
final simulation results are presented in Figure 15, which includes the curves for SAHC
without heave compensation (as in Figure 13), the SAHC system without motion prediction,
and the predictions for 1 s, 3 s, and 4 s.
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The delay introduced by the filtering process and the presence of noise makes it
difficult for the various SAHC systems to completely compensate for the motion of the
wreck. However, it was found through simulations that the best compensation effect
can be achieved when the prediction time is set to 3 s. If the prediction time is greater
or less than this, the compensation effect will be reduced. At this prediction time, the
standard deviations of the barge motion are reduced by 44.14% and 43.19% in heave and
pitch, respectively, compared to the uncompensated case. This result is lower than the
ideal noise-free situation shown in Figure 13, but it is more representative of the actual
engineering situation, where noise is expected.
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5. Conclusions

In this paper, a shipwreck salvaging system with multiple hydraulic claws, capable
of operating at depths of up to 600 m, is proposed. This system incorporates SAHCs to
ensure stable lifting operations. Additionally, a multivariate LSTM-based neural network is
introduced for predictive compensation of barge motion. Through hydrodynamic analysis,
heave and pitch motion sequences of the working barge in nine different sea conditions
were obtained for neural network training and numerical simulation input. In the proposed
neural network, the historical heave and pitch sequences of the barge were fed into the
LSTM cell and reshaped by several fully connected layers to obtain future motion sequences.
The testing results demonstrated that a historical sequential input of 25 s was the most
suitable for the neural network to achieve a 5 s sequential prediction. Then, the performance
of the SAHC system and the predictive neural network are tested through a numerical
simulation based on the mathematical models described in Section 2. Based on the results
in Section 4, the following conclusions could be drawn out:

• Passive heave compensation has minimal effects on a shipwreck’s motion at this depth;
• When the SAHCs are employed without motion prediction, the standard deviations

of the shipwreck motion are significantly reduced, by 67.59% in heave and 53.77%
in pitch;

• In the absence of measurement noise, a 0.6 s predictive compensation to counter
system delay further reduces shipwreck motion by 66.89% and 68% in heave and pitch,
respectively, compared to the non-prediction case;

• SAHCs without prediction exhibit poor compensation effects in the presence of noise
pollution in barge motion measurement;

• In such scenarios, a 3 s predictive compensation can achieve the best compensating
performance, resulting in a reduction in shipwreck motion to 44.14% in heave and
43.19% in pitch.

These results underscore the indispensability of motion prediction in deep-sea ship-
wreck salvage operations and highlight the good performance of the proposed LSTM-based
predictive neural network and SAHC system. In conclusion, the efficacy of the proposed
predictive SAHC system for a 600 m multi-claw shipwreck salvaging system has been
demonstrated, with potential implications for real-world engineering practices. Future
endeavors will entail conducting factory tests in a laboratory wave pool to further validate
the system’s capabilities. Furthermore, collecting more motion data from actual barges at
sea, to enhance the motion predictive network’s reliability, is work that this paper did not
address and will be incorporated into future research.
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