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Abstract: This work is part of a series of publications that propose a floating hybrid system for
which a simulation tool has been developed, called FHYGSYS (Floating Hybrid Generator Systems
Simulator). The objective of this series of publications is to analyze the behavior and to evaluate
different control strategies of the floating hybrid system. This system consists of an “OC3-Hywind”
wind turbine and two marine current turbines presented by the authors in previous publications.
This work completes the exposition of the mathematical model of the floating hybrid system started
in a previous publication (Part I), in which the inertial, kinematic, and dynamic parts of the model
were described. In this second part, the forces acting on the floating system are extensively described,
and the turbines are modeled using the so-called One-Dimensional theory (or also known as Simple
theory). The results obtained with the FHYGSYS simulation tool have been validated—through
a code-to-code comparison—with FASTv8, both in the first part and in this second part of this work.

Keywords: floating wind turbine; marine current turbines; tidal turbines; wind energy; renewable
energy; spar-buoy platform; system modelling and identification; added mass processing; moored
systems; turbine modeling

1. Introduction

In the first part of this work [1], the mathematical model of a floating hybrid sys-
tem consisting of a floating wind turbine—a OC3-Hywind-type wind turbine [2,3]—and
two marine current turbines such as those described in [4,5] was presented. More specif-
ically, the modeling hypotheses; the method of processing the kinematics, based on the
use of homogeneous transformation matrices; and the processing of the dynamics of the
floating hybrid system were explained. To complete the computation of the dynamics, the
inertial data processing of the different bodies that make up the floating hybrid system and
the processing of the added mass of the system were described.

The inertial data of each body of the floating system were obtained using software
for the mechanical design of solids—in this case, Solid Works®—and the computation of
the entire mathematical model developed was carried out using Matlab®. The resulting
software tool was called the Floating Hybrid Generator Systems Simulator (FHYGSYS).

In [1], the following question was asked, and for clarification, at this point, it is
interesting to ask it again: “why did we choose to develop our own tool like FHYGSYS?
Mainly because, when the research line began, there was no simulation tool that would
clearly allow the simulation of marine current turbines, offering the possibility of freely
designing different control strategies. The main objective of the research is precisely that:
to study the behavior of a hybrid floating system like the one described using different
automatic control strategies” [1].

In control engineering, systems modeling is an important part that allows for the
development of automatic control strategies and control approaches for failure diagnosis
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and prediction of systems to be controlled. For this reason, it is interesting to obtain
a mathematical modeling strategy that allows for performing this task in a relatively simple
way, as described in [1] and in this paper.

The purpose of FHYGSYS is to offer a mathematical solution for modeling OC3-
Hywind-type floating hybrid systems to which marine current turbines are added, consti-
tuting a system such as the one shown in Figure 1. In addition, the philosophy described
in [1] and in this paper can be adapted to other floating system concepts, or even to other
types of systems, whether in a marine environment or not.
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Figure 1. Floating hybrid system: (1), (2), and (3) are the numbers that give names to the mooring
lines used in this text to be able to refer to them. This figure was taken from [1].

FHYGSYS executes in its own code the entire mathematical model—kinematics, dy-
namics, aerodynamics, hydrodynamics, mooring system behavior, gravitational influence,
and Coriolis–centripetal effects; this is an important feature of the tool. As FHYGSYS is
a time-domain software tool, the processing of the entire mathematical model is executed
for each instant of time (a range of values from 0.1 to 0.0125 s has been used). The only ex-
ternally preprocessed data required—through Solid Works®—are the inertial characteristics
of the bodies that make up the floating system and the inertial characteristics of the volume
of the submerged elements (these data are found in Appendix A of [1]). The relationship
between all the elements processed by the mathematical model is shown in Figure 2.
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Figure 2. Flowchart of how the entire mathematical model works.

There are different types of wind turbine simulation tools developed by companies or
institutions. Some of them are presented below.

FAST [6] is the reference tool in research and in the industrial field for the aero-
hydro-servo-elastic simulation of wind turbines both for installations on land and in the
sea, whether they are installed on the seabed or on floating systems. FASTv8 [7] is the
latest public release under the FAST Modularization Framework before the transition to
OpenFAST. WAMIT® [8], which is considered the most advanced set of tools available
for analyzing wave interactions with offshore platforms and other structures or vessels, is
used by FAST for its operation. OpenFAST [9] is an open-source wind turbine simulation
tool—which is under development—that was established with the FASTv8 code as its
starting point.

HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd generation) [10] is
an aeroelastic code intended for calculating wind turbine response in the time domain. The
core of the code was developed by the Aeroelastic Design Research Program at DTU Wind
Energy, DTU Risø Campus in Denmark. The QBlade software [11] is a multi-physics code
that covers the complete range of aspects required for the aero-servo-hydro-elastic design,
prototyping, simulation, and certification of wind turbines. ASHES (aero-servo-hydro-
elastic simulation) [12] is a design and analysis software—which is under development—for
onshore and offshore wind turbines.

Simulia Wind Turbine Simulation [13] offers a comprehensive suite of wind turbine
simulation technologies to optimize and accelerate their design. By accessing Simulia Wind
Turbine Simulation technology through the 3D-Experience platform, all design groups
and their suppliers can benefit from real-time collaboration and a system-level view on
all components. OpenWindPower [14] is offshore wind turbine analysis software that
helps choose design alternatives, predict performance, and deliver safe and cost-effective
offshore wind farm structures. It can also be used for fixed foundation or floating platform
offshore wind turbine projects. DNV offers different software packages for off-shore wind
turbines [15]—Bladed, Sesam, and Sima—which provides guidance in the development
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of floating offshore wind energy projects. ANSYS Fluent [16] is a fluid simulator software
sometimes used in research work.

The WAsP software suite [17]—developed by Technical University of Denmark (DTU)—
is an industry standard for wind resource assessment, siting, and energy yield calculation
for wind turbines and wind farms.

There are also simulators for the training of wind turbine operator and maintenance
technicians, who seek to learn operation and maintenance tasks safely. Simulwind [18] is
a European training project for wind farm operation and maintenance personnel, with the
aim of developing a simulator capable of showing all the main faults and solutions that
can be found in both wind turbines and wind farms. Purdue University Northwest has
developed the Wind Tech Safety and Troubleshooting Simulator [19] for the training of
wind turbine technicians.

In relation to marine turbine simulation tools, the list is considerably reduced; the
authors have only found two relevant tools. TidalBladed [20] is a validated tool—developed
by DNV—for simulating tidal turbines at the design stage. OpenTidalFarm [21] is an open-
source software for simulating and optimizing tidal turbine farms. All these tools can be
compared in Table 1.

Table 1. Comparison of some examples of simulation tools for wind and marine turbine systems.

Tool License Simulator Type Simulates
MCT 1

Simulates
FHS 2

FAST v8 and OpenFAST Free Aero-hydro-servo-elastic No No

WAMIT Educational/Commercial Wave interactions with Offshore
structures - -

HAWC2 Trial/Commercial Aeroelastic No No
QBlade Academic/Commercial Aero-servo-hydro-elastic No No
ASHES Evaluation/Commercial Aero-servo-hydro-elastic No No

Simulia WTS 3 Commercial WTS 3 to optimize their design No No
OpenWindPower Commercial WTS 3 to optimize their design No No

DNV software packages Commercial WTS 3 to optimize their design No No
ANSYS Fluent Trial/Commercial Fluid Simulation Software No No

WAsP Educational/Commercial Wind resource assessment - -
Simulwind GPL 4 Technician training No No

Wind Tech Simulator Free Technician training No No
TidalBladed Commercial TTS 5 to optimize their design Yes No

OpenTidalFarm GPL 4 Optimizing tidal turbine farms Yes No
FHYGSYS Free (soon) Aero-servo-hydro Yes Yes

1 Marine Current Turbines. 2 Floating Hybrid Systems. 3 Wind Turbine Simulation. 4 General Public License.
5 Tidal Turbine Simulation.

Regarding research work, there are studies focused on the modeling and simulation of
wind and marine turbines.

In [22], a wind action simulation software consisting of two models was used. The
first simulates short-term components—representing turbulence using von Karman’s
model [23]—and the second simulates medium-term and long-term wind speed com-
ponents, applying Van der Hoven’s model [24]. The data generated with the wind sim-
ulator were applied to an electromechanical simulator, allowing the torque and speed of
the generator shaft to be evaluated by applying a continuous feedback control system.
In [25], an electromechanical simulator, similar to the one explained in [22] but in which
a wind steady-state behavior model was used, was presented. Similar studies can be found
in [26–28].

In [29], a simulator for the study of micro wind turbines for urban areas was presented.
It is composed of a fan, which simulates the action of the wind, and was applied to the wind
turbine in a wind tunnel. The results were compared with those obtained by simulating
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the wind turbine with Blade Element Momentum (BEM) theory and with those obtained
with the commercial software ANSYS Fluent [16].

Focusing on floating wind turbines, [30] presented an in-depth analysis of the different
floating system modeling tools existing at that time, analyzing the structural dynamics,
aerodynamics, hydrodynamics, and the mooring system of each one of them.

In [31], a high-fidelity aerodynamic method was presented to correct the speed of
the incident wind on the rotor of a floating wind turbine. This method can be applied
to any simulation code. In [32], the different loads acting on an offshore wind turbine
were explained, analyzing the modeling alternatives in each case. The study focused on
offshore fixed foundation wind turbines installed at shallow depths. In [33], the non-linear
behavior arising in a floating wind turbine subjected to simultaneous wind and wave
loads was studied, with the aim of evaluating the structural fatigue of the floating system.
In [34], a simplified model for large-scale offshore wind farms was presented, based on the
simulation of the wake effects of each wind turbine and how they affect the adjacent ones.

In [35], an aero-hydro-elastic model was proposed to predict power production in the
time domain. To develop the model, a floating OC3-Hywind-type wind turbine [2,3] had
been chosen. The results of the study were compared with those presented in [36].

Regarding studies on marine turbines, the study in [37] is a very interesting work
because it covers all the problems of the simulation of marine turbines, from the modeling
of the marine currents for long periods of time to the modeling of the marine turbines
applying the BEM theory. The results were compared with those obtained in [38,39]. Based
on [37], a study was carried out in [40] but including an electromechanical simulator
composed of an electric motor coupled to a generator, thus allowing the data obtained with
the simulation to be compared with those obtained experimentally.

In [41,42], an electromechanical simulator was described, in which an electric motor
was coupled to a generator and then to an active brake to study power generation and the
automatic control system. In [43], the production of electrical energy in an array of marine
turbines was studied using computational fluid dynamics (CFD) software, analyzing the
effect of wake propagation in the adjacent turbines. In [44], a simulator—using Matlab-
Simulink®—of a tidal current turbine, the drive train, and the generator was implemented.

In [45], a comparison between simulated and real data from a tidal turbine was
performed. The simulation data were obtained using TidalBladed software [20], applying
von Karman’s model [23] for turbulent flow modeling of the marine current. Real data
were obtained from Alstom Ocean Energy’s 1 MW tidal turbine [46], which was deployed
at the European Marine Energy Center (EMEC). In [47], the limitations of the modeling
of individual marine turbines when applied to a tidal turbine farm were studied. For
this, Python software developed in [48] was used. The tidal current model was obtained
using the JONSWAP (Joint North Sea Wave Project) spectrum to which a necessary term
was added to complete the marine current model affecting adjacent turbines in a tidal
turbine farm.

In [49], a solid–fluid interaction model of a marine turbine was presented, using
two turbulent flow modeling strategies: the Reynolds-Averaged Navier–Stokes (RANS)
and the Large Eddy Simulation (LES) method. The fluid modeling was performed with
ANSYS Fluent [16], and the results were compared with experimental data obtained in [39].
In [50], a model of tidal turbines in a water-sediment environment was presented. The
turbine modeling was based on the BEM theory but correcting the values of lift coefficient
(CL) and the drag coefficient (CD) of each airfoil. The fluid modeling was performed with
ANSYS Fluent [16], and the results were compared with experimental data obtained using
a wind tunnel.

Regarding floating hybrid systems, in [51], the first version of a hybrid system capable
of taking advantage of both wind energy and marine currents to produce electricity with
the aim of maximizing the performance of a structure installed in the sea was presented.
In [52], using the proposed system presented in [51], augmentation channels were included
in the marine turbines to increase their efficiency in conditions of low fluid intensity. In [53],
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different proposals for hybrid systems for the extraction of energy from wind, waves, and
marine currents were reviewed. In [54], a mathematical model of a hybrid system capable
of extracting energy from both wind and waves was presented.

In [55], the first version of the mathematical model described in [1] and completed
in this paper was presented. In that version, the mobile coordinate system was located
at the center of mass of the floating system, while in [1], it was located—as shown in
Figure 1—at the intersection of the floating platform with the still water level. In [56], the
numerical model of a hybrid system composed of a floating wind turbine and a Wave
Energy Converter (WEC) system was presented, with the aim of optimizing the size and
layout of the WEC system. In [57], the control and supervision requirements of floating
hybrid systems were reviewed, taking as an example those described in [1,52,55].

This paper is structured as follows: In Section 2.1, the work developed in [1] is briefly
reviewed to use it as a starting point for the rest of the sections. In Section 2.2, the forces
acting on the floating system are introduced. In Section 2.3, the modeling of the wind
and marine currents used to calculate the different forces is presented. In Sections 2.4–2.7,
the forces acting on the floating system are extensively discussed. These are, in order
of appearance, the forces exerted by the mooring system, the gravitational forces, the
hydrodynamic forces, and the Coriolis–centripetal forces. Next, in Section 2.8, the modeling
of the turbines using the One-Dimensional theory is explained, which allows for obtaining
the forces exercised by the turbines. Section 3 presents the results obtained in the performed
tests, and finally, Section 4 includes the discussion and future work for this line of research.

2. Materials and Methods
2.1. Introduction to the Mathematical Model of the Floating Hybrid System

The first task for the modeling of a floating hybrid system such as the one exposed
in [1]—and which appears in Figure 1—could be considered the mechanical design of all the
elements that compose it, using solid mechanical design software, in our case, Solid Works®.
As indicated in the Introduction, this task constitutes the data preprocessing that provides
FHYGSYS with information on the mechanical characteristics of the physical system whose
behavior is going to be simulated (see Figure 2). The mechanical characteristics—or inertial
data—obtained in this way are the mass, the center of mass, and the inertia tensor, formed by
the moments and products of inertia of each element (all these data appear in Appendix A
of [1]).

From the mechanical characteristics of each element, the global inertial data—mass
(mFS); center of mass (CoM); and inertia tensor, composed of moments (Ixx, Iyy, Izz) and
products of inertia (Ixy, Iyz, Izx)—of the floating hybrid system are obtained. This process
was explained in detail in [1]. Table 2 shows the global values of the inertial properties—
extracted from Appendix A of [1]—applied to FHYGSYS for the dynamics processing of the
floating hybrid system shown in Figure 1. These data are inserted into FHYGSYS through
the rigid body matrix (MRB), which is shown in Equation (1), extracted from [1].

MRB =



mFS
0
0

0
mFS

0
0

mFS·zCoM
−mFS·yCoM

−mFS·zCoM
0

mFS·xCoM

0
0

mFS

0
−mFS·zCoM
mFS·yCoM

mFS·yCoM
−mFS·xCoM

0

Ixx
−Ixy
−Izx

mFS·zCoM
0

−mFS·xCoM

−mFS·yCoM
mFS·xCoM

0
−Ixy
Iyy
−Iyz

−Izx
−Iyz
Izz

 (1)

This methodology is a fast and effective way to model mechanical systems and is
extensible to systems of a different nature; for example, it can be used in control engineering
for modeling mechanical systems.

Processing of the added mass discussed in [1]—interpreting this as a particular volume
of fluid particles that are accelerated with the submerged part of the floating system [58]—is
performed in a similar way to inertial processing. In this case, the inertial data are also
necessary, but the volume of water displaced by the submerged and partially submerged
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parts of the floating system are used, that is, the mass of these volumes, their centers of
buoyancy, and their inertia tensors (these data appear in Appendix A of [1]).

Table 2. Global inertial properties of the floating hybrid system (for t = 0).

Element Floating Hybrid System

Mass (kg) 8,138,259
Ixx (kg·m2) 67,434,701,761 1

Iyy (kg·m2) 67,398,679,463 1

Izz (kg·m2) 144,576,159 1

Ixy (kg·m2) 7.56248 1

Iyz (kg·m2) −75.8696 1

Izx (kg·m2) −12,699,829 1

Center of Mass (m) (−0.0172219, 0, −76.6108) 2

1 Calculated at origin of the mobile coordinate system. 2 Expressed in the mobile coordinate system.

The totally submerged elements are the blades, the hubs, and the support of the
marine current turbines. These are treated as if they were some more solid elements, that is,
their mechanical design is carried out—in Solid Works®—considering them as compact
solids and using the density of sea water for the design. In Figure 2, these elements are
represented in the preprocessed data block together with the inertial data.

The partially submerged element is the floating platform, and its submerged volume
varies as a function of time, so this calculation is performed using FHYGSYS at each instant
of time while the simulation is running. This implies that, at each instant of time, a new
mass, a new center of buoyancy, and a new inertia tensor of the submerged volume of the
floating platform are obtained.

In the same way as in the previous case, from the mechanical characteristics of each
element, the global inertial data—mass of the submerged volume (mSUM(t)); center of
buoyancy (CoB); and inertia tensor, composed of moments (Ixx(SUM), Iyy(SUM), Izz(SUM))
and products of inertia (Ixy(SUM), Iyz(SUM), Izx(SUM))—of all submerged parts of the floating
hybrid system are obtained. These values—extracted from Appendix A of [1]—appear in
Table 3.

Table 3. Global inertial properties of the floating hybrid system to calculate added mass (for t = 0).

Element Floating Hybrid System

Volume (m3) 8100.42
Mass (kg) 8,302,931

Ixx(SUM) (kg·m2) 41,051,048,910 1

Iyy(SUM) (kg·m2) 41,036,448,653 1

Izz(SUM) (kg·m2) 103,989,376 1

Ixy(SUM) (kg·m2) 0 1

Iyz(SUM) (kg·m2) 0 1

Izx(SUM) (kg·m2) −60,847.1 1

Center of Buoyancy (m) (0.000366417, 0, −61.6897) 2

1 Calculated at origin of the mobile coordinate system. 2 Expressed in the mobile coordinate system.

As in the previous case, these data are applied to FHYGSYS by means of a matrix,
in this case, the added mass matrix (MAM), which appears in Equation (32) of [1]. To
obtain this matrix, the coefficients—which depend on the shape of the submerged volume—
that correct the values of the MAM matrix must be calculated. In Equation (32) of [1],
some elements appear multiplied by the mass of the submerged volume (mSUM(t)). As in
Equations (26)–(28) of [1], the mass of the submerged volume (mSUM(t)) must be multiplied
by the coefficients as a function of α0, β0, and γ0. For this reason, Equation (32) of [1] should
be interpreted as shown in Equation (2).
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MAM = −



X .
u

0
0

0
Y .

v
0

0
X .

u·zCoB
−X .

u·yCoB

−Y .
v·zCoB
0

Y .
v·xCoB

0
0

Z .
w

0
−X .

u·zCoB
X .

u·yCoB

Z .
w·yCoB

−Z .
w·xCoB
0

K .
p

−Ixy(SUM)

−Izx(SUM)

Y .
v·zCoB

0
−Y .

v·xCoB

−Z .
w·yCoB

Z .
w·xCoB

0
−Ixy(SUM)

M .
q

−Iyz(SUM)

−Izx(SUM)

−Iyz(SUM)

N.
r


(2)

Although all these processes were explained in detail in [1], given its importance,
for greater clarity, an example of calculating the MAM matrix for instant t = 0 has been
included in Appendix A of this work.

As indicated in the Introduction, in the first part of this work [1], the mathematical
modeling of kinematics and dynamics were explained. The computation of the kinematics
was based on the use of homogeneous transformation matrices [59], while the computation
of the dynamics was based on the application of Newton’s second law for a floating system,
as indicated in [60]. To apply the dynamics, it is necessary to know the inertial data and
the added mass of the floating system, as well as the resultant forces that act on it (see
Figure 2). Both the obtained inertial data and the added mass have been reviewed in
previous paragraphs and are explained in depth in [1]. To complete the exposition of our
mathematical model, it is necessary to explain in detail how to obtain the resultant forces
that act on the floating system. In [1], a brief review of all of them was provided, and in the
following sections, the details are presented.

2.2. Influential Forces on the Floating Hybrid System

The calculation of the forces acting on the floating hybrid system is carried out vectori-
ally; this implies that vectors must be used to represent both the forces and the moments
that act on it. As indicated in [1], for the processing of the mathematical model, two main
coordinate systems were used, a fixed one that is considered inertial and a mobile one that
is fixed to the floating system and therefore accelerates with it (see Figure 3).

Figure 3. Degrees of freedom of the floating system and inertial and mobile coordinate systems.
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In Figure 3, the inertial and mobile coordinate systems can be seen at two different
instants of time; in the initial position, both coordinate systems are coincident.

Applying Newton’s second law to a floating system, Equation (3) is obtained, which
allows for solving the dynamics in the mathematical model and calculating the acceleration
generated in the system. Starting from this acceleration, in [1], we explained in detail how
the new position of the system is calculated. The equation thus represented is extracted
from [1], in which the MRB and MAM matrices appear related to the resultant forces acting

on the floating hybrid system expressed in the mobile coordinate system
(→

Fj

TOTAL

(BODY)

)
.

→
avj(BODY) = (MRB + MAM)−1·

→
Fj

TOTAL

(BODY) = (MRB + MAM)−1·
[
FxFyFz Mx My Mz

]T (3)

The resultant forces acting on the floating system is made up of many interactions. At
a first level, this resultant could be subdivided as shown in Figure 2 into five groups of force
and moment vectors. This subdivision corresponds to the one presented in Equation (4),
extracted from [1].

→
Fj

TOTAL

(BODY) =
→
Fj

WIND TURBINE

(BODY) +
→
Fj

GRAVITY

(BODY) +
→
Fj

HYDRODYNAMICS

(BODY) +
→
Fj

MOORING SYSTEM

(BODY) +
→
Fj

CORIOLIS

(BODY) (4)

As indicated in [1], the calculation of the resultant forces is based on the fact that those
forces change very little between instants of time; this allows for the application of the
superposition theorem [61], calculating the forces separately and adding them to obtain the
resultant forces acting on the floating hybrid system. Dynamics processing is easier if the
resultant forces are expressed in the mobile coordinate system; therefore, each of the forces
must also be expressed in this coordinate system. In [1] and in this paper, this procedure
was adopted for simplicity and coherence with the methodology explained in [60].

The general criteria applied for the calculation of each one of the forces is the following:
first, the corresponding force vector is obtained in the mobile coordinate system; second,
the point of application of the force vector on the floating system is deduced; and finally,
the force vector is translated from this point to the origin of the mobile coordinate system,
thus obtaining the moment vector at the origin of this system caused by the force vector.
The theoretical foundations that support this criterion are widely used in mechanics and
can be found in [62–64]. Table 4 shows some common constants used to calculate the
different forces.

Table 4. Simulation environment constants.

Property Value Symbol

Gravity Acceleration 1 9.80665 m/s2 g
Density of Air 1 1.225 kg/m3 ρAIR

Density of Seawater 1 1025 kg/m3 ρSEA WATER
Water Depth 2 320 m dWATER

1 Value used by FASTv8. 2 Source [2].

Next, the modeling of the acting fluids on the floating hybrid system is described: these
are the wind and the marine currents. These models are subsequently used in the following
sections to obtain some of the force vectors acting on the floating system. These forces could
modify moving parts—for example, the force of the wind rotates the wind turbine and the
force of the marine currents rotates the marine current turbines—or generate thrusts such
as marine currents on the floating platform.
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2.3. Modeling of the Wind and the Marine Currents Acting on the Floating Hybrid System
2.3.1. Wind Modeling

The modeling of the wind action used in [1] and in this work is unidirectional and
steady—although more complete models could also be used in FHYGSYS, such as those
exposed in [31,35]; this model has been chosen for simplicity and because it facilitates the
validation process of the FHYGSYS tool. In this way, to define the wind action that will be
used in a certain simulation, only the wind speed (VW−REF) and its direction (δ) must be
indicated. These two values are constant for a given simulation.

The wind speed (VW−REF) is the magnitude of the wind velocity vector at the reference
height (zREF). This reference height is 90 m above the still water level—the height of the hub
of the wind turbine in the initial position [2,3]—following the same criteria used in [7,65].

Taking into account that the wind speed depends on the height (h), to calculate the
magnitude (VWIND(h)) of the wind velocity vector at a certain height (zWIND(t) > 0),
Equation (5)—extracted from [65]—is used, where (α) is the power law exponent, which
has a value of 1/7 for normal wind conditions and 0.11 for extreme conditions [65]. In [1]
and in this work, all the simulations have been carried out considering normal wind
conditions, so the power law exponent (α) always takes the value 1/7.

VWIND(h) = VW−REF·
(

zWIND(t)
zREF

)α

(5)

The orientation of the wind velocity vector is always parallel to the X-Y plane of the
inertial coordinate system. The direction (δ) is the angle of rotation of the wind velocity
vector around the Z axis of the inertial coordinate system with which a vector field is
obtained (see Figure 4), whose vectors are also parallel to the X-Y plane of the inertial
coordinate system, rotated by a certain angle (δ) around the Z axis. In this way, a uniform-
wind-shear-type velocity vector field is obtained as described in [66].

To obtain the wind velocity vectors (
→
v WIND(INERTIAL)(h)) of the vector field rotated

by the corresponding angle (δ), Equation (6) is applied, thus calculating the wind velocity
vectors expressed in the inertial coordinate system.

→
v WIND(INERTIAL)(h) = VWIND(h)·

cos δ −sin δ 0
sin δ cos δ 0

0 0 1

·
1

0
0

 (6)

When this vector field interacts with the floating hybrid system, it must be con-
sidered that the floating system moves through the water due to the forces acting on
it. Considering this issue, one more calculation must be made. First, the velocity vec-
tor (

→
v point(INERTIAL)(t)) of the floating system at the calculation point must be obtained.

This is performed by differentiating with respect to time—applying the expressions from
Appendix C of [1]—the position of this point expressed in the inertial coordinate system
(
→
p point(INERTIAL)(t)) (Equation (7)). In this case, the Z coordinate of the calculation point

(
→
p point(INERTIAL)(t)) corresponds to the height (zWIND(t)) used in Equation (5).

→
v point(INERTIAL)(t) =

d
dt
→
p point(INERTIAL)(t) (7)

Finally, the effective wind velocity vector (
→
v EFF−WIND(INERTIAL)(h, t))—which acts

on a certain point of the floating system—is obtained by adding the velocity vector
(
→
v point(INERTIAL)(t)) of this calculation point to the wind velocity vector (

→
v WIND(INERTIAL)(h))

at the height at which the point is located (Equation (8)).

→
v EFF−WIND(INERTIAL)(h, t) =

→
v WIND(INERTIAL)(h) +

→
v point(INERTIAL)(t) (8)
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2.3.2. Sub-Surface Current Modeling

The modeling of the sub-surface current action used in [1] and in this work is also
unidirectional and steady. So, the same criteria described for modeling the wind—explained
in the previous section—are used to model the sub-surface current. In this case, to define
the current action that will be used in a certain simulation, the current speed (VSWL) and its
direction (ε) must also be indicated. These two values are also constant for a given simulation.

Analogously to the previous case, the current velocity (VSWL) is the magnitude of the
sub-surface current velocity vector at the reference depth, following the criteria of [65] the
reference depth is at the still water level (zSSCUR(t) = 0).

In this case, the current speed depends on the depth (h), to calculate the magnitude
(VSSCUR(h)) of the current velocity vector at a certain depth (zSSCUR(t) ≤ 0); Equation (9)—
extracted from [65]—is used, where (α) is the power law exponent and takes the same value
exposed in the previous section, 1/7 for normal current conditions [65]. To use Equation (9),
another piece of information that must be known is the total water depth (dWATER) at which
the simulation is performed. The one indicated in [2]—whose value is 320 m—has been
chosen for all the simulations (see Table 4).

VSSCUR(h) = VSWL·
(

zSSCUR(t) + dWATER
dWATER

)α

(9)

The sub-surface current velocity vectors also constitute a vector field whose vectors are
always parallel to the X-Y plane of the inertial coordinate system and rotated by a certain
angle (ε) around the Z axis of the inertial coordinate system (see Figure 4). In [65], it is
indicated that in general, it may be acceptable to assume that the sub-surface currents are
aligned with the wave direction.

As in the previous case, to obtain the sub-surface current velocity vectors
(
→
v SSCUR(INERTIAL)(h)) of the vector field rotated by the corresponding angle (ε), Equation (10)
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is applied, thus also calculating the sub-surface current velocity vectors expressed in the
inertial coordinate system.

→
v SSCUR(INERTIAL)(h) = VSSCUR(h)·

cos ε −sin ε 0
sin ε cos ε 0

0 0 1

·
1

0
0

 (10)

Equivalent to the previous case, to obtain the effective current velocity vector
(
→
v EFF−SSCURR(INERTIAL)(h, t))—which acts on a certain point of the floating system—

Equation (11) is applied.

→
v EFF−SSCURR(INERTIAL)(h, t) =

→
v SSCUR(INERTIAL)(h) +

→
v point(INERTIAL)(t) (11)

The velocity vector (
→
v point(INERTIAL)(t)) of the floating system at the calculation point

is obtained in the same way using Equation (7). In this case, the Z coordinate of the
calculation point (

→
p point(INERTIAL)(t)) also corresponds to the depth (zSSCUR(t)) used in

Equation (9).

2.3.3. Near-Surface Current Modeling

Unlike the sub-surface current, the near-surface current arises exclusively from the
action of the wind, so its orientation is the same as that of the wind. This type of current
also constitutes a vector field whose vectors are always parallel to the X-Y plane of the
inertial coordinate system and rotated the same angle (δ) as the wind around the Z axis of
the inertial coordinate system (see Figure 4).

Since the near-surface current appears from the wind, the magnitude (VNSCUR(h)) of
the near-surface current velocity vector at the reference depth—this is the same as in the
case of the sub-surface current, at the still water level (zNSCUR(t) = 0)—is obtained by
applying the following reasoning.

According to the criterion of [65], from the reference wind speed (VW−REF), Equation (5)
is applied for a height of 10 m (zWIND(t) = 10), yielding VWIND(10). The effects of the
near-surface current are considered to disappear from a depth of 20 m [65], so to obtain
the magnitude (VNSCUR(h)) of the velocity vector of this current, Equation (12) is applied—
extracted from [65]—for the desired depth (0 ≥ zNSCUR(t) ≥ −20).

VNSCUR(h) = 0.01·VWIND(10)·
(

1 +
zNSCUR(t)

20

)
(12)

In the same way as in the previous cases, to obtain the near-surface current velocity
vectors (

→
v NSCUR(INERTIAL)(h)) of the vector field rotated by the corresponding angle

(δ), Equation (13) is used, thus also calculating the near-surface current velocity vectors
expressed in the inertial coordinate system.

→
v NSCUR(INERTIAL)(h) = VNSCUR(h)·

cos δ −sin δ 0
sin δ cos δ 0

0 0 1

·
1

0
0

 (13)

As in the previous cases, to obtain the effective current velocity vector
(
→
v EFF−NSCURR(INERTIAL)(h, t))—which acts on a certain point of the floating system—

Equation (14) is applied.

→
v EFF−NSCURR(INERTIAL)(h, t) =

→
v NSCUR(INERTIAL)(h) +

→
v point(INERTIAL)(t) (14)

The velocity vector (
→
v point(INERTIAL)(t)) of the floating system at the calculation point

is obtained in the same way using Equation (7). In this case, the Z coordinate of the
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calculation point (
→
p point(INERTIAL)(t)) also corresponds to the depth (zNSCUR(t)) used in

Equation (12).
Although FHYGSYS offers this possibility, the near-surface current is not used neither

in [1] nor in this work to carry out simulations, since its effect is small.

2.4. Vector of Mooring System Forces

The mooring system is responsible for avoiding the drift of the floating hybrid system,
retaining it as close as possible to its initial position. Following the approach of [2], it is
composed of three mooring lines arranged at 120 degrees—in the initial position—around
the Z axis of the inertial coordinate system (see Figure 5).

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 13 of 68 
 

 

2.4. Vector of Mooring System Forces 

The mooring system is responsible for avoiding the drift of the floating hybrid sys-

tem, retaining it as close as possible to its initial position. Following the approach of [2], it 

is composed of three mooring lines arranged at 120 degrees—in the initial position—

around the Z axis of the inertial coordinate system (see Figure 5). 

 

Figure 5. Position of the significant points of the mooring system at two instants of time. 

Table 5 shows the position of the points of the fairleads attached to the floating plat-

form and the anchors fixed on the seabed. These values are expressed in the inertial coor-

dinate system, correspond to the initial position of the floating system (see Figure 5), and 

are deduced from the information provided by [2]. The assignment of the line numbers 

corresponds to the numbering indicated in [1] and in Figures 1 and 5. 

Table 5. Significant values of the mooring system in the initial position. 

Element Symbol Position (m) 

Mooring Line Fairlead 1 𝑝𝐹1 (5.2, 0, −70) 

Mooring Line Anchor 1 𝑝𝐴1 (853.87, 0, −320) 

Yaw angle with respect to inertial X axis 𝜑𝐿𝑖𝑛𝑒 1 0 deg 

Mooring Line Fairlead 2 𝑝𝐹2 (−2.6, 4.503, −70) 

Mooring Line Anchor 2 𝑝𝐴2 (−426.9, 739.5, −320) 

Yaw angle with respect to inertial X axis 𝜑𝐿𝑖𝑛𝑒 2 120 deg 

Mooring Line Fairlead 3 𝑝𝐹3 (−2.6, −4.503, −70) 

Mooring Line Anchor 2 𝑝𝐴3 (−426.9, −739.5, −320) 

Yaw angle with respect to inertial X axis 𝜑𝐿𝑖𝑛𝑒 3 240 deg 

The fairleads move attached to the floating platform, while the anchors always re-

main fixed on the seabed. This implies—as shown in Figure 5—that the position of the 

anchors remains constant with respect to the inertial coordinate system, but not with re-

spect to the mobile coordinate system and, vice versa, the position of the fairleads varies 

with respect to the inertial coordinate system but not with respect to the mobile coordinate 

system. 

Figure 5. Position of the significant points of the mooring system at two instants of time.

Table 5 shows the position of the points of the fairleads attached to the floating
platform and the anchors fixed on the seabed. These values are expressed in the inertial
coordinate system, correspond to the initial position of the floating system (see Figure 5),
and are deduced from the information provided by [2]. The assignment of the line numbers
corresponds to the numbering indicated in [1] and in Figures 1 and 5.

Table 5. Significant values of the mooring system in the initial position.

Element Symbol Position (m)

Mooring Line Fairlead 1 pF1 (5.2, 0, −70)
Mooring Line Anchor 1 pA1 (853.87, 0, −320)

Yaw angle with respect to inertial X axis ϕLine 1 0 deg

Mooring Line Fairlead 2 pF2 (−2.6, 4.503, −70)
Mooring Line Anchor 2 pA2 (−426.9, 739.5, −320)

Yaw angle with respect to inertial X axis ϕLine 2 120 deg

Mooring Line Fairlead 3 pF3 (−2.6, −4.503, −70)
Mooring Line Anchor 2 pA3 (−426.9, −739.5, −320)

Yaw angle with respect to inertial X axis ϕLine 3 240 deg

The fairleads move attached to the floating platform, while the anchors always remain
fixed on the seabed. This implies—as shown in Figure 5—that the position of the anchors
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remains constant with respect to the inertial coordinate system, but not with respect to the
mobile coordinate system and, vice versa, the position of the fairleads varies with respect
to the inertial coordinate system but not with respect to the mobile coordinate system.

In [2], three different models of the mooring system are proposed; among them, a non-
linear model of an individual mooring line has been chosen. The characteristics of this type
of modeling are extracted from [61,67]. In this way, the force and moment vector of each
mooring line is calculated separately, and then, these vectors are added using Equation (15),
thus obtaining the total force vector of the entire mooring system.

→
Fj

MOORING SYSTEM

(BODY) (t) =
→
Fj

LINE 1

(BODY)(t) +
→
Fj

LINE 2

(BODY)(t) +
→
Fj

LINE 3

(BODY)(t) (15)

Applying the criteria explained in [61], the first task to obtain the vector of forces of
the mooring lines is to express the points of the fairleads (pFi) in the anchor coordinate
system (see Figure 6b). This task is carried out by expressing, as a previous step, these
points in an intermediate anchor coordinate system, whose three axes are parallel to those
of the inertial coordinate system and whose origins are exactly at the anchor position of
each one of the mooring lines (see Figure 6a).
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As a second step, the angle (ϕanchorCS i(t)) that each of these three intermediate anchor
coordinate systems must be rotated—around its corresponding Z axis—is calculated. Thus,
each of the X axes are directed toward the corresponding fairlead points. In this way, the
anchor coordinate systems are correctly located for the calculations (see Figure 6b).

Expressing the above in a mathematical way, for the calculation in a mooring line,
Equations (16) and (17) are applied to express—in the intermediate anchor coordinate
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system—the position vector of the fairlead in the initial position (
→
p FAi(INTER)(t=0)) and in

the position of a subsequent instant of time (
→
p FAi(INTER)(t>0)(t)).

→
p FAi(INTER)(t=0) =

[
pFi(INERTIAL)(t=0) − pAi(INERTIAL)

]T
·

1 0 0
0 1 0
0 0 0

 (16)

→
p FAi(INTER)(t>0)(t) =

[
pFi(INERTIAL)(t>0)(t)− pAi(INERTIAL)

]T
·

1 0 0
0 1 0
0 0 0

 (17)

Since the angle (ϕanchorCS i(t)) to be calculated is an angle rotated around the Z axes
of the intermediate anchor coordinate systems—the X-Y plane of an intermediate anchor
coordinate system and that of an anchor coordinate system is always parallel to the X-Y
plane of the inertial coordinate system—the Z coordinate in Equations (16) and (17) must
be zero.

Afterwards, performing the cross product (
→

crossFAi(INTER)(t))—through Equation (18)—

of the position vectors
→
p FAi(INTER)(t=0) and

→
p FAi(INTER)(t>0)(t), the angle (ϕanchor i(t))

formed by these two position vectors is obtained using Equation (19). These equations are
widely used in vector calculus and can be found in [68].

→
crossFAi(INTER)(t) =

→
p FAi(INTER)(t=0) ×

→
p FAi(INTER)(t>0)(t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xpFAi(INTER)(t=0) ypFAi(INTER)(t=0) 0
xpFAi(INTER)(t>0) ypFAi(INTER)(t>0) 0

∣∣∣∣∣∣∣ (18)

ϕanchor i(t) = asin


∣∣∣ →crossFAi(INTER)(t)

∣∣∣∣∣∣→p FAi(INTER)(t=0)

∣∣∣·∣∣∣→p FAi(INTER)(t>0)(t)
∣∣∣
 (19)

Figure 7 shows the anchor coordinate system in two instants of time, which allows
us to observe the angle ϕanchor 3, formed by the anchor coordinate system—of mooring
line 3—at the initial instant (t = 0) and a subsequent instant of time (t > 0).
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0 1 0
0 0 0

] (16) 
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𝑇

∙ [
1 0 0
0 1 0
0 0 0

] (17) 

Since the angle (𝜑𝑎𝑛𝑐ℎ𝑜𝑟𝐶𝑆 𝑖(𝑡)) to be calculated is an angle rotated around the Z axes 

of the intermediate anchor coordinate systems—the X-Y plane of an intermediate anchor 

coordinate system and that of an anchor coordinate system is always parallel to the X-Y 

plane of the inertial coordinate system—the Z coordinate in Equations (16) and (17) must 

be zero. 

Afterwards, performing the cross product (𝑐𝑟𝑜𝑠𝑠 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝐹𝐴𝑖(𝐼𝑁𝑇𝐸𝑅)(𝑡) )—through Equation 

(18)—of the position vectors 𝑝 ⃗⃗⃗  𝐹𝐴𝑖(𝐼𝑁𝑇𝐸𝑅)(𝑡=0)  and 𝑝 ⃗⃗⃗  𝐹𝐴𝑖(𝐼𝑁𝑇𝐸𝑅)(𝑡>0)(𝑡) , the angle 

(𝜑𝑎𝑛𝑐ℎ𝑜𝑟 𝑖(𝑡)) formed by these two position vectors is obtained using Equation (19). These 

equations are widely used in vector calculus and can be found in [68]. 
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The sign of the Z component of
→

crossFAi(INTER)(t) determines the sign of the angle
ϕanchor i(t); therefore, to calculate the rotated angle of the anchor coordinate system with
respect to the intermediate anchor coordinate system (ϕanchorCS i(t)), Equation (20) or (21),
depending on the case, should be used. The ϕLine i angle is the corresponding one—for each
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mooring line—which appears in Table 5. In these two equations, the angles are represented
in radians.

ϕanchorCS i(t)
∣∣∣∣
z →

crossFAi(INTER)
≥0

= ϕanchor i(t) + ϕLine i + π (20)

ϕanchorCS i(t)
∣∣∣∣
z →

crossFAi(INTER)
<0

= −ϕanchor i(t) + ϕLine i + π (21)

Once the angle ϕanchorCS i(t) has been calculated, the fairlead point (pFi(INERTIAL)(t))—
of one of the mooring lines represented in the inertial coordinate system—is obtained but
represented in the anchor coordinate system (pFi(ANCHOR)(t)), using Equations (22) and (23).
Equation (22) yields the homogeneous transformation matrix (MHTi

INERTIAL
ANCHOR ) that allows

for the change between the two coordinate systems.

MHTi
INERTIAL
ANCHOR (t) = MHTi

INERTIAL
ANCHOR =


1 0 0 pAi(INERTIAL)x
0 1 0 pAi(INERTIAL)y
0 0 1 pAi(INERTIAL)z
0 0 0 1

·


cos ϕanchorCS i
sin ϕanchorCS i

−sin ϕanchorCS i
cos ϕanchorCS i

0
0

0
0

0
0

0
0

1
0

0
1

 (22)

pFi(ANCHOR)(t) =
(

MHTi
INERTIAL
ANCHOR

)−1
·pFi(INERTIAL)(t) =


xFi
yFi
zFi
1

 =


xFi
0

zFi
1

 (23)

To facilitate the following calculations and for consistency with [61], the X and Z
components of pFi(ANCHOR)(t) are assigned the symbols xFi and zFi, respectively (see
Equation (23)). The yFi component always takes the value zero because each of the X axes
of the anchor coordinate systems are directed toward the corresponding fairlead points.

The main characteristics that define the behavior of the mooring system are extracted
from [2] and are shown in Table 6. These values—together with the xFi and zFi components—
allow the calculation of the force vector of each mooring line.

Table 6. Mooring system properties.

Property Value Symbol

Unstretched Mooring Line Length 1 902.2 m L
Equivalent Mooring Line Extensional Stiffness 1 384,243 kN EA

Cable-seabed friction coefficient 2 0.001 CB
Equivalent Mooring Line Mass Density 1 77.7066 kg/m mLine

Mooring Line Diameter 1 0.09 m DC
Additional Yaw Spring Stiffness 1 98,340 kN·m/rad AddYS

1 Source [2]. 2 Value used by FASTv8.

The modeling of the mooring lines is based on the mathematical representation of
the catenary arcs that draw each one of them. Before presenting these equations, it is
important—as also explained in [61,67]—to preprocess some data to simplify them.

Specifically, based on the information shown in Tables 4 and 6, the apparent weight
of the mooring line in fluid per unit length (wL) is obtained using Equation (24) and the
unstretched portion of the mooring line resting on the seabed (LBi) using Equation (25).
Both equations represented in this way are taken from [61].

wL =

(
mLine − ρSEAWATER·

π·DC
2

4

)
·g (24)
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LBi = L− VFi
wL

(25)

The force vector of each mooring line (FLine i) has two components: one horizontal
(HFi) and one vertical (VFi); the latter appears in Equation (25). The force vectors of lines 2
and 3, as well as their horizontal and vertical components, are shown in Figure 8.
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The next step is to calculate the horizontal (HFi) and vertical (VFi) components of
the force vector (FLine i) of each mooring line, for which a system of two equations in two
unknowns is used. When a portion of the mooring line adjacent to the anchor rests on the
seabed (LBi > 0), Equations (26) and (27) are applied. Equation (26) is extracted from [61]
and Equation (27) is extracted from [67].

xFi(HFi, VFi) = LBi +
HFi
wL
·ln

 VFi
HFi

+

√
1 +

(
VFi
HFi

)2
+

HFi·L
EA

+
CB·wL
2·EA

·
[(

LBi −
HFi

CB·wL

)
·MAX

(
LBi −

HFi
CB·wL

, 0
)
− LBi

2
]

(26)

zFi(HFi, VFi) =
HFi
wL
·

√1 +
(

VFi
HFi

)2
− 1

+
VFi

2

2·EA·wL
(27)

When no portion of the line rests on the seabed (LBi ≤ 0), Equations (28) and (29) are
used, both extracted from [61].

xFi(HFi, VFi) =
HFi·L
EA

+
HFi
wL
·

ln

 VFi
HFi

+

√
1 +

(
VFi
HFi

)2
− ln

VFi − wL·L
HFi

+

√
1 +

(
VFi − wL·L

HFi

)2
 (28)

zFi(HFi, VFi) =
HFi
wL
·

√1 +
(

VFi
HFi

)2
−

√
1 +

(
VFi − wL·L

HFi

)2
+

1
EA
·
(

VFi·L−
wL·L2

2

)
(29)

These systems of equations are composed of implicit equations, and to solve them—
as indicated in [61]—the Newton–Raphson method explained in [69] is used. This is an
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iteration method that needs a value for HFi and VFi as a starting point for the iteration
process; in [61], how to initialize these values is explained.

How to obtain the values of the horizontal (HAi) and vertical (VAi) components of the
vector of forces produced in each of the anchors is also explained in [61]. The calculation of
these components is not included in this work since they are not necessary to calculate the
vector of mooring system forces.

Once the appropriate system of equations has been solved, from the values of HFi

and VFi, the force vector of the corresponding mooring line (FLine i or
→
F

LINE i

(ANCHOR)(t)) is
obtained by applying Equation (30). In Equations (25) to (30), the HFi and VFi components
are dependent on time; this detail has not been indicated in them for clarity, but this
dependence is indicated on the force vector of Equation (30). In this equation, the force
vector is expressed in a homogeneous format for its combination with the corresponding
homogeneous transformation matrices.

→
F

LINE i

(ANCHOR)(t) = FLine i = [−HFi0−VFi0]
T (30)

As indicated in Section 2.2 and verified in Equation (15), the force vector of each
mooring line must be expressed in the mobile coordinate system. This is performed in
two steps: First by means of Equation (31), the force vector is expressed in the inertial
coordinate system.

→
F

LINE i

(INERTIAL)(t) = MHTi
INERTIAL
ANCHOR ·

→
F

LINE i

(ANCHOR)(t) (31)

As a second step, Equation (32) is used to express the force vector in the mobile
coordinate system. The homogeneous transformation matrix (MHT

INERTIAL
BODY ) is obtained

by processing the kinematics of the floating hybrid system, whose detailed explanation is
found in [1].

→
F

LINE i

(BODY)(t) =
(

MHT
INERTIAL
BODY

)−1
·
→
F

LINE i

(INERTIAL)(t) (32)

Once the force vectors of each mooring line have been calculated and expressed in
the mobile coordinate system using Equation (32), the last step is to obtain an equiva-
lent force and moment vector expressed at the origin of the mobile coordinate system—
which is the point where all the forces are expressed to apply the dynamics equations
(Equations (3) and (4))—equivalent to the force vectors calculated in each of the fairleads.
This is performed using Equations (33) and (34). This is a common method used in mechan-
ics and can be found in [62–64].

→
M

LINE i

(BODY)(t) = pFi(BODY) ×
→
F

LINE i

(BODY)(t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xpFi ypFi zpFi
Fx Fy Fz

∣∣∣∣∣∣∣ (33)

→
Fj

LINE i

(BODY)(t) =

→F LINEi

(BODY)(t)
→
M

LINEi

(BODY)(t)

 (34)

As explained in previous paragraphs, when the floating system is in its initial position,
the points expressed in the inertial coordinate system and in the mobile coordinate system
are coincident. It has also been indicated that the fairlead points do not vary with respect
to the mobile coordinate system (see Figure 5). For this reason, it could be considered that
the points pFi(BODY) of Equation (33) are those that appear in Table 5.

Applying from Equations (16) to (34), the force and moment vector of each one of the
mooring lines is obtained, and from here, the calculation of the vector of mooring system
forces is completed by applying Equation (15). This last result is used in Equation (4) to
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obtain the resultant vector from all the forces and moments acting on the floating hybrid
system.

In this work, the modeling of the mooring system is carried out in the same way as
in [2] for a floating OC3-Hywind-type system. The same simplifications have also been
considered, including the simplification of the delta connection of each mooring line with
its fairlead. This produces a decrease in the yaw stiffness of the mooring lines. This issue
is compensated for by applying an additional yaw spring stiffness value (see Table 6)
for the entire mooring system. For simplicity and following the same criteria used in
FASTv8 [7], this compensation is performed together with the calculation of the additional
linear damping, which is explained in the study on hydrodynamics in Section 2.6.2.

2.5. Vector of Gravitational Forces

The calculation of the vector of gravitational forces is based on the application of New-
ton’s second law to the floating hybrid system. For this, the vector of gravitational forces is

expressed in the inertial coordinate system (
→
F

GRAVITY

(INERTIAL)) as observed in Equation (35).

→
F

GRAVITY

(INERTIAL) =

 0
0

−mFS·g

 (35)

This vector is constant—expressed in the inertial coordinate system—since it depends
only on the value of the acceleration due to gravity (see Table 4) and on the total mass of the
floating hybrid system (mFS). The calculation of this mass is explained in [1] but it simply
consists of adding the masses—found in Appendix A of [1]—of all the bodies that make up
the floating hybrid system.

Following the calculation criteria established for this work, the vector of forces repre-

sented in Equation (35) must be expressed in the mobile coordinate system (
→
F

GRAVITY

(BODY) (t)),
through Equation (36). The MINERTIAL

BODY matrix is equivalent to the MHT
INERTIAL
BODY matrix

as long as only vectors—no points—are interchanged between coordinate systems. With
the MINERTIAL

BODY matrix, the vectors are represented with three components, while with the
MHT

INERTIAL
BODY matrix, they have to be represented in a homogeneous format.

→
F

GRAVITY

(BODY) (t) =
(

MINERTIAL
BODY

)−1
·
→
F

GRAVITY

(INERTIAL) (36)

The point of application of the force is the center of mass (CoM(BODY)(t))—expressed
in the mobile coordinate system—of the floating hybrid system, and by means of Equations
(37) and (38), the equivalent force and moment vector expressed at the origin of the mobile
coordinate system is obtained. The calculation of (CoM(BODY)(t)) in explained in [1] and is
time-dependent due to the rotation of the turbines.

→
M

GRAVITY

(BODY) (t) = CoM(BODY)(t)×
→
F

GRAVITY

(BODY) (t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xCoM yCoM zCoM
Fx Fy Fz

∣∣∣∣∣∣∣ (37)

→
Fi

GRAVITY

(BODY) (t) =

→F GRAVITY

(BODY) (t)
→
M

GRAVITY

(BODY) (t)

 (38)

Figure 9 shows—it two instants of time—the vector of gravitational forces located at
its point of application (CoM) and the vector of hydrostatic forces also located at its point
of application (CoB).
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From Figure 9 it may be deduced that, although the magnitude of the vector is constant
both in the inertial and mobile coordinate systems, the components of the vector are con-
stant only in the inertial coordinate system (see Equation (35)). This is due to the change in
location experienced by the mobile coordinate system attached to the floating system, so in
this coordinate system, the components of the force vector vary with time. Mathematically,
this is proved since—as explained in [1]—the transformation matrix (MINERTIAL

BODY ) also
varies with time (see Equation (36)).

2.6. Vector of Hydrodynamics Forces

This section explains in detail the set of forces that act on a physical system partially
submerged in a fluid—such as seawater in this case—with a density much greater than that
of air (see Table 4). It is about solving a complex problem—the hydrodynamic problem—in
which many factors influence. Generalizing, it could be considered that the modeling of
the hydrodynamic problem always requires neglecting aspects that are not very influential,
with the aim of having a reliable and robust model but with an acceptable computational
cost, assuming that simulation inaccuracies could occur in exceptional situations due to
this unmodeled dynamics.

Hydrodynamics is considered the key to the investigation of floating power generation
systems [70]. In [58], an exhaustive analysis of the theory associated with the hydrodynamic
problem applicable to any oceanic engineering system is presented. In contrast, in [70],
a review of the problem of the influence of hydrodynamics on floating wind turbines is
made. In relation to floating hybrid systems, [71] presents an interesting study of the
hydrodynamic problem based on a floating wind turbine that combines a wave energy
generation system.

The modeling of the hydrodynamic problem presented in this work, in other words,
the modeling of the hydrodynamic problem implemented in the FHYGSYS tool, is based
on the one proposed in [61] but with some nuances, nuances based on other approaches to
certain parts of the hydrodynamic model, exposed in [60,72,73] or on our own conclusions
drawn from the experience acquired in the study, development, and validation of the
FHYGSYS tool. All these aspects are dealt with in detail in the following subsections.

As also indicated in [1], in this work, the force and moment vector of the hydrodynamic
problem is divided into different simpler problems, which when solved separately, facilitate
the complete solution of the hydrodynamic problem. This is possible given the assumption
indicated in [1] and in previous sections, that the modeling hypotheses allow the application
of the superposition theorem.
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The set of force and moment vectors in which the hydrodynamic problem is divided—
as in [1]—are shown in Equation (39), exposing each of them in the following subsections,

except
→
Fj

CURRENTTURBINE

(BODY) , which is explained in Section 2.8.2.

→
Fj

HYDRODYNAMICS

(BODY) =
→
Fj

HYDROSTATICS

(BODY) +
→
Fj

ADDITIONAL DAMPING

(BODY) +
→
Fj

ADDED MASS

(BODY) +
→
Fj

VISCOUS DRAG

(BODY) +
→
Fj

CURRENT TURBINE

(BODY) +
→
Fj

WAVES

(BODY) (39)

2.6.1. Vector of Hydrostatic Forces

Obtaining the vector of hydrostatic forces is based on the application of Archimedes’
principle [74] to the floating hybrid system. Equation (40) shows the vector of hydrostatic

forces expressed in the inertial coordinate system (
→
F

HYDROSTATICS

(INERTIAL) (t)).

→
F

HYDROSTATICS

(INERTIAL) (t) =

 0
0

mSUM(t)·g

 (40)

As observed in Equation (40), the vector depends on gravity (see Table 4) and on the
mass of the submerged volume (mSUM(t)). This mass is obtained as the product of the
density of seawater (see Table 4) and the submerged volume at each instant of time. The
calculation of mSUM(t) is explained in detail in [1].

Observing Equation (40) and Figure 9, it can be deduced that the vector of hydrostatic
forces varies with time in the inertial coordinate system—due to the variation in the
submerged volume of the floating system at each instant of time—and that it also varies
with time in the mobile coordinate system, due to the variation in the submerged volume
and due to the change in position, at each instant of time, of the mobile coordinate system
with respect to the inertial coordinate system.

As in previous cases, from the vector of forces expressed in the inertial coordinate

system, using Equation (41), the vector (
→
F

HYDROSTATICS

(BODY) (t)) expressed in the mobile coor-
dinate system is obtained.

→
F

HYDROSTATICS

(BODY) (t) =
(

MINERTIAL
BODY

)−1
·
→
F

HYDROSTATICS

(INERTIAL) (t) (41)

Subsequently, from the center of buoyancy of the floating system (CoB(BODY)(t))—
point of application of force—and the force vector obtained in Equation (41), through
Equations (42) and (43), the equivalent force and moment vector expressed at the origin of
the mobile coordinate system is obtained.

→
M

HYDROSTATICS

(BODY) (t) = CoB(BODY)(t)×
→
F

HYDROSTATICS

(BODY) (t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xCoB yCoB zCoB
Fx Fy Fz

∣∣∣∣∣∣∣ (42)

→
Fi

HYDROSTATICS

(BODY) (t) =

→F HYDROSTATICS

(BODY) (t)
→
M

HYDROSTATICS

(BODY) (t)

 (43)

The calculation of the center of buoyancy (CoB(BODY)(t)) was explained in detail in [1]
and due to the variation with time of the submerged volume and the rotation of the marine
turbines, its calculation is carried out at each instant of time.

In other works, in which the hydrostatic problem is treated, as in [60,73,75], a combined
solution of the vectors of gravitational and hydrostatic forces is explained. In [1] and in this
work, it has been decided to expose the two forces separately for clarity. Bearing in mind
that in this work a spar-buoy-type floating structure is modeled—it is not intended to offer
a generalized solution for all types of floating structures—the exposed modeling of these
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two forces provides mathematical simplicity, that is justified with the validation tests of the
FHYGSYS tool exposed in Section 3, in Appendix B, and in Appendix E of [1].

2.6.2. Vector of Additional Damping and Stiffness Forces

In [2], it is explained that Statoil—the developer of the spar-buoy floating system concept
called “Hywind”—indicates that the joint influence of the linear radiation damping—from
potential-flow theory—and the nonlinear viscous-drag—from the Morison’s formulation—
when summed, do not capture all the hydrodynamic damping of a real Hywind float-
ing platform.

To correct this situation in [2], the inclusion of a vector of additional damping forces
is proposed. This force is obtained from Equation (44), also extracted from [2], where the
additional damping matrix is multiplied by the velocity vector (

→
vvi(INERTIAL)(t)) of the

floating hybrid system expressed in the inertial coordinate system (see Equation (45)). The
calculation of the vector

→
vvi(INERTIAL)(t) is explained in detail in [1].

→F ADDITIONAL DAMPING

(INERTIAL) (t)
→
M

ADDITIONAL DAMPING

(INERTIAL) (t)

 = −



100, 000
0
0

0
100, 000

0
0
0
0

0
0
0

0
0

130, 000

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0

13, 000, 000

·


.
q1.
q2.
q3.
q4.
q5.
q6

 (44)

→
vvi(INERTIAL)(t) =

[ .
q1

.
q2

.
q3

.
q4

.
q5

.
q6
]T (45)

As indicated in Section 2.4, one of the simplifications assumed in [2] for the modeling
of the mooring system produces a decrease in the yaw stiffness of the mooring lines. It
is also indicated that this issue is compensated for by applying an additional yaw spring
stiffness value (AddYS in Table 6) for the entire mooring system. Following the criteria
used in FAST v8 [7], this compensation is made by applying Equation (46), where q6(t) is
the yaw value of the floating hybrid system at each instant of time.

→
M

STIFFNESS

(INERTIAL)(t) =

 0
0

−AddYS·q6(t)

 (46)

The point of application of the calculated forces and moments is the origin of the inertial co-

ordinate system. Through Equations (47) and (48), the force vector (
→
F

ADDITIONAL DAMPING

(BODY) (t))

and the moment vector (
→
M

ADDITIONAL DAMPING & STIFFNESS

(BODY) (t)) expressed in the mobile
coordinate system are obtained, respectively.

→
F

ADDITIONAL DAMPING

(BODY) (t) =
(

MINERTIAL
BODY

)−1
·
→
F

ADDITIONAL DAMPING

(INERTIAL) (t) (47)

→
M

ADDDAMP & STIFFNESS

(BODY) (t) =
(

MINERTIAL
BODY

)−1
·
(→

M
ADDITIONAL DAMPING

(INERTIAL) (t) +
→
M

STIFFNESS

(INERTIAL)(t)
)

(48)

Finally, in Equation (49), the two vectors obtained in Equations (47) and (48) are joined

to find the vector of additional damping and stiffness forces (
→
Fj

ADDITIONAL DAMPING

(BODY) (t)).

→
Fj

ADDITIONAL DAMPING

(BODY) (t) =

→F ADDITIONAL DAMPING

(BODY) (t)
→
M

ADDDAMP & STIFFNESS

(BODY) (t)

 (49)
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2.6.3. Vector of Viscous Drag Forces

This force appears when a fluid moving at a certain speed impacts a body that is
stationary, when a body moves over a fluid that is at rest, or when both the fluid and the
body move at certain speeds. This effect increases, fundamentally, with the velocity—of
the fluid, the body, or both—and with the density of the fluid.

The calculation of the vector of viscous drag forces is based on the application of
Morison’s equation [61,65,72,73,76] combined with the strip theory. This consists of dividing
the floating system into small sections—circular sections in this case—in which Morison’s
equation is applied, and then, the results are integrated. In [1] and in this work, the zones
of the tower of the floating system free from the shadow of the wind turbine (h f ree shadow)
and the submerged part of the floating platform (hsubmerged) have been divided into these
small circular sections. With Equation (50) and the data in Table 7, h f ree shadow is calculated.

h f ree shadow = hHub −
(

LBlade +
DHub

2

)
·cos

(
ϕSha f t Tilt − ϕPrecone

)
(50)

Table 7. Dimensions of the wind turbine necessary for the calculation of hTower Shadow.

Property Value Symbol

Hub height 1 90 m hHub
Hub diameter 1 3 m DHub
Blade Length 1 61.5 m LBlade

Precone 1 −2.5 deg ϕPrecone
Shaft tilt 1 5 deg ϕSha f t Tilt

Total draft 2 120 m hsubmerged
1 Source [3]. 2 Source [2], this value is at the initial position.

Considering the balance between accurate results and acceptable computational speed,
the tower portion (h f ree shadow) and the submerged area of the floating platform (hsubmerged)
have been divided into circular sections every 0.5 m along the Z axis, resulting in 296 circular
sections in the centers of which the pVDi points are located. Figure 10 shows these zones,
affected by the corresponding thrust vectors.
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Figure 10 also shows the three thrusts included in the calculation of the vector of

viscous drag forces (
→
Fj

VISCOUS DRAG

(BODY) ): wind thrust, near-surface current thrust, and sub-
surface current thrust. In [1], the description of this vector is simplified, showing the
influence of the three thrusts through Equation (51).

→
Fj

VISCOUS DRAG

(BODY) =
→
Fj

WIND TOWER

(BODY) +
→
Fj

NEAR−SURFACE CURRENT

(BODY) +
→
Fj

SUB−SURFACE CURRENT

(BODY) (51)

The calculation of the vector of viscous drag forces is somewhat more laborious. The
floating hybrid system is immersed in two fluids, air and seawater—the density of the
seawater is approximately a thousand times greater than that of air (see Table 4)—and it
moves interacting with the two fluids that can have different directions and speeds. In this
situation, the relative velocity (

→
v VDRi(INERTIAL)(h, t)) between the fluids and the floating

platform can result in hydrodynamic damping [65].
As a starting point, instead of the thrusts indicated in Figure 10, the velocity of each

fluid is used. These velocities are calculated by means of Equations (6), (10), and (13), for
wind (

→
v WIND(INERTIAL)(h)), sub-surface current (

→
v SSCUR(INERTIAL)(h)), and near -surface

current (
→
v NSCUR(INERTIAL)(h)), respectively. These three velocities depend on the height

or depth—depending on the case—and are calculated—as explained in Section 2.3—in each
one of the pVDi points. For the calculation of the vector of viscous drag forces, the effect of
marine turbines and their support has been neglected, since it is very small compared with
the effect of the floating platform.

In Equation (52), the resultant velocity vectors—relative velocity between the fluids
and the floating platform,

→
v VDRi(INERTIAL)(h, t)—calculated at each of the pVDi points and

expressed in the inertial coordinate system are obtained.

→
v VDRi(INERTIAL)(h, t) =

→
v WIND(INERTIAL)(h) +

→
v NSCUR(INERTIAL)(h) +

→
v SSCUR(INERTIAL)(h)−

→
v VDi(INERTIAL)(h, t) (52)

As indicated in previous paragraphs, the velocity of the floating platform
(
→
v VDi(INERTIAL)(h, t)) moving through the fluid must be considered in the calculation

of Equation (52). This velocity is obtained—as shown in Equation (53)—by differentiating
the position of the pVDi points—expressed in the inertial coordinate system—with respect
to time.

→
v VDi(INERTIAL)(h, t) =

d
dt
→
p VDi(INERTIAL)(t) (53)

Following the explanation of [65], when a structure moves significantly, the Morison equa-
tion is applied from the relative velocity (

→
v VDRi(INERTIAL)(h, t)) calculated in Equation (52);

this is also indicated in [61,72,76]. Due to the nature of the Morison equation, it only makes
sense to apply it to the surge and sway modes of motion [61,72]. Equations (54) and (55)
show Morison’s equation [61,65,72,73,76] for each of these modes of motion.

d
→
Fx

VISCOUS

(INERTIAL)(h, t) =
1
2
·CD(h)·ρ f luid(h)·D(h)·→v VDRix(INERTIAL)(h, t)·

∣∣∣→v VDRix−y(INERTIAL)(h, t)
∣∣∣·dh (54)

d
→
Fy

VISCOUS

(INERTIAL)(h, t) =
1
2
·CD(h)·ρ f luid(h)·D(h)·→v VDRiy(INERTIAL)(h, t)·

∣∣∣→v VDRix−y(INERTIAL)(h, t)
∣∣∣·dh (55)

The magnitude of the relative velocity (
∣∣∣→v VDRix−y(INERTIAL)(h, t)

∣∣∣) is easily calculated
using Equation (56), while the values of the drag coefficient (CD(h)), fluid density (ρ f luid(h)),
and diameter of the circular section (D(h)) used in Equations (54) and (55) are shown in
Table 8. To calculate the diameters (D(h)) of the intermediate points of the tower and of the
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conical region of the floating platform, linear interpolation is performed from the data in
Table 8.∣∣∣→v VDRix−y(INERTIAL)(h, t)

∣∣∣ = √→v VDRix(INERTIAL)
2
(h, t) +

→
v VDRiy(INERTIAL)

2
(h, t) (56)

Table 8. Data from significant points used with Morison’s equation.

Zone Location CD(h) ρfluid(h) 3 D(h) 2

WT Shadow Tower top 1 1 ρAIR 3.87 m
h f ree shadow Tower bottom 1 1 ρAIR 6.5 m

h f ree shadow
Floating platform above still

water level 0.6 2 ρAIR 6.5 m

hsubmerged

Floating platform above the
conical region, below still water

level
0.6 2 ρSEA WATER 6.5

hsubmerged
Floating platform below the

conical region 0.6 2 ρSEA WATER 9.4 m

1 Source [7,77]. 2 Source [2]. 3 Table 2.

From the force vectors calculated by Morison’s equation at the pVDi points—force
application points (pVDi = pVDi(INERTIAL)(t))—the next step is to obtain the moments of
these forces expressed at the origin of the mobile coordinate system. This is achieved by
Equations (57)–(59).

d
→
F

VISCOUS

(BODY) (h, t) =
(

MINERTIAL
BODY

)−1
·
[

d
→
Fx

VISCOUS

(INERTIAL)(h, t)d
→
Fy

VISCOUS

(INERTIAL)(h, t)0
]T

(57)

pVDi(BODY)(t) =
(

MINERTIAL
BODY

)−1
·pVDi(INERTIAL)(t) (58)

d
→
M

VISCOUS

(BODY) (h, t) = pVDi(BODY)(t)× d
→
F

VISCOUS

(BODY) (h, t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xpVD ypVD zpVD
dFx dFy dFz

∣∣∣∣∣∣∣ (59)

Afterwards, the integral is carried out—through Equation (60)—of the force and
moment vectors between the points pVDmin and pVDmax (see Figure 10) with a dh—as
indicated above—of 0.5 m. This integral is calculated by applying the multiple application
of trapezoidal rule [69].

→
F

VISCOUS

(BODY) (t) =
∫ pVDmax

pVDmin

d
→
F

VISCOUS

(BODY) (h, t)

d
→
M

VISCOUS

(BODY) (h, t)

·dh (60)

Finally, the force and moment vector obtained with Equation (60) is expressed in the
inertial coordinate system to ensure that only the surge, sway, roll, and pitch modes of
motion have a non-zero value. This is performed by means of Equations (61) and (62),
while with Equation (63), the final vector of viscous drag forces is calculated.

→
F

VISCOUS

(INERTIAL)(t) = MINERTIAL
BODY ·

→
F

VISCOUS

(BODY) (t) (61)
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→
F

VISCOUS DRAG

(INERTIAL) (t) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

·
→
F

VISCOUS

(INERTIAL)(t) (62)

→
Fj

VISCOUS DRAG

(BODY) (t) =
(

MINERTIAL
BODY

)−1
·
→
F

VISCOUS DRAG

(INERTIAL) (t) (63)

2.6.4. Vector of Added Mass Forces

The added mass should be interpreted as a particular volume of fluid particles that are
accelerated with the submerged part of the floating system [58]. The modeling used in the
FHYGSYS tool to compute the added mass and used in Equation (3) to solve the dynamics
of the floating system is explained in detail in Section 2.3.3 of [1].

In this work, a model of the computation of the added mass equivalent to the one
explained in [1] is presented, which is also implemented in FHYGSYS and allows us to
visualize the responses of the vector of added mass forces in each one of the degrees of
freedom of the floating system. The modeling consists of solving the system of differential
equations shown in Equations (64)–(69). This system of equations is extracted from [60,78],
where its algebraic development also appears, not included in this work for brevity.

d
dt

∂TAM
∂u

= r·∂TAM
∂v

− q·∂TAM
∂w

− XA (64)

d
dt

∂TAM
∂v

= p·∂TAM
∂w

− r·∂TAM
∂u

−YA (65)

d
dt

∂TAM
∂w

= q·∂TAM
∂u

− p·∂TAM
∂v

− ZA (66)

d
dt

∂TAM
∂p

= w·∂TAM
∂v

− v·∂TAM
∂w

+ r·∂TAM
∂q
− q·∂TAM

∂r
− KA (67)

d
dt

∂TAM
∂q

= u·∂TAM
∂w

− w·∂TAM
∂u

+ p·∂TAM
∂r
− r·∂TAM

∂p
−MA (68)

d
dt

∂TAM
∂r

= v·∂TAM
∂u

− u·∂TAM
∂v

+ q·∂TAM
∂p

− p·∂TAM
∂q
− NA (69)

The system of equations is solved from the value of the kinetic energy of the added
mass (TAM) and the velocity vector (

→
vvi(BODY)) of the floating system expressed in the mo-

bile coordinate system. Both magnitudes are obtained by applying Equations (70) and (71),
which thus described, are extracted from [1], deduced from similar expressions explained
in [60]. How to obtaining the velocity vector (

→
vvi(BODY)) and the added mass matrix (MAM)

is explained in detail in [1]. In Appendix A, the calculation method of the added mass
matrix (MAM) is shown with an example.

TAM =
1
2
·
(→

vvi(BODY)

)T
·MAM·

→
vvi(BODY) (70)

→
vvi(BODY)(t) = [u v w p q r]T (71)
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Once the system of equations has been solved, the values of the components of the
vector of added mass forces are obtained as shown in Equation (72).

→
Fj

ADDEDMASS

(BODY) (t) = −[XAYAZAKA MANA]
T (72)

2.6.5. Vector of Wave Forces

There are different approaches for the mathematical modeling of waves, but it could be
summarized into two: the one based on the regular—or linear—wave theory [58,72–74,76]
and the one based on a spectrum that allows for generating irregular—or non-linear—
waves [58,61,65,73,74,76]. In FHYGSYS, it has been decided to model the waves using
a spectrum that provides irregular waves, since this produces more realistic results.

There are different types of spectra, but [65] recommends two for wave simulation
in offshore wind turbines systems: the Pierson–Moskowitz spectrum and the JONSWAP
(Joint North Sea Wave Project) spectrum. In [65], it is indicated that the Pierson–Moskowitz
spectrum is often used for a fatigue analysis, while the JONSWAP spectrum is used for an
extreme event analysis.

In this work, the waves have been modeled using the JONSWAP spectrum; this allows
us to perform simulations with any of the mentioned spectra since the JONSWAP spectrum
is based on the Pierson–Moskowitz spectrum.

To generate a spectrum of waves, two interrelated data are needed to define their
behavior: the significant wave height and their peak period. These two data are also
related—on many occasions—to wind speed, although this depends on the particular
conditions of each geographical location [65,73].

As an example of the relationship between significant wave height, wave period, and
wind speed, the data in Table 9 are shown. These data have been extracted from [73] and
are used in FHYGSYS when it is desired to generate a wind speed-dependent sea state.
A reduced but equivalent version of the data in Table 9 is presented in [2].

Table 9. Environmental conditions.

Mean Wind Speed 1

VW−REF (m/s)
Significant Wave Height

Hs (m)
Peak Period

Tp (s)
Wavelength 2

λwave (m)

2.5 0.09 2.0 6
7.5 0.67 4.8 34.56
8.6 0.88 5.4 43.74

10.5 1.40 6.5 63.375
12.1 1.86 7.2 77.76
13.6 2.44 8.1 98.415
17.6 3.66 9.7 141.135
22.0 4.57 10.5 165.375
25.8 5.49 11.3 191.535
30.1 6.71 12.1 219.615
35.1 9.14 13.6 277.44
42.9 15.24 17.0 433.5

1 Wind speeds at 90 m reference height. 2 Approximate values calculated with Equation (73).

To expand the information in Table 9, the wavelength calculated using Equation (73),
extracted from [79], has been included. In [2], some expressions are presented that allow
for a more precise calculation of λwave, but with the little difference found, Equation (73)
has been used for simplicity of calculation.

λwave ∼= T2
p +

T2
p

2
(73)
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The Pierson–Moskowitz spectrum is obtained using Equation (74); the equation thus
expressed is extracted from [61,73].

S1−Sided
P−M (ω) =

1
2·π ·

5
16
·H2

s ·Tp·
(

ω·Tp

2·π

)−5
·exp

[
−5

4
·
(

ω·Tp

2·π

)−4
]

(74)

When FHYGSYS works with the JONSWAP spectrum, Equation (75) is used, which,
as can be seen, is based on the result of Equation (74). Equation (75) expressed in this way
is also extracted from [61,73].

S1−Sided
JONSWAP(ω) = S1−Sided

P−M (ω)·
[
1− 0.287·ln γ

(
Tp, Hs

)]
·γ
(
Tp, Hs

)exp [− 1
2 ·(

ω·Tp
2·π −1
σ(ω)

)

2

] (75)

Equations (74) and (75) give the results in rad/s. In [65], the same equations appear
but are adjusted to give the results in Hz ( f ). On the other hand, in Equation (75), there
are two coefficients, γ

(
Tp, Hs

)
and σ(ω), whose calculations are easy to perform and are

explained in [61,65]; they are not included in this work for brevity.
As observed in Equations (74) and (75), the results depend on the frequency of the

incident waves (ω) expressed in rad/s. To solve them, a frequency sweep must be carried
out, solving the equations for each of the frequencies. To obtain acceptable results with
a low computational cost, a cut-off frequency is used that delimits the bandwidth used.
Specifically, the same technique is used as the one described in [61], which consists of using
a proportional cut-off frequency corresponding to the spectrum peak period, being the
proportionality factor used equal to 3.0 [61].

Once the bandwidth is bounded, FHYGSYS divides it into 120 intervals from the
lowest frequency to the highest frequency, thus defining the omega (ω) values for the rest
of the calculations. With this number of intervals, acceptable results have been obtained
in the model validation process with FASTv8 [7]. The results of this validation appear in
Section 3 and in Appendix B.

With Equations (74) and (75) only one side of the spectrum (S1−Sided
JONSWAP(ω)) is obtained;

to obtain the complete spectrum (S2−Sided
JONSWAP(ω)) necessary in subsequent calculations,

Equation (76)—extracted from [61]—is used.

S2−Sided
JOWNSWAP(ω) =

{
1
2 ·S

1−Sided
JONSWAP(ω) f orω ≥ 0

1
2 ·S

1−Sided
JONSWAP(−ω) f orω < 0

(76)

As indicated in [61], to ensure that the individual wave components have a random
phase and that the instantaneous wave elevation is normally distributed with zero mean,
a white Gaussian noise time-series process—represented by W(ω)—is used. In [61], the
implication of this term and its mode of application are explained in detail. Briefly, the
term W(ω) is calculated by means of Equation (77), extracted from [61].

W(ω) =


0 f or ω = 0√
−2·ln[U1(ω)]·[cos(2·π·U2(ω)) + j·sin(2·π·U2(ω))] f or ω > 0√
−2·ln[U1(−ω)]·[cos(2·π·U2(−ω))− j·sin(2·π·U2(−ω))] f or ω < 0

(77)

where j is the imaginary unit (
√
−1), and U1(ω) and U2(ω) are random numbers—obtained

with Matlab® using the commands rng() and rand()—generated from two different seeds.
Specifically—to help in the wave modeling validation process—the same ones used by
FASTv8 [7] have been used as seeds in FHYGSYS: 1011121314 for U1(ω) and 123456789
for U2(ω).

Once the spectrum S2−Sided
JONSWAP(ω) and the white Gaussian noise W(ω) have been

calculated, FHYGSYS generates a mesh that represents the sea state in the geometric place
where the simulation of the floating hybrid system occurs.
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The elevation ζmesh(t) of each grid element is obtained as the real part of the result
found using Equation (78). This equation is taken from [61], but a ∆t term has been added
to it—included in the discretized version of the equation from [72]—which represents the
time increment (∆t) used for the simulation. As indicated in the Introduction, FHYGSYS
could use a range of values from 0.1 to 0.0125 s as the time increment for simulations.

ζ(t, x, y) =
1

2·π ·
∫ ∞

−∞
W(ω)·

√
2·π
∆t
·S2−Sided

JONSWAP(ω)·e−j·k(ω)·[x·cos β+y·sin β]·ej·ω·t·dω (78)

In Equation (78), x and y are the components—expressed in the inertial coordinate
system—of each grid element; β is the yaw angle—expressed in radians—that represents
the direction of the waves; and k(ω) represents the wave number in a finite depth and
is obtained by Equation (79), extracted from [2,61,73,76]. It is an implicit equation that is
solved by applying the Newton–Raphson method explained in [69].

k(ω)·tanh[k(ω)·dWATER] =
ω2

g
(79)

In Equation (79), dWATER represents the total water depth and g is the acceleration due
to gravity; both data are shown in Table 4.

In Equation (78), the spectrum S2−Sided
JONSWAP(ω), the white Gaussian noise W(ω), the

wave number k(ω), and ω are vectors 121 elements long. This is due—as mentioned in
previous paragraphs—to the fact that FHYGSYS divides the bandwidth with which ω is
represented into 120 intervals. Finally, dω is the difference between each of these intervals.
With this information, Equation (78) is solved at each instant of time by applying the
multiple application of trapezoidal rule [69]. Figure 11 shows the mesh that represents the
sea state at a certain instant of time.
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Figure 11. Mesh representing the sea state on the floating hybrid system (see Figure 1) represented
by FHYGSYS (using Matlab®). Different colors are used to easily differentiate the different elements
that make up the floating hybrid system.

In relation to obtaining the vector of wave forces, in [79], the calculation of this vector
for certain situations is explained. On the other hand, Ref. [61] explains a generic solution
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to carry out this calculation. In this work, it was decided to implement a solution based
on the one described in [80] for wave excitation of a truncated vertical cylinder. For this,
it is necessary to previously calculate the acceleration of the water particles produced by
the waves along the submerged part of the floating platform (hsubmerged). This is performed
using Equation (80)—extracted from [61]—which is solved in a similar way to Equation (78).
The only difference is that, in this case, the values of x, y, and z correspond to those of the
pVDi(INERTIAL) points used to calculate the vector of viscous drag forces corresponding to
the submerged part of the floating platform (hsubmerged, see Figure 10).

a(t, x, y, z) =
∫ ∞

−∞
W(ω)·

√
2·π
∆t
·S2−Sided

JONSWAP(ω)·e−j·k(ω)·[x·cos β+y·sin β]·ω2·cosh[k(ω)·(z + dWATER)]

sinh[k(ω)·dWATER]
·ej·ω·t·dω (80)

The next step is to calculate the X and Y components of the acceleration found in
Equation (80), this is made by applying Equations (81) and (82)—extracted from [61]—
respectively. In these equations, the real part of the results obtained is taken.

ax(INERTIAL)(h, t) = ax(INERTIAL)(t, z) = Re
[

j·cos β

2·π ·a(t, x, y, z)
]

(81)

ay(INERTIAL)(h, t) = ay(INERTIAL)(t, z) = Re
[

j·sin β

2·π ·a(t, x, y, z)
]

(82)

With these results, Equation (83) is used to obtain the X and Y components of the dif-

ferential of the force vector d
→

Fx,y
WAVES

(INERTIAL)(h, t). This is a version of the equation presented
in [80] to calculate the wave excitation of a truncated vertical cylinder.

d
→

Fx,y
WAVES

(INERTIAL)(h, t) = 2·ρSEA WATER·π·
[

D(h)
2

]2
·→a x,y(INERTIAL)(h, t)·dh (83)

In [80], it is considered that the cylinder has the same radius, and the acceleration at
the still water level point is calculated applying an exponential term that decreases the
influence of the acceleration as the depth increases along the cylinder. In Equation (83),
the radius corresponding to each depth is used, obtained from the data in Table 8, in the
same way as for the calculation of the vector of viscous drag forces. The acceleration term
(
→
a x,y(INERTIAL)(h, t)) calculated using Equations (80)–(82) includes an exponential term

equivalent to that from the equation mentioned in [80]. Finally, dh represents the same
differential—of 0.5 m—as the one used to calculate the vector of viscous drag forces.

Next, the differential of the vector d
→

Fx,y
WAVES

(BODY)(h, t)—expressed in the mobile coordi-
nate system—is calculated by applying Equation (84).

d
→

Fx,y
WAVES

(BODY)(h, t) =
(

MINERTIAL
BODY

)−1
·
[

d
→

Fx,y
WAVES

(INERTIAL)(h, t)0
]T

(84)

Then, using Equation (85), the differential of the moments d
→

Mx,y
WAVES

(BODY)(h, t) produced
at the origin of the mobile coordinate system is obtained. In Equation (85), pVDi(BODY)(t)
points are the same as previously calculated in Equation (58).

d
→

Mx,y
WAVES

(BODY)(h, t) = pVDi(BODY)(t)× d
→

Fx,y
WAVES

(BODY)(h, t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xpVD ypVD zpVD
dFx dFy dFz

∣∣∣∣∣∣∣ (85)

From the data obtained in Equations (84) and (85), the force and moment vector
→

Fx,y
WAVES

(BODY)(t) for the X and Y coordinates are obtained using Equation (86). The limits of
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the integral pVDmin and pVDswl correspond to those of the submerged part (hsubmerged) of
the floating platform (see Figure 10). Equation (86) is also solved by applying the multiple
applications of the trapezoidal rule [69].

→
Fx,y

WAVES

(BODY)(t) =
∫ pVDswl

pVDmin

 d
→

Fx,y
WAVES

(BODY)(h, t)

d
→

Mx,y
WAVES

(BODY)(h, t)

·dh (86)

Finally, the Z component of the vector of wave forces is calculated using Equation (87),
extracted from [79,80]. This equation calculates the mass of the volume of water caused
by the elevation ζswl(t) in the waves at the point of intersection of the floating platform
with the still water level (pVDswl(t)), with the circular area at this point being π·r2

swl(t). The

mass is then multiplied by the acceleration due to gravity g to calculate
→
Fz

WAVES

(INERTIAL)(t).

→
Fz

WAVES

(INERTIAL)(t) =



0
0

ζswl(t)·ρSEAWATER·π·r2
swl(t)·g

0
0
0

 (87)

The elevation of the waves ζswl(t) is determined by Equation (78) using those of the
point pVDswl(t) as coordinates X and Y. This point is calculated by finding the intersection
of the X-Y plane of the inertial coordinate system with the line formed by two points
belonging to the floating platform. This problem is easily solved using the equations of
a plane in space and the parametric equations of a line in space.

Equations (83) and (87) are valid for wave lengths much larger than the diameter
of the affected cylinder [79,80]. Table 8 shows that the largest diameter of the floating
platform is 9.4 m. On the other hand, Table 9 shows that the results obtained with
Equations (83) and (87) can be considered acceptable in almost all sea states.

As a last step, with Equation (88) the vector
→
Fz

WAVES

(BODY)(t) expressed in the mobile coor-
dinate system is obtained and, through Equation (89), the results of Equations (86) and (88)

are added to obtain the vector of wave forces (
→
Fj

WAVES

(BODY)(t)).

→
Fz

WAVES

(BODY)(t) =
(

MINERTIAL
BODY

)−1
·
→
Fz

WAVES

(INERTIAL)(t) (88)

→
Fj

WAVES

(BODY)(t) =
→

Fx,y
WAVES

(BODY)(t) +
→
Fz

WAVES

(BODY)(t) (89)

2.7. Vector of Coriolis–Centripetal Forces

This calculation is based on the criterion presented in [60], in which, starting from the
rigid body matrix (MRB) broken down as observed in Equation (90) and using

Equations (91) and (92), two vectors,
→

cv1 and
→

cv2, are obtained.

MRB =

[
MRB(11) MRB(12)
MRB(21) MRB(22)

]
(90)

→
cv1 =

xcv1
ycv1
zcv1

 = MRB(11)·


→
vv1(BODY)
→
vv2(BODY)
→
vv3(BODY)

+ MRB(12)·


→
vv4(BODY)
→
vv5(BODY)
→
vv6(BODY)

 (91)
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→
cv2 =

xcv2
ycv2
zcv2

 = MRB(21)·


→
vv1(BODY)
→
vv2(BODY)
→
vv3(BODY)

+ MRB(22)·


→
vv4(BODY)
→
vv5(BODY)
→
vv6(BODY)

 (92)

Vector
→
vvi(BODY) is the velocity vector of the floating system expressed in the mobile

coordinate system. The calculation of this vector is explained in detail in [1]. From the
vectors calculated in Equations (91) and (92), the Coriolis–centripetal matrix (MCC) is
obtained as indicated in Equation (93).

MCC =



0
0
0

0
0
0

0
−zcv1
ycv1

zcv1
0
−xcv1

0
0
0

0
−zcv1
ycv1

−ycv1
xcv1

0

0
−zcv2
ycv2

zcv1
0
−xcv1

−ycv1
xcv1

0
zcv2

0
−xcv2

−ycv2
xcv2

0

 (93)

Once the Coriolis–centripetal matrix has been established, the vector of Coriolis–

centripetal forces (
→
Fj

CORIOLIS

(BODY) (t)) is obtained using Equation (94).

→
Fj

CORIOLIS

(BODY) (t) =

→F CORIOLIS

(BODY)
→
M

CORIOLIS

(BODY)

 = −MCC(t)·
→
vvi(BODY)(t) (94)

2.8. Turbine Modeling

In this section the modeling of the turbines used in [1] is explained. These have been
modeled using the One-Dimensional theory—or Simple theory [66,81]. This methodology
considers that the turbine rotor behaves in an ideal way [81], neglecting, for example,
friction effects, or not considering the number of turbine blades.

Section 2.8.1 explains in detail the methodology used to obtain the vector of wind
turbine forces using One-Dimensional theory, while in Section 2.8.2, the method to apply
the methodology explained in Section 2.8.1 and adapted to the modeling of marine current
turbines is presented.

2.8.1. Vector of Wind Turbine Forces

As a first step, the effective wind velocity vector (
→
v EFF−WIND(INERTIAL)(h, t)) is cal-

culated using Equations (5)–(8), from the simulation wind speed (VW−REF) and the point
of application of the vector of wind turbine forces (FWThrust), which is the center of mass
(CoMWTurbine) of the wind turbine (see Figure 12).

In Equation (7), the
→
p point(INERTIAL)(t) point corresponds to the center of mass of the

wind turbine (CoMWTurbine(t)) expressed in the inertial coordinate system. The center of
mass of the wind turbine (CoMWTurbine) is calculated from the inertial data of the hub and
the three blades of the wind turbine; these data appear in Appendix A of [1]. Table 10
shows part of the data necessary to obtain the vector of wind turbine forces; some of these
data appear in Table 7 but are repeated in Table 10 for clarity in the explanation.
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Figure 12. Thrust and torque vectors of wind turbine and its point of application. The axes of the
coordinate system that appear in the figure—with its center at CoMWTurbine—are parallel to those of
the mobile coordinate system.

Table 10. Wind turbine properties.

Property 1 Value Symbol

Hub height 90 m hHub
Hub radius 1.5 m rHub

Blade Length 61.5 m LBlade
Precone −2.5 deg ϕPrecone
Shaft tilt 5 deg ϕSha f t Tilt

Gearbox Ratio 97:1 gearR
Electrical Generator Efficiency 0.944 genE

1 Source [3].

The next step is to calculate the unit vector (
→
v WThrust(BODY)) of the vector of wind

turbine forces (FWThrust); this is carried out by applying Equation (95) from the data in
Table 10, where δ is the wind direction. This vector is aligned with the high-speed shaft,
which is inclined 5 degrees (ϕSha f t Tilt) with respect to the Y axis of the mobile coordinate
system (see Figure 12).

→
v WThrust(BODY) =

cos δ −sin δ 0
sin δ cos δ 0

0 0 1

·


cos
(

ϕSha f t Tilt· π
180

)
0 sin

(
ϕSha f t Tilt· π

180

)
0 1 0

−sin
(

ϕSha f t Tilt· π
180

)
0 cos

(
ϕSha f t Tilt· π

180

)
·
1

0
0

 (95)

The vector of wind turbine forces (FWThrust) is obviously not aligned with the effec-
tive wind velocity vector (

→
v EFF−WIND(INERTIAL)(h, t)) for different reasons: the shaft tilt

angle, the movement of the floating system due to buoyancy, sea currents, the waves, etc.
To model this situation, the vector projection [68] of the effective wind velocity vector
(
→
v EFF−WIND(BODY)(h, t))—expressed in the mobile coordinate system by Equation (96)—is

calculated on the unit vector in the direction of the force (
→
v WThrust(BODY)). This is calcu-

lated using Equation (97), and the symbol * in the equation means the scalar product of the
two vectors.

→
v EFF−WIND(BODY)(h, t) =

(
MINERTIAL

BODY

)−1
·→v EFF−WIND(INERTIAL)(h, t) (96)
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→
v EFF−WThrust(BODY)(t) =

→
v WThrust(BODY)·

→
v EFF−WIND(BODY)(h, t) ∗→v WThrust(BODY)∣∣∣→v WThrust(BODY)

∣∣∣2 (97)

V1−2(t) =
∣∣∣→v EFF−WThrust(BODY)(t)

∣∣∣ (98)

The magnitude of the effective velocity vector (
→
v EFF−WThrust(BODY)(t)) on the wind

turbine calculated in Equation (97) is named as V1−2(t) in Equation (98) for simplicity in
subsequent calculations and for consistency with the nomenclature used in [66].

Table 11 shows different data that condition the behavior of the wind turbine to apply
the One-Dimensional theory.

Table 11. Rotor speed, axial induction factor, and pitch angle as a function of wind speed.

Wind Speed 1

VW−REF (m/s)
Rotor Speed 2

Ω (rpm)

Axial Induction
Factor
axif (-)

Pitch Angle 2

ϕpitch (deg)

3 6.97 0.219414 0
4 7.18 0.200177 0
5 7.51 0.186398 0
6 7.94 0.176555 0
7 8.47 0.172797 0
8 9.16 0.165412 0
9 10.3 0.165851 0
10 11.43 0.166114 0
11 11.89 0.163337 0

11.4 12.1 3 0.155162 0
1 Wind speeds at 90 m reference height. 2 Source [61]. 3 Rated rotor speed.

As observed in Table 11, neither in [1] nor in this work have simulations been carried
out with wind speeds higher than 11.4 m/s because, from this wind speed, it is necessary
to apply a certain pitch angle to the blades, which has not been modeled using One-
Dimensional theory. In an upcoming work, the modeling of the turbines will be explained
using the Blade Element Momentum theory, with which the behavior of the turbines is
modeled when a pitch angle greater than 0 degrees can be applied.

To complete the calculation of the vector of wind turbine forces, it is necessary to
calculate the magnitude of the force. This is achieved by applying the One-Dimensional
theory. Table 11 shows the data of the axial induction factor (axi f ) for different wind
speeds (VW−REF). After evaluating different options, the authors decided to deduce the
axi f values necessary to obtain the expected power for each wind speed, according to
the operation of the wind turbine described in [3]. An adequate adjustment of the axi f
values has been possible, validating the results for each wind speed—with the version of
the OC3-Hywind [2] implemented in FHYGSYS (see Appendix E of [1])—using FASTv8.

The calculation process continues with Equations (99)–(101) from the data in Tables 10 and 11.
With them, the radius (rTurbine) and the area (ATurbine) of the wind turbine, and the power
coefficient (CP) are calculated respectively.

rTurbine = (LBlade + rHub)·cos(ϕPrecone) (99)

ATurbine = π·
[
r2

Turbine − r2
Hub

]
(100)

CP = 4·axi f ·(1− axi f )2 (101)

For the calculation process, two assumptions are made: the values of axial induction
factor (axi f ) and angular speed of the turbine (Ω) are considered constant for a given wind
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speed (VW−REF), taking the values expressed in Table 11. For intermediate wind speeds,
linear interpolation is performed from the data in this table.

The next step is to calculate the tip speed ratio (TSR(t)) by means of Equation (102),
and with it, the angular induction factor (ani f (t)) is obtained through Equation (103). Both
equations are extracted from [66].

TSR(t) =
Ω·rTurbine
V1−2(t)

(102)

ani f (t) =
1
2
·
(√

1 +
4·axi f ·(1− axi f )

TSR2(t)
− 1

)
(103)

As a previous step to the calculation of the thrust and the moment produced in the
turbine, with Equation (104)—extracted from [66,81]—the speed of the wind far upstream
of the rotor (V0(t)) is determined. This velocity is time-dependent due to the assumption
that the axi f is constant.

V0(t) =
V1−2(t)

(1− axi f )
(104)

Then, using Equations (105) and (106)—extracted from [66,81]—the magnitudes of the
thrust (T(t)) and moment (Q(t)) vectors originated in the turbine are calculated.

T(t) =
∫ r_turbine

r_hub
ρAIR·V2

0 (t)·4·axi f ·(1− axi f )·π·r·dr (105)

Q(t) =
∫ r_turbine

r_hub
ρAIR·V0(t)·Ω·(rturbine − rhub)

2·4·ani f (t)·(1− axi f )·π·r·dr (106)

It should be noted that these integrals are solved by applying the trapezoidal rule [69]
and that the air density (ρAIR) appears in Table 4. Next, through Equations (107) and (108)

the thrust (
→
F WThrust(BODY)(t)) and moment (

→
MWTorque(BODY)(t)), vectors are obtained from

the unit vectors (
→
v WTorque(BODY) =

→
v WThrust(BODY)) of both (see Figure 12).

→
F WThrust(BODY)(t) =

→
v WThrust(BODY)·T(t) (107)

→
MWTorque(BODY)(t) =

→
v WTorque(BODY)·Q(t) (108)

Finally, the moment (
→
MWThrust(BODY)(t)) produced by the thrust vector at the origin

of the mobile coordinate system is calculated with Equation (109).

→
MWThrust(BODY)(t) = CoMWTurbine(BODY) ×

→
F WThrust(BODY)(t) =

∣∣∣∣∣∣∣
→
i

→
j

→
k

xCoM yCoM zCoM
Fx Fy Fz

∣∣∣∣∣∣∣ (109)

As a last step, using Equation (110), the moment originated by the thrust vector is
added to that produced in the turbine, thus obtaining the vector of wind turbine forces and

moments (
→
Fj

WIND TURBINE

(BODY) (t)).

→
Fj

WIND TURBINE

(BODY) (t) =

 →
F WThrust(BODY)(t)

→
MWThrust(BODY)(t) +

→
MWTorque(BODY)(t)

 (110)

Additionally, FHYGSYS calculates other important magnitudes that help to study
the behavior of the wind turbine: electrical power (PELE(t)), mechanical power (PMEC(t)),
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torque produced in the electrical generator (QGEN(t)), and thrust coefficient (CT(t)). These
magnitudes are, respectively, calculated with Equations (111)–(114). Equation (111) is
extracted from [66,81], Equation (112) represents the power generator efficiency, Equation
(113) is deducted from [3,61], and Equation (114) is extracted from [81].

PELE(t) =
1
2
·ρAIR·ATurbine·V3

1−2(t)·4·axi f ·(1− axi f )2 (111)

PMEC(t) =
PELE(t)

genE
(112)

QGEN(t) =
Q(t)

gearR
·genE (113)

CT(t) =
T(t)

1
2 ·ρAIR·ATurbine·V2

1−2(t)
(114)

All the equations indicated in this section, as well as the axi f data included in Table 11,
have been validated with simulations under equivalent conditions by means of FASTv8, us-
ing the version of the OC3-Hywind [2] implemented in FHYGSYS (see Section 3, Appendix B
of this work, and Appendix E of [1]).

2.8.2. Vector of Marine Current Turbine Forces

As previously indicated, the modeling of marine current turbines used in [1] and in this
work is based on the methodology explained in Section 2.8.1. In this section, the modeling
of marine current turbines is presented, making reference to the concepts explained and
the equations shown in the previous section. As indicated in [1] and throughout this work,
the floating hybrid system has two marine current turbines. The explanation given in this
section refers to the modeling of one of them, but the methodology is applicable to both,

considering the direction of
→
MMCTorque according to the case (see Figure 13).

Figure 13. Thrust and torque vectors of marine current turbines and their points of application. The
axes of the coordinate systems that appear in the figure—with their centers in each CoMMCTurbine—are
parallel to those of the mobile coordinate system.

The calculation also starts from—in this case—the effective current velocity vec-
tor (

→
v EFF−SSCURR(INERTIAL)(h, t)), calculated using Equations (9)–(11) as explained in

Section 2.3.2. The data needed to use these equations are the current velocity (VSWL) and
the point of application of the vector of marine current turbine forces (FMCThrust), which is
also the center of mass (CoMMCTurbine) of the marine current turbine (see Figure 13).

In this case, in Equation (7), the
→
p point(INERTIAL)(t) point corresponds to the center

of mass of the marine current turbine (CoMMCTurbine) expressed in the inertial coordinate
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system. This center of mass is also calculated from the inertial data—of each one of the
marine current turbines—included in Appendix A of [1]. Table 12 contains part of the data
needed to calculate the vector of marine current turbine forces.

Table 12. Marine current turbine properties.

Property Value Symbol

Hub depth 1 −20 m hHub
Hub radius 1 1 m rHub

Blade Length 1 9 m LBlade
Precone 1 0 deg ϕPrecone
Shaft tilt 1 0 deg ϕSha f t Tilt

Gearbox Ratio 2 97:1 gearR
Electrical Generator Efficiency 2 0.944 genE

1 Source [4]. 2 Estimated data equal to those of the wind turbine.

As in the previous case, as a starting point for the calculation process, the unit vec-
tor (

→
v MCThrust(BODY)) of the vector of marine current turbine forces must be found (see

Figure 13). This is achieved by Equation (115) from the data in Table 12, where ε is the
direction of the sub-surface current.

→
v MCThrust(BODY) =

cos ε −sin ε 0
sin ε cos ε 0

0 0 1

·


cos
(

ϕSha f t Tilt· π
180

)
0 sin

(
ϕSha f t Tilt· π

180

)
0 1 0

−sin
(

ϕSha f t Tilt· π
180

)
0 cos

(
ϕSha f t Tilt· π

180

)
·
1

0
0

 (115)

Similarly, the vector of marine current turbine forces (FMCThrust) is not aligned with
the effective current velocity vector (

→
v EFF−SSCURR(INERTIAL)(h, t)). Therefore, this sit-

uation must be compensated using Equations (96)–(98) in a similar way, from the vec-
tors

→
v EFF−SSCURR(INERTIAL)(h, t) and

→
v MCThrust(BODY), obtaining as a result the magnitude

(V1−2(t)) of the effective velocity vector in marine current turbine (
→
v EFF−MCThrust(BODY)(h, t)).

In this case, Table 13 contains the data that establish the behavior of marine current
turbines for applying the One-Dimensional theory.

Table 13. Rotor speed, axial induction factor, and pitch angle as a function of current speed.

Sub-Surface Current Speed 1

VSWL (m/s)
Rotor Speed 2

Ω (rpm)
Axial Induction Factor

axif (-)
Pitch Angle 2

ϕpitch (deg)

0.5 3.37 0.221552 0
0.65 4.363 0.211013 0
0.8 5.356 0.212288 0

0.95 6.349 0.212249 0
1.1 7.35 0.205184 0

1.25 8.355 0.201525 0
1.4 9.36 0.201909 0

1.55 10.21 0.194966 0
1.7 10.77 0.194207 0

1.85 11.32 0.194904 0
1.9 11.5 3 0.193221 0

1 Current speeds at still water level. 2 Source [4]. 3 Rated rotor speed.

In Table 13, the data of the axial induction factor (axi f ) have been deduced from the
behavior data of marine turbines described in [4,5].

For the application of the One-Dimensional theory, the same two assumptions have
been made as in the previous section: the values of the axial induction factor (axi f ) and the
turbine rotation speed (Ω) are considered constant. These values are extracted for a given
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current speed (VSWL). Linear interpolation is also performed with the data in Table 13 in the
case of intermediate values of current speed. Likewise, no simulations have been carried
out, either in [1] or in this work, with current velocity values (VSWL) greater than 1.9 m/s
since it would be necessary to include the effect of a certain pitch angle and this situation
has not been modeled with the One-Dimensional theory.

Finally, from the data in Tables 12 and 13 and the value of V1−2(t), the One-Dimensional
theory is applied through Equations from (99)–(110), obtaining with this last equation the

vector of marine current turbine forces and moments (
→
Fj

CURRENT TURBINE

(BODY) ).
The only difference is that, in Equation (108), while the unit vector of the clockwise tur-

bine
→
v MCTorque(BODY) is equal to the unit vector

→
v MCThrust(BODY), for the counterclockwise

turbine, these vectors are opposite (
→
v MCTorque(BODY) = −

→
v MCThrust(BODY)), this is easily

verified by observing Figure 13.

3. Results

In order to present the results obtained from the mathematical modeling described
in [1] and in this work, a simulation has been chosen with the version of OC3-Hywind [2]
implemented with the FHYGSYS simulation tool. In Appendix E of [1], the differences
between the inertial data of the OC3-Hywind version of FHYGSYS and those of the floating
system that incorporates the marine current turbines (see Figure 1) are explained.

This means that the results presented in this section do not include marine current
turbines, thus allowing a code-to-code comparison of the mathematical model with FASTv8.
In Appendix E of [1], a code-to-code comparison of the FHYGSYS tool was already included
using the mathematical modeling described in [1] and in this work but without including
wave action. Since the final objective of the development of FHYGSYS is to have a tool
that allows for testing different automatic control strategies of the floating system, it is
especially interesting to carry out simulations with the inclusion of waves because the
waves can cause instabilities in the floating system that the automatic control system must
be able to minimize.

The simulation that has been chosen for the presentation of results includes the action
of the wind, the marine sub-surface current and the waves (see Supplementary Materials
Video S1: Results_Test). The values used for the simulation appear in Table 14, and Figure 14
illustrates the floating system and the corresponding thrust vectors that influence it.

Table 14. Test conditions.

Wind Speed Wind
Direction

Sub-Surface
Current Speed

Sub-Surface
Current Direction Wave Height Wave

Period
Wave

Direction

10 m/s 0 deg 1.1 m/s 110 deg 6 m 10 s 40 deg
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Wind Speed 
Wind 

Direction 

Sub-Surface 

Current Speed 

Sub-Surface 

Current Direction 

Wave 

Height 

Wave 

Period 

Wave 

Direction 

10 m/s 0 deg 1.1 m/s 110 deg 6 m  10 s 40 deg 

 

Figure 14. Position of the thrust vectors on the floating system for the test. 
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INITIAL 
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Section Parameter Original Value Modified Value 

Parameters for Steady 

Wind Conditions 
HWindSpeed 0 10 

Table 17. Changes in “NRELOffshrBsline5MW_OC3Hywind_HydroDyn.dat”. 

Section Parameter Original Value Modified Value 

WAVES 

WaveMod 2 2 

WaveHs 6 6 

WaveTp 10 10 

WaveDir 0 40 

CURRENT 

CurrMod 0 1 

CurrSSV0 0 1.1 

CurrSSDir “DEFAULT” 110 

  

Figure 14. Position of the thrust vectors on the floating system for the test.

The adjustment of the FASTv8 parameters to carry out a simulation with the same
conditions as with FHYGSYS is the same as that indicated in the introduction of Appendix E
of [1], with the differences indicated in Tables 15–18.
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Table 15. Changes in “NRELOffshrBsline5MW_OC3Hywind_ElastoDyn.dat”.

Section Parameter Original Value Modified Value

INITIAL
CONDITIONS RotSpeed 12.1 11.43

Table 16. Changes in “NRELOffshrBsline5MW_InflowWind_12mps.dat”.

Section Parameter Original Value Modified Value

Parameters for Steady
Wind Conditions HWindSpeed 0 10

Table 17. Changes in “NRELOffshrBsline5MW_OC3Hywind_HydroDyn.dat”.

Section Parameter Original Value Modified Value

WAVES

WaveMod 2 2
WaveHs 6 6
WaveTp 10 10
WaveDir 0 40

CURRENT
CurrMod 0 1
CurrSSV0 0 1.1
CurrSSDir “DEFAULT” 110

Table 18. Inclusion in “NRELOffshrBsline5MW_OC3Hywind_HydroDyn.dat”—OutList section—
new output parameters.

Parameter Description Units

WavesFxi Total wave-excitation loads
from diffraction at the WRP

(force in x, y, z directions)

(N)
WavesFyi (N)
WavesFzi (N)

WavesMxi Total wave-excitation loads
from diffraction at the WRP
(moment in x, y, z directions)

(N·m)
WavesMyi (N·m)
WavesMzi (N·m)

As indicated in previous paragraphs, the results presented in this section include the
action of the waves; this causes, in all the graphs, signals of sinusoidal origin corresponding
to the influence of the waves on the magnitude represented appearing superimposed. Firstly,
Figure 15 shows the representation of the six degrees of freedom of the floating system.
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Figure 15 shows the most important magnitudes that allow for comparing the behavior
of FHYGSYS with respect to FASTv8. These are the displacements in the surge, sway, and
heave directions and the rotations about the X, Y, and Z axes of the inertial coordinate
system, roll, pitch, and yaw. This is the main result of applying the mathematical model
presented in [1] and completed in this work. Considering the main objective of the devel-
opment of FHYGSYS—explained previously—the first conclusion is that a tool has been
achieved, which will allow, in future works, for this type of floating system to be evaluated
from the point of view of the development of automatic control systems.

Other important results, those corresponding to the total hydrodynamic loads, are
shown in Figure 16. They represent the sum of all the hydrodynamic loads that act on the
floating system.
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Figure 16. Total integrated hydrodynamic loads from both potential flow and strip theory at the
WRP: (a) surge force; (b) sway force; (c) heave force; (d) roll, pitch, and yaw moments.

These results—which are described in detail in Section 2.6—can be considered accept-
able for the purpose of FHYGSYS. In Figure 16 and the following, WRP means WAMIT
Reference Point, this point corresponds to the origin of coordinates of the inertial coordinate
system [82] (see Figures 3 and 4). To carry out the code-to-code comparison, all the forces
obtained with FHYGSYS have also been expressed in the initial coordinate system.

The results shown in Figures 15 and 16 show a greater amplitude in the sinusoidal
component of the magnitudes obtained with FASTv8. During the development of the
wave modeling, it was observed that, by modifying the seeds that generate Gaussian white
noise (W(ω)), the amplitude of the sinusoidal component of the magnitudes obtained with
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FHYGSYS also varied. For this reason, these amplitude differences are not considered
a modeling error. The decision was made to use the same seeds used by FASTv8 (see
Section 2.6.5) to aid in the FHYGSYS validation process, but simulations can be performed
with others if desired. This difference in the amplitude of the sinusoidal components
appears in many of the graphs presented in this section and in the following ones. In
Appendix B, the results are shown under the same conditions as in this section but with five
different pairs of seeds. The references that appear together with the magnitudes obtained
within the graphs correspond to the references used in the HydroDyn package [82] used by
FASTv8. The same happens with the title of each of the graphs.

3.1. Mooring System Modeling

Figure 17 shows the evolution of the tensions in each of the fairleads of the floating
platform.
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Figure 17. Force on the fairleads of the floating platform of each mooring line. In this figure, T[1],
T[2] and T[3] are the nomenclature used by FASTv8 for the Fairlead Tensions in mooring lines 1, 2
and 3.

Observing Figures 5, 14 and 17, the behavior of the tensions in the fairleads can be
related. In fact, it is verified that due to the orientation of the thrust vectors of the currents
and waves, mooring line 3 is the one that suffers the greatest stress.

The results show the sinusoidal component due to the waves, discussed in the previous
section, an issue that does not preclude accepting the modeling described in Section 2.4.
In Appendix E of [1], more examples of mooring system modeling comparison between
FASTv8 and FHYGSYS are shown.

3.2. Gravitational and Buoyancy Modeling

The comparison of the gravitational and hydrostatic forces—called restoring forces [60]—is
performed jointly because, in most cases, a combination of these two forces is carried out
for modeling [60]. It is probably for this reason that gravitational forces have not been
found separately in FASTv8. They are two opposite forces (see Figure 9) and with a similar
order of magnitude that allows their combination to simplify modeling. In FHYGSYS and
in this work, it has been decided to model the two forces separately for simplicity in their
formulations and for clarity in their explanation.

Figure 18 shows the comparison of the results of the hydrostatic forces, concluding
from its observation that the results obtained are acceptable for the objectives set.
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Figure 18. Hydrostatic loads at the WRP: (a) forces; (b) moments.

Figure 19 shows an enlargement of the heave force to observe in more detail this
force of a high magnitude. This figure can also be compared with Figure 16c, noting that
the origin of the greater amplitude of the sinusoidal component does not come from the
modeling of hydrostatic forces.
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Figure 19. Hydrostatic loads at the WRP. Heave force.

3.3. Additional Damping and Stiffness Modeling

Figure 20 shows the results of the modeling of the additional damping and stiffness.
A similar evolution is observed in all degrees of freedom, highlighting a more pronounced
difference in the yaw moment. This difference is already observed in Figure 16d and is
due to differences in modeling between the two tools. Summarizing, on the one hand,
the differences in the modeling of the waves are observed and, on the other hand, the
differences already observed in AddMzi in the comparison of results are presented in
Appendix E of [1].
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Figure 20. Additional preload, stiffness, and damping at the WRP: (a) surge force; (b) sway force;
(c) heave force; (d) roll, pitch, and yaw moments.

3.4. Added Mass Modeling

Figure 21 shows the graphs of the radiation loads, also known as the loads due to the
added mass. In them, it is inferred that the trend is similar, but the responses are very much
masked by the Gaussian white noise (W(ω)) that the waves incorporate. In Appendix E
of [1], the results of the comparisons of these forces with a very high coincidence can be
observed.

3.5. Viscous Drag Modeling

To compare the results of modeling of viscous drag forces, FASTv8 does not directly
provide these results, but they can be obtained indirectly by subtracting all others from
the total hydrodynamic loads. Thus, the total integrated hydrodynamic loads from both
potential flow and strip theory (HydroFji and HydroMji) are subtracted from the hy-
drostatic loads (HdrStcFji and HdrStcMji), the additional damping and stiffness loads
(AddFji and AddMji), the radiation loads (RdtnFji and RdtnMji), and the wave-excitation
loads (WavesFji and WavesMji), yielding as a result, the viscous drag loads (ViscDFji and
ViscDMji). This is expressed mathematically through Equations (116) and (117).

ViscDFji = HydroFji− HdrStcFji− AddFji− RdtnFji−WavesFji (116)

ViscDMji = HydroMji− HdrStcMji− AddMji− RdtnMji−WavesMji (117)

Figure 22 shows the results obtained, in which it is verified that the trend of the graphs
is the same, but in this case, in the responses of FHYGSYS, a greater amplitude of the
sinusoidal components is observed.
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3.6. Wave Modeling

As previously indicated, the inclusion of waves in the modeling of the floating system
provides an ideal tool for the development of automatic control systems for this type of system.

Figure 23 shows the total wave elevation; as explained in Section 2.6.5, it is calculated
using Equation (78), and it is an important magnitude since it is needed to calculate the Z
component of the force of the incident waves.
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Figure 23. Total wave elevation at the WRP.

As already mentioned, the wave spectrum obtained depends on Gaussian white noise
(W(ω)), more specifically on the seeds used to generate it. By varying the values of the
seeds, other values of this magnitude are generated, consequently affecting the rest of the
magnitudes that act on the floating system. In Appendix B, the results are shown under the
same conditions as in this section but with five different pairs of seeds. Figure 24 shows the
components of the wave loads, in which a certain correlation is observed in the amplitude
in the different graphs. In the wave period, this correlation is not observed, but as already
indicated, this is due to the modeling differences between the two tools.
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3.7. Coriolis–Centripetal Modeling

Coriolis–Centripetal modeling cannot be directly compared with values obtained
with FASTv8. However, it can be indirectly compared by observing the responses of
the six degrees of freedom shown in Figure 15. As explained in Section 2.7, these forces
depend on the speed of the floating system, so they contribute to the transient part of these
responses being more appropriate when comparing the results obtained with the two tools.

3.8. Wind Turbine Modeling

Figure 25 shows the results of the comparison between FASTv8 and FHYGSYS refer-
ring to the wind turbine. In them, it is verified that the modeling exposed in Section 2.8.1
can be considered appropriate, fulfilling the objectives of the development of FHYGSYS. In
Appendix E of [1], other comparisons without the inclusion of waves are shown.
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In Figure 25a,b the FASTv8 results shown correspond to the modulus of the total
rotor aerodynamic loads, applying Equation (118) for Figure 25a and Equation (119)
for Figure 25b. The nomenclature used in these equations is the same as that used in
FASTv8 and is detailed in Appendix E of [1]. Similarly, the FHYGSYS results shown in
Figure 25a correspond to the modulus of the surge, sway, and heave components of the

vector
→
Fj

WINDTURBINE

(BODY) (t)—calculated in Equation (110)—and in Figure 25b to the modulus
of the roll, pitch, and yaw components of the same vector.

RtAeroF =
√

RtAeroFxh2 + RtAeroFyh2 + RtAeroFzh2 (118)

RtAeroM =
√

RtAeroMxh2 + RtAeroMyh2 + RtAeroMzh2 (119)

3.9. Marine Current Turbine Modeling

The marine current turbines have not been able to be compared with the results of
another simulation tool; however, the behavior of the marine turbines described in [4,5]
has been reproduced as much as possible, given the same dimensions, the same inertial
and electrical characteristics, and the same turbine rotation speed curve. The modeling of
the marine current turbines has been completed by applying these data as described in
Section 2.8.2 with the same code compared and validated with FASTv8 for the wind turbine.

4. Discussion

This work is part of a series of articles that describe the model of a floating hybrid
system such as the one shown in Figure 1. In [1], the kinematic and dynamic modeling
of the floating system was described, as well as the method to calculate the added mass
and the inertial characteristics of the system. This paper concludes the exposition of
the mathematical modeling of the floating hybrid system, exposing the forces acting on
it and describing in detail the mathematical formulation used. The acting forces refer
fundamentally to those originating due to the hydrodynamics, the mooring system, and
the wind and marine current turbines.

Force modeling is based on vector calculation and basically consists of obtaining the
corresponding force vector, knowing or deducing its application point, and moving the
force to the calculation point—in this case, the origin of the mobile coordinate system—
thus obtaining an equivalent force and moment at this point.

The calculation is completed by rotating and translating the inertia tensor, usually
expressed in the center of mass of each individual body; displacing it to the calculation
point; and applying the dynamics equations, as explained in [1].

Figure 2 shows an operating diagram of the mathematical model in which the matrices

of the rigid body (MRB), added mass (MAM), and the resultant forces (
→
Fj

TOTAL

(BODY)) acting
on the floating hybrid system can be considered as key elements for its operation. The
MRB and MAM matrices represent the mechanical—inertial—characteristics of the floating
system and how it will behave when moving through the fluid. The resultant forces and
moments that act on the floating system determine the direction, amplitude, and frequency
of its movements.

For an adequate understanding of the exposition developed in this work, we recom-
mend reading Part I [1], since many of the explanations made are based on it.

The One-Dimensional theory [66,81] has been used to model wind turbines and marine
currents. This modeling technique makes it possible to reproduce the behavior of a turbine
in which the operation is known. In this way, it is possible to carry out simulations of how
the floating system will behave, but on which it will not be possible to modify any operating
pattern that has not been previously tested either in a real model or with a simulation tool.



J. Mar. Sci. Eng. 2023, 11, 987 48 of 68

This means that—according to the authors’ interpretation—an integrated automatic
control system cannot be implemented on a simulation tool that uses the One-Dimensional
theory for turbine modeling.

For this reason, within the series of scheduled publications, one will be included in
which the integration of Blade Element Momentum (BEM) theory for turbine modeling
in FHYGSYS is described. With this technique, results are obtained from the construction
and aerodynamic characteristics of the blades, which allows us, for example, to implement
a blade pitch control system. Electrical characteristics of the generators are also used to
calculate the power generated, which also allows for the development of a generator torque
control system. In this way, modifications can be included in the modeling of the turbines
that allow for obtaining results with more details of operation such as those described
in [31,37,83].

On the other hand, the modeling described in [1] and in this work allows the study
of the behavior of the floating hybrid system with different meteorological conditions,
different wind, and marine current speeds, adding the action of waves, etc. The comparison
of results exposed in Section 3, in Appendix B, and in Appendix E of [1], allows for having
a tool that serves to achieve the main objective for which FHYGSYS has been developed: to
implement an integrated control system for the stability of the floating hybrid system.

The mathematical model exposed in [1] and in this work requires careful development
since an inadequate composition in some part of it leads to the generation of deficient
results. For this reason, all the parts that make up the modeling of the floating hybrid
system have been thoroughly exposed.

One of the important issues for the modeling of partially or totally submerged systems
is the modeling of the added mass since an inadequate modeling gives deficient results
in the transient responses of the different magnitudes. For this reason, in Appendix A,
an example of calculation of the added mass matrix (MAM) has been included to clarify the
processing of this matrix.

With the aim of demonstrating the reliability and consistency of the results in Appendix B,
five simulations have been included, under the same conditions established in Section 3,
but using different pairs of seeds to generate white Gaussian noise W(ω) in each case.
Observing the results, it is concluded that when using different seeds, different results are
obtained, but all are compatible with the objective of simulating the waves acting on the
floating hybrid system.

A test has also been included in Appendix B, under the same conditions as in Section 3,
but lasting one hour. This test allows us to evaluate the stability over time of the simula-
tions carried out with FHYGSYS, compared with the results obtained with FASTv8. The
conclusion obtained from the test is that FHYGSYS offers temporary stability in the results,
demonstrating the reliability of the mathematical model of the floating hybrid system.

In addition to the upcoming post explaining the integration of BEM in FHYGSYS,
future work will focus on the study of integrated floating platform stability systems. It
is also intended to develop variants of the floating hybrid system with different sizes of
turbines, different aerodynamic profiles, etc.

Also included in this series of articles will be one dedicated to the control requirements
of the floating system, where cooperative control techniques among all the turbines will
be exposed following the hypotheses explained in [1]. For example, making the marine
turbines work in power generation mode or in actuator mode to contribute to the stability
of the floating hybrid system.

Another of the future publications of the series of articles will be focused on how
to translate the exposed mathematical model into computer language, describing the
architecture of FHYGSYS as well as the computer resolution of the key points of the code.

Once this first series of articles is finished, we also intend to carry out studies focused
on specific aspects of the floating hybrid system, such as the mooring system or certain
aspects of the hydrodynamics of the floating system. We also intend to adapt FHYGSYS to
other concepts such as the OC4 semi-submersible wind turbine [84].
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Abbreviations

Acronym list
ANSYS Swanson Analysis Systems
ASHES Aero-servo-hydro-elastic simulation
BEM Blade Element Momentum Theory
CFD Computational Fluid Dynamics
DNV Det Norske Veritas (The Norwegian Veritas)
DTU Technical University of Denmark
EMEC European Marine Energy Center
FAST Fatigue, Aerodynamics, Structures, and Turbulence
FHS Floating Hybrid Systems
FHYGSYS Floating Hybrid Generator Systems Simulator
GPL General Public License
HAWC2 Horizontal Axis Wind Turbine Simulation Code 2nd Generation
JONSWAP Joint North Sea Wave Project
LES Large Eddy Simulation Method
MCT Marine Current Turbines
OC3 Offshore Code Comparison Collaboration
RANS Reynolds-Averaged Navier–Stokes method
SWL Still Water Level
TTS Tidal Turbine Simulation
WAMIT Wave Analysis Massachusetts Institute of Technology
WAsP Wind Atlas Analysis and Application Program
WEC Wave Energy Converter
WRP WAMIT Reference Point
WT Wind Turbine
WTS Wind Turbine Simulation
Symbol list

a(t, x, y, z)
acceleration of the water particle at a point of coordinates x, y,
and z of the inertial coordinate system

ax(INERTIAL)(h, t) x component of the acceleration a(t, x, y, z) at depths h
ay(INERTIAL)(h, t) y component of the acceleration a(t, x, y, z) at depths h
→
a x,y(INERTIAL)(h, t) x and y components of the acceleration a(t, x, y, z) at depths h
a, b, c shape parameters to define an ellipsoid

AddFji
additional preload, stiffness, and damping forces (i = surge, sway,
and heave)

AddMji
additional preload, stiffness, and damping moments (i = roll, pitch,
and yaw)
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AddYS additional yaw spring stiffness
axi f axial induction factor of the wind turbine (or marine current turbine)

ani f (t)
angular induction factor of the wind turbine (or marine
current turbine)

ATurbine area of the wind turbine (or marine current turbine)
→
avj(BODY)

acceleration vector of six degrees of freedom expressed in the mobile
coordinate system

α0, β0, γ0 parameters which depend on the values of the semi-axes of the ellipsoid
α power law exponent
β yaw angle that represents the direction of the waves
CB cable-seabed friction coefficient
CD aerodynamic drag coefficient

CD(h)
drag coefficient of the tower or the floating platform at the pVDi points
for the calculation of the viscous drag forces

CL aerodynamic lift coefficient
CoB center of buoyancy of the floating hybrid system

CoB(BODY)(t)
center of buoyancy of the floating hybrid system expressed in the
mobile coordinate system

CoM center of mass of the floating hybrid system

CoM(BODY)(t)
center of mass of the floating hybrid system expressed in the
mobile coordinate system

CoMMCTurbine center of mass of the marine current turbine
CoMWTurbine center of mass of the wind turbine

CoMWTurbine(BODY)
center of mass of the wind turbine expressed in the mobile
coordinate system

CP power coefficient of the wind turbine (or marine current turbine)

→
crossFAi(INTER)(t)

cross product of the position vectors
→
p FAi(INTER)(t=0) and

→
p FAi(INTER)(t>0)(t)

CT(t) thrust coefficient of the wind turbine (or marine current turbine)
→

cv1 and
→

cv2 vectors needed to obtain the Coriolis–centripetal matrix (MCC)

D(h)
diameter of the tower or the floating platform at the pVDi points
for the calculation of the viscous drag forces

DC mooring line diameter
→
dF

VISCOUS

(BODY) (h, t)
differential of the vector of viscous drag forces expressed in the
mobile coordinate system

d
→
Fx

VISCOUS

(INERTIAL)(h, t) x component of
→
dF

VISCOUS

(BODY) (h, t) vector

d
→
Fy

VISCOUS

(INERTIAL)(h, t) y component of
→
dF

VISCOUS

(BODY) (h, t) vector

d
→

Fx,y
WAVES

(BODY)(h, t)
x and y components of the differential of the vector of wave forces
expressed in the mobile coordinate system

d
→

Fx,y
WAVES

(INERTIAL)(h, t)
x and y components of the differential of the vector of wave forces
expressed in the inertial coordinate system

DHub wind turbine hub diameter
→

dM
VISCOUS

(BODY) (h, t)
differential of the moment vector of viscous drag forces expressed
in the mobile coordinate system

d
→

Mx,y
WAVES

(BODY)(h, t)
x and y components of the differential of the moment vector of wave
forces expressed in the mobile coordinate system

dWATER water depth
δ direction of the wind velocity vector
∆t time increment used for the simulations
EA equivalent mooring line extensional stiffness
ε direction of the sub-surface current velocity vector
f wave frequency related to the angular speed by ω = 2·π· f
→
F

ADDITIONAL DAMPING

(BODY) (t)
vector of additional damping forces expressed in the mobile
coordinate system

→
F

ADDITIONAL DAMPING

(INERTIAL) (t)
vector of additional damping forces expressed in the inertial
coordinate system
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→
F

CORIOLIS

(BODY) (t)
vector of Coriolis–centripetal forces expressed in the mobile
coordinate system

→
F

GRAVITY

(BODY) (t)
vector of gravitational forces expressed in the mobile
coordinate system

→
F

GRAVITY

(INERTIAL)
vector of gravitational forces expressed in the inertial
coordinate system

→
F

HYDROSTATICS

(BODY) (t)
vector of hydrostatic forces expressed in the mobile
coordinate system

→
F

HYDROSTATICS

(INERTIAL) (t)
vector of hydrostatic forces expressed in the inertial
coordinate system

FLine i
force vector of mooring line i (i = line 1, 2, or 3) expressed in the
anchor coordinate system

→
F

LINE i

(ANCHOR)(t)
force vector of mooring line i (i = line 1, 2, or 3) expressed in the
anchor coordinate system

→
F

LINE i

(BODY)(t)
force vector of mooring line i (i = line 1, 2, or 3) expressed in the
mobile coordinate system

→
F

LINE i

(INERTIAL)(t)
force vector of mooring line i (i = line 1, 2, or 3) expressed in the
inertial coordinate system

→
F

VISCOUS

(BODY) (t)

force and moment vector due to the viscous drag expressed in the
mobile coordinate system without neglecting the values of heave
and yaw

→
F

VISCOUS

(INERTIAL)(t)

force and moment vector due to the viscous drag expressed in the
inertial coordinate system without neglecting the values of heave
and yaw

→
F

VISCOUS DRAG

(INERTIAL) (t)
force and moment vector due to the viscous drag expressed in the
inertial coordinate system

→
Fx,y

WAVES

(BODY)(t)
force and moment vector due to the waves expressed in the mobile
coordinate system without heave component

→
Fz

WAVES

(BODY)(t)
heave component of force and moment vector due to the waves
expressed in the mobile coordinate system

→
Fz

WAVES

(INERTIAL)(t)
heave component of force and moment vector due to the waves
expressed in the inertial coordinate system

→
Fj

ADDED MASS

(BODY)

force and moment vector due to the added mass expressed in the
mobile coordinate system

→
Fj

ADDITIONAL DAMPING

(BODY)

force and moment vector due to the additional damping and
stiffness expressed in the mobile coordinate system

→
Fj

CORIOLIS

(BODY)

force and moment vector due to the Coriolis–centripetal effects
expressed in the mobile coordinate system

→
Fj

CURRENT TURBINE

(BODY)

force and moment vector due to marine current turbines thrust
expressed in the mobile coordinate system

→
Fj

GRAVITY

(BODY)

force and moment vector due to gravitational field expressed in the
mobile coordinate system

→
Fj

HYDRODYNAMICS

(BODY)

force and moment vector due to hydrodynamics expressed in the
mobile coordinate system

→
Fj

HYDROSTATICS

(BODY)

force and moment vector due to hydrostatics expressed in the
mobile coordinate system

→
Fj

LINE 1

(BODY),
→
Fj

LINE 2

(BODY),
→
Fj

LINE 3

(BODY)

force and moment vector due to the mooring lines 1, 2, and 3,
expressed in the mobile coordinate system

→
Fj

LINE i

(BODY)

force and moment vector due to the mooring line I (i = line 1, 2, or 3)
expressed in the mobile coordinate system

→
Fj

MOORING SYSTEM

(BODY)

force and moment vector due to the mooring system expressed in
the mobile coordinate system

→
Fj

NEAR−SURFACE CURRENT

(BODY)

virtual force and moment vector due to the action of near-surface
current on the floating platform expressed in the mobile
coordinate system
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→
Fj

SUB−SURFACE CURRENT

(BODY)

virtual force and moment vector due to the action of sub-surface
current on the floating platform expressed in the mobile
coordinate system

→
Fj

TOTAL

(BODY)

resultant force and moment vector of the floating hybrid system
expressed in the mobile coordinate system

→
Fj

VISCOUS DRAG

(BODY)

force and moment vector due to the viscous drag expressed in the
mobile coordinate system

→
Fj

WAVES

(BODY)

force and moment vector due to the waves expressed in the mobile
coordinate system

→
Fj

WIND TOWER

(BODY)

virtual force and moment vector due to the action of wind on the
tower expressed in the mobile coordinate system

→
Fj

WIND TURBINE

(BODY)

force and moment vector due to wind turbine thrust expressed in
the mobile coordinate system

FMCThrust vector of marine current turbine force
FWThrust vector of wind turbine force
→
F WThrust(BODY)(t)

vector of wind turbine force expressed in the mobile
coordinate system

g gravity acceleration
gearR wind turbine—or marine current turbine—gearbox ratio

genE
wind turbine—or marine current turbine—electrical
generator efficiency

γ
(
Tp, Hs

)
peak shape parameter in JONSWAP spectrum

h height if h > 0 or depth if h ≤ 0, z coordinate of a point

HAi
horizontal component of force vector of mooring line i
(i = line 1, 2, or 3) applied on its anchor

HdrStcFji hydrostatic forces (i = surge, sway, and heave)
HdrStcMji hydrostatic moments (i = roll, pitch, and yaw)

HFi
horizontal component of force vector of mooring line i
(i = line 1, 2, or 3) applied on its fairlead

h f ree shadow
height of the tower of the floating system free from the shadow of
the wind turbine

hHub wind turbine hub height, or marine current turbine depth
Hs significant wave height
hsubmerged depth of the submerged part of the floating platform

HydroFji
total integrated hydrodynamic forces from both potential flow and
strip theory (i = surge, sway, and heave)

HydroMji
total integrated hydrodynamic moments from both potential flow
and strip theory (i = roll, pitch, and yaw)

Ixx, Iyy, Izz moments of inertia of the floating hybrid system
Ixy, Iyz, Izx products of inertia of the floating hybrid system

Ixx(SUM), Iyy(SUM), Izz(SUM)
moments of inertia of the submerged volume of the floating hybrid
system

Ixy(SUM), Iyz(SUM), Izx(SUM)
products of inertia of the submerged volume of the floating hybrid
system

j imaginary unit of value
√
−1

k(ω) wave number in a finite depth
L unstretched mooring line length
LBlade wind turbine—or marine current turbine—blade length
LBi unstretched portion of the mooring line resting on the seabed
λwave wavelength
→
M

ADDITIONAL DAMPING

(INERTIAL) (t)
moment vector of additional damping forces expressed in the
inertial coordinate system

→
M

ADDDAMP & STIFFNESS

(BODY) (t)
moment vector of additional damping and stiffness forces
expressed in the mobile coordinate system

→
M

CORIOLIS

(BODY) (t)
moment vector of Coriolis–centripetal forces expressed in the
mobile coordinate system

→
M

GRAVITY

(BODY) (t)
moment vector of gravitational forces expressed in the mobile
coordinate system
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→
M

HYDROSTATICS

(BODY) (t)
moment vector of hydrostatic forces expressed in the mobile
coordinate system

→
M

LINE i

(BODY)(t)
moment vector of mooring line i (i = line 1, 2, or 3) expressed in
the mobile coordinate system

→
M

STIFFNESS

(INERTIAL)(t)
moment vector of stiffness forces expressed in the inertial
coordinate system

→
MMCThrust moment vector of marine current turbine force
→
MMCTorque vector of marine current turbine moment
→
MWThrust(BODY)(t)

moment vector of wind turbine force expressed in the mobile
coordinate system

→
MWTorque(BODY)(t)

vector of wind turbine moment expressed in the mobile
coordinate system

MAM added mass matrix
MCC Coriolis–centripetal matrix
mFS total mass of the floating hybrid system

MINERTIAL
BODY

transformation matrix that allows changing between the inertial
coordinate system and the mobile coordinate system

MHT
INERTIAL
BODY

homogeneous transformation matrix that allows for changing
between the inertial coordinate system and the mobile
coordinate system

MHTi
INERTIAL
ANCHOR

homogeneous transformation matrix that allows for changing
between the inertial coordinate system and the anchor coordinate
system of the mooring line i (i = line 1, 2, or 3)

mLine equivalent mooring line mass density
MRB rigid body matrix
MRB(11) top left 3 × 3 submatrix of MRB
MRB(12) top right 3 × 3 submatrix of MRB
MRB(21) bottom left 3 × 3 submatrix of MRB
MRB(22) bottom right 3 × 3 submatrix of MRB
mSUM(t) mass of the submerged volume of the floating hybrid system
ω angular speed related to the wave frequency by ω = 2·π· f

Ω
module of the angular speed of the wind turbine—or marine
current turbine—rotor

pA1, pA2, pA3 points of the anchors fixed on the seabed in the initial position

pAi(INERTIAL)
Points of the anchors of mooring lines 1, 2, and 3 expressed in the
inertial coordinate system

PELE(t) electrical power generated by the turbine

pF1, pF2, pF3
points of the fairleads attached to the floating platform
in the initial position

pFi points of the fairlead of mooring lines 1, 2, and 3
pFi(ANCHOR)(t) pFi points expressed in the anchor coordinate system
pFi(BODY) pFi points expressed in the mobile coordinate system
pFi(INERTIAL) pFi points expressed in the inertial coordinate system
→
p FAi(INTER)

position vector of the fairlead of mooring lines 1, 2, and 3
expressed in the intermediate anchor coordinate system

PMEC(t) mechanical power generated by the turbine
→
p point(INERTIAL)(t)

point—or position vector—expressed in the inertial
coordinate system

pVDi
centers of the circular sections into which the tower and the floating
platform are divided for the calculation of the viscous drag forces

→
p VDi(BODY)(t) pVDi points expressed in the mobile coordinate system
→
p VDi(INERTIAL)(t) pVDi points expressed in the inertial coordinate system
pVDmax highest shadow-free pVDi point
pVDmin deepest shadow-free pVDi point
pVDswl(t) pVDi point at the still water level
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ϕanchori(t)
angle between the position vectors

→
p FAi(INTER)(t=0) and

→
p FAi(INTER)(t>0)(t) of the mooring line i (i = line 1, 2, or 3)

ϕanchorCSi(t)
angle of rotation of the intermediate anchor coordinate system
around its corresponding Z axis to obtain the anchor coordinate
system of each mooring line i (i = line 1, 2, or 3)

ϕLine 1, ϕLine 2, ϕLine 3
yaw angle with respect to inertial X axis of the mooring lines in the
initial position

ϕpitch pitch angle of wind turbine—or marine current turbine–blades
ϕPrecone wind turbine—or marine current turbine—precone angle
ϕSha f tTilt wind turbine—or marine current turbine—shaft tilt angle
Q(t) moment vector module of the turbine

q6(t)
system degree of freedom 6, yaw value of the floating hybrid
system at each instant of time

.
q1,

.
q2,

.
q3,

.
q4,

.
q5,

.
q6 vector

→
vvi(INERTIAL)(t) components

QGEN(t) torque produced in the electrical generator
Re real part of a complex number
RdtnFji radiation forces (i = surge, sway, and heave)
RdtnMji radiation moments (i = roll, pitch, and yaw)
rHub wind turbine—or marine current turbine—hub radius

rswl(t)
radius of the floating platform at its intersection with the still
water level

RtAeroF total rotor aerodynamic forces (thrust)
RtAeroM total rotor aerodynamic moments (torque)
rTurbine wind turbine—or marine current turbine—radius
ρAIR density of air

ρ f luid(h)
density of the corresponding fluid at the pVDi points for the
calculation of the viscous drag forces

ρSEAWATER density of seawater

S1−Sided
JONSWAP(ω)

one-sided power spectral density of the wave elevation per unit
time of JONSWAP spectrum

S1−Sided
P−M (ω)

one-sided power spectral density of the wave elevation per unit
time of Pierson–Moskowitz spectrum

S2−Sided
JONSWAP(ω)

two-sided power spectral density of the wave elevation per unit
time of JONSWAP spectrum

σ(ω) scaling factor in the JONSWAP spectrum
t time or instant of time
T(t) thrust vector module of the turbine
TAM kinetic energy of the added mass
Ts wave peak period
TSR(t) tip speed ratio of the turbine
u, v, w, p, q, r vector

→
vvi(BODY)(t) components

U1(ω)
first set of random numbers—generated from a certain seed—for
each of the ω values

U2(ω)
second set of random numbers—generated from a certain
seed—for each of the ω values

V0(t) wind—or marine current—speed far upstream of the rotor

V1−2(t)
magnitude of the effective wind—or marine current—velocity
vector on the wind turbine (or marine current turbine)

VAi
vertical component of force vector of mooring line i
(i = line 1, 2, or 3) applied on its anchor

VFi
vertical component of force vector of mooring line i
(i = line 1, 2, or 3) applied on its fairlead

ViscDFji viscous drag forces (i = surge, sway, and heave)
ViscDMji viscous drag moments (i = roll, pitch, and yaw)

VNSCUR(h)
magnitude of the near-surface current velocity vector at
a certain depth
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VSSCUR(h)
magnitude of the sub-surface current velocity vector at
a certain depth

VSWL
magnitude of the sub-surface current velocity vector at
the reference depth

VW−REF
magnitude—or mean wind speed—of the wind velocity vector at
the reference height

VWIND(h) magnitude of the wind velocity vector at a certain height
→
v EFF−MCThrust(BODY)(h, t)

effective marine current velocity vector on the marine current
turbine expressed in the mobile coordinate system

→
v EFF−NSCURR(INERTIAL)(h, t)

effective near-surface current velocity vector expressed in the
inertial coordinate system

→
v EFF−SSCURR(BODY)(h, t)

effective sub-surface current velocity vector expressed in the
mobile coordinate system

→
v EFF−SSCURR(INERTIAL)(h, t)

effective sub-surface current velocity vector expressed in the
inertial coordinate system

→
v EFF−WIND(BODY)(h, t)

effective wind velocity vector expressed in the mobile
coordinate system

→
v EFF−WIND(INERTIAL)(h, t)

effective wind velocity vector expressed in the inertial
coordinate system

→
v EFF−WThrust(BODY)(t)

effective wind velocity vector on the wind turbine expressed in the
mobile coordinate system

→
v NSCUR(INERTIAL)(h)

near-surface current velocity vector of the vector field rotated by the
corresponding angle δ expressed in the inertial coordinate system

→
v point(INERTIAL)(t)

velocity vector of the floating hybrid system at a given point
expressed in the inertial coordinate system

→
v SSCUR(INERTIAL)(h)

sub-surface current velocity vector of the vector field rotated by the
corresponding angle ε expressed in the inertial coordinate system

→
v VDi(INERTIAL)(h, t)

velocity vector of the floating hybrid system at the pVDi points
expressed in the inertial coordinate system

→
v VDRi(INERTIAL)(h, t)

relative velocity vector between the speed of the fluids and that of
the floating hybrid system at the pVDi points expressed in the
inertial coordinate system

→
v VDRix(INERTIAL)(h, t) x component of

→
v VDRi(INERTIAL)(h, t) velocity vector

→
v VDRiy(INERTIAL)(h, t) y component of

→
v VDRi(INERTIAL)(h, t) velocity vector∣∣∣→v VDRix−y(INERTIAL)(h, t)

∣∣∣ magnitude of the relative velocity vector
→
v VDRi(INERTIAL)(h, t)

neglecting the z component
→
v MCThrust(BODY)

unit vector of marine current turbine force expressed in the mobile
coordinate system

→
v MCTorque(BODY)

unit vector of marine current turbine moment expressed in the
mobile coordinate system

→
v WIND(INERTIAL)(h)

wind velocity vector of the vector field rotated by the
corresponding angle δ expressed in the inertial coordinate system

→
v WThrust(BODY)

unit vector of wind turbine force expressed in the mobile
coordinate system

→
v WTorque(BODY)

unit vector of wind turbine moment expressed in the mobile
coordinate system

→
vvi(BODY)

velocity vector of six degrees of freedom of the floating hybrid
system expressed in the mobile coordinate system

→
vvi(INERTIAL)

velocity vector of six degrees of freedom of the floating hybrid
system expressed in the inertial coordinate system

W(ω) white Gaussian noise time-series process
WavesFji wave-excitation forces from diffraction (i = surge, sway, and heave)
WavesMji wave-excitation moments from diffraction (i = roll, pitch, and yaw)
wL apparent weight of the mooring line in fluid per unit length
x x component of each element of the mesh that represents the sea

XA, YA, ZA, KA, MA, NA vector −
→
Fj

ADDEDMASS

(BODY) components

xFi x component of pFi(ANCHOR)(t)
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X .
u, Y .

v, Z .
w, K .

p, M .
q, N .

r values of the main diagonal of the added mass matrix
y y component of each element of the mesh that represents the sea
yFi y component of pFi(ANCHOR)(t)

z
z component of the vector pVDi(INERTIAL) to calculate the
acceleration of the water particles

zFi z component of pFi(ANCHOR)(t)
zREF reference height of the wind velocity vector

zNSCUR(t)
depth to calculate the magnitude of the near-surface current
velocity vector

zSSCUR(t)
depth to calculate the magnitude of the sub-surface current
velocity vector

zWIND(t) height to calculate the magnitude of the wind velocity vector

ζswl(t)
wave elevation at the intersection of the floating platform with the
still water level

ζmesh(t) wave elevation of each element of the mesh that represents the sea

ζ(t, x, y)
wave elevation of a grid element—of the mesh that represents the
sea—with x and y coordinates

Appendix A

This appendix presents, as an example, the calculation of the values of the added mass
matrix (MAM) from the inertial characteristics of the submerged part of the floating hybrid
system—shown in Figure 1—that appear in Table 3. These characteristics are the mass
(mSUM(t)), the center of buoyancy (CoB(t)), and the inertia tensor (MIT(SUM)(FS)(t)) of the
submerged volume of the floating hybrid system for t = 0.

Following the indications of Section 2.3.3 of [1], firstly, the parameters that define the
ellipsoid with which the submerged volume of the floating system resembles are calculated
with Equations (A1) and (A2).

a = b =
Dmax

2
=

9.4
2

= 4.7 m (A1)

c =
hsubmerged(t)

2
=

120
2

= 60 m (A2)

The value of hsubmerged appears in Table 7, while Dmax is the diameter of the floating
platform below the conical region shown in Table 8. Both data are taken from [2]. This
calculation is performed at each instant of time; for instants t > 0, hsubmerged varies and
the calculation is performed with this updated value, while the value of Dmax is con-
sidered constant given the mostly spar shape of the submerged volume of the floating
hybrid system.

Next, Equations (23)–(31) of [1] are applied to obtain the values of the main diagonal
of the added mass matrix (MAM).

e =

√
1− a2

c2 = 0.996927 (A3)

α0 = β0 =
1
e2 −

1− e2

2·e3 ·log
1 + e
1− e

= 0.986119 (A4)

γ0 =
2·
(
1− e2)
e3 ·

(
1
2
·log

1 + e
1− e

− e
)
= 0.0277629 (A5)

In Equations (A4) and (A5), log represents the natural logarithm of the correspond-
ing values.

X .
u = − α0

2− α0
·mSUM(t) = −0.972617·8, 302, 931 = −8, 075, 574 kg (A6)
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Y .
v = − β0

2− β0
·mSUM(t) = −0.972617·8, 302, 931 = −8, 075, 574 kg (A7)

Z .
w = − γ0

2− γ0
·mSUM(t) = −0.0140769·8, 302, 931 = −116, 879 kg (A8)

K .
p = −

(
b2 − c2)2·(γ0 − β0)

2·(b4 − c4) + (b2 + c2)
2·(β0 − γ0)

·Ixx(SUM)(t) = −0.919262·410, 511·105 = −377, 367·105 kg·m2 (A9)

M .
q = −

(
c2 − a2)2·(α0 − γ0)

2·(c4 − a4) + (c2 + a2)
2·(γ0 − α0)

·Iyy(SUM)(t) = −0.919262·410, 511·105 = −377, 367·105 kg·m2 (A10)

N.
r = −

(
a2 − b2)2·(β0 − α0)

2·(a4 − b4) + (a2 + b2)
2·(α0 − β0)

·Izz(SUM)(t) = 0 kg·m2 (A11)

The solution of Equation (A11) is indeterminate, so zero is chosen as the result. Once
the values of the main diagonal of the MAM matrix have been calculated, Equation (32)
from [1] is applied. In this equation, some elements appear multiplied by the mass of the
submerged volume (mSUM(t)). As in Equations (A6)–(A8)—Equations (26)–(28) of [1]—the
mass of the submerged volume must be multiplied by the coefficients as a function of
α0, β0, and γ0. For this reason, Equation (32) of [1] should be interpreted as shown in
Equation (A12).

MAM = −



X .
u

0
0

0
Y .

v
0

0
X .

u·zCoB
−X .

u·yCoB

−Y .
v·zCoB
0

Y .
v·xCoB

0
0

Z .
w

0
−X .

u·zCoB
X .

u·yCoB

Z .
w·yCoB

−Z .
w·xCoB
0

K .
p

−Ixy(SUM)

−Izx(SUM)

Y .
v·zCoB

0
−Y .

v·xCoB

−Z .
w·yCoB

Z .
w·xCoB

0
−Ixy(SUM)

M .
q

−Iyz(SUM)

−Izx(SUM)

−Iyz(SUM)

N.
r


(A12)

Finally, applying Equation (A12) to the considered example, the fully processed added
mass matrix (MAM) is obtained, representing the results in Equation (A13).

MAM = −



−8, 075, 574
0
0

0
−8, 075, 574

0
0

498, 180·103

0

−498, 180·103

0
−2959.03

0
0

−116, 879

0
−498, 180·103

0
0

42.8265
0

−377, 367·105

0
60, 847.1

498, 180·103

0
2959.03

0
−42.8265

0
0

−377, 233·105

0

60, 847.1
0
0

 (A13)

Appendix B

Appendix B.1. Five Tests with Different Seeds to Generate White Gaussian Noise

For the sake of brevity, in the five tests, only the magnitudes that have been consid-
ered most relevant are shown. Table A1 contains the random seeds used in each of the
corresponding parameters of the five tests carried out, compared with those of the test in
Section 3. The weather conditions are the same as those of the Section 3 test.
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Table A1. Seeds used in Matlab® in each test.

Test Parameter Seed

Section 3
U1(ω) 1,011,121,314
U2(ω) 123,456,789

First
U1(ω) 2,505,145,020
U2(ω) 1,130,143,962

Second
U1(ω) 740,180,996
U2(ω) 2,144,412,254

Third
U1(ω) 19,329,888
U2(ω) 3,200,590,489

Fourth
U1(ω) 645,186,545
U2(ω) 2,201,119,503

Fifth
U1(ω) 3,938,040,421
U2(ω) 2,229,424,326
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wave elevation; (d) yaw angle. 

  

(a) (b) 

  

(c) (d) 

Figure A2. Second test results: (a) surge, sway, and heave displacements; (b) roll and pitch angles; 

(c) wave elevation; (d) yaw angle. 

Figure A1. First test results: (a) surge, sway, and heave displacements; (b) roll and pitch angles;
(c) wave elevation; (d) yaw angle.
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(c) wave elevation; (d) yaw angle.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 59 of 68 
 

 

  

(a) (b) 

  

(c) (d) 

Figure A3. Third test results: (a) surge, sway, and heave displacements; (b) roll and pitch angles; (c) 

wave elevation; (d) yaw angle. 
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Figure A3. Third test results: (a) surge, sway, and heave displacements; (b) roll and pitch angles;
(c) wave elevation; (d) yaw angle.
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Figure A5. Fifth test results: (a) surge, sway, and heave displacements; (b) roll and pitch angles; (c) 

wave elevation; (d) yaw angle. 
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Figure A6. Linear and angular degrees of freedom (one hour test): (a) linear degrees of freedom; (b) 

roll and pitch angles; (c) yaw angle. 

Figure A5. Fifth test results: (a) surge, sway, and heave displacements; (b) roll and pitch angles;
(c) wave elevation; (d) yaw angle.
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Appendix B.2. Complete Test of One Hour Duration

This section shows the results of a complete test such as the one carried out in Section 3
but lasting one hour. The weather conditions are the same as those of the Section 3 test.
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(b) roll and pitch angles; (c) yaw angle.
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mooring lines 1, 2 and 3. 

Figure A7. Total integrated hydrodynamic loads from both potential flow and strip theory at the
WRP (one hour test): (a) surge force; (b) sway force; (c) heave force; (d) roll, pitch, and yaw moments.
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Figure A8. Hydrostatic loads at the WRP and mooring line forces (one hour test): (a) forces;
(b) moments; (c) heave force; (d) force on the fairleads of the floating platform of each mooring
line. In this figure, T[1], T[2] and T[3] are the nomenclature used by FASTv8 for the Fairlead Tensions
in mooring lines 1, 2 and 3.
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Figure A9. Additional preload, stiffness, and damping at the WRP (one hour test): (a) surge force; 

(b) sway force; (c) heave force; (d) roll, pitch, and yaw moments. 
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Figure A9. Additional preload, stiffness, and damping at the WRP (one hour test): (a) surge force;
(b) sway force; (c) heave force; (d) roll, pitch, and yaw moments.
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Figure A10. Radiation loads at the WRP (one hour test): (a) surge force; (b) sway force; (c) heave
force; (d) roll moment; (e) pitch moment; (f) yaw moment.
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Figure A11. Viscous drag loads at the WRP (one hour test): (a) surge, sway, and heave forces; (b) roll,
pitch, and yaw moments.
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Figure A13. Total wave-excitation loads from diffraction at the WRP (one hour test): (a) surge force; 

(b) sway force; (c) heave force; (d) roll moment; (e) pitch moment; (f) yaw moment. 
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Figure A13. Total wave-excitation loads from diffraction at the WRP (one hour test): (a) surge force;
(b) sway force; (c) heave force; (d) roll moment; (e) pitch moment; (f) yaw moment.
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Figure A14. Wind turbine modeling results (one hour test): (a) rotor thrust; (b) rotor torque; (c) gen-

erator torque; (d) electric power generation; (e) tip speed ratio; (f) rotor speed; (g) power coefficient; 

(h) thrust coefficient. 
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