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Abstract: It is of great significance to expand the functions of submarines by carrying underwater
manipulators with a large working space. To suppress the flexible vibration of underwater manipula-
tors, an improved sparrow search algorithm (ISSA) combining an elite strategy and a sine algorithm
is proposed for the trajectory planning of underwater flexible manipulators. In this method, the
vibration evaluation function is established based on the precise dynamic model of the underwater
flexible manipulator and considering complex motion and vibration constraints. Simulation results
show that the ISSA algorithm requires only 1/3.68 of the time of PSO. Compared to PSO, SSA and
the opposition-based learning sparrow search algorithm (OBLSSA), the optimization performance is
improved by 17.3%, 13.1% and 9.7%, respectively. However, because the complex dynamics model of
the underwater flexible manipulator leads to large computational effort and a long optimization time,
ISSA is difficult to apply directly in practice. To obtain a large number of optimization results in a
shorter time, an incremental Kriging-assisted ISSA (IKA-ISSA) is proposed in this paper. Simulation
results show that IKA-ISSA has good nonlinear approximation ability and the optimization time is
only 3% of that of the ISSA.

Keywords: flexible manipulator; vibration suppression; trajectory planning; sparrow search algo-
rithm; incremental Kriging

1. Introduction

Nowadays, the extension of the functions of large submersibles using underwater
manipulators for the dynamic deployment and recovery of unmanned underwater vehi-
cles (UUV) is a major research direction [1–3]. UUVs have the characteristics of strong
concealment, high intelligence, lower construction costs and no casualties. The integration
of submarines and UUVs can combine each one’s advantages and improve the overall
performance of submarines. As new collaborative models between UUVs and submarines
are gradually enriched and perfected, the question of how to carry, deploy, dock and
recover one or more UUVs on a submarine is a key technical issue in the new collaborative
model. To realize the above operations, using a submarine to carry the manipulator with
large-scale operation capability is an important solution. The recovery and docking process
of UUVs with the underwater manipulator is shown in Figure 1, in which the underwater
manipulator can be stored in a small space inside the submarine after the operation is
completed. Considering the occupation of the limited collection space of the submarine and
the impact on its load capacity, the manipulator should have a large working space, a small
storage space and a small weight so that it can be stored in the small space of the submarine.
To meet the above technical requirements for large-scale operation and small-space storage
of the underwater manipulator, the manipulator is often designed to be very slender. Due
to the low stiffness of slender manipulators, the end effector is prone to vibration, and
previous control methods that ignore the flexible deformation of manipulators are not
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able to meet the high-precision requirements of underwater operations [4,5]. In addition,
when the manipulator is working, the speed and acceleration at the end of the manipulator
should be strictly limited to meet the corresponding constraints. It is also necessary to
overcome the interference of hydrodynamic forces. These factors bring great challenges
to the control of underwater manipulators. Although extensive research has been carried
out on the control of flexible manipulators and underwater manipulators, the vibration
suppression of underwater flexible manipulators is still a difficult problem to solve.
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Figure 1. UUV recovery and docking system on a submarine.

At present, the vibration suppression of flexible manipulators is mainly studied from
the perspective of control methods and trajectory planning. Sahu and Patra proposed an
observer-based backstepping control method for a two-degree-of-freedom flexible manipu-
lator [6]. Yang et al. proposed a hybrid control scheme composed of a trajectory planning
approach and adaptive variable structure control to suppress the elastic vibration [7]. Rah-
mani and Belkheiri designed a neural network adaptive controller of flexible multi-link
robots. The adaptive controller has good robustness under uncertain disturbances [8].
Yavuz proposed an improved vibration control method that suppresses residual vibration
by shaping the speed input [9]. Guo et al. proposed a residual vibration suppression
method for Delta robots based on input shaping technology [10]. Xu et al. proposed a
compensation method; this method is based on the analytical solution of a second-order
vibration system and designs compensation torque to suppress vibration [11]. Sands de-
signed a whiplash compensator for flexible space robots, which had zero residual vibration
at the end of the maneuver [12]. Trajectory planning for vibration suppression was firstly
proposed by Park and Park [13]. Their method uses the excitation force, elastic deformation
or elastic potential energy as the objective function to find the joint trajectory with the
smallest flexible deformation or elastic potential energy, so as to achieve the vibration
suppression of the manipulator. The vibration suppression trajectory optimization mainly
defines the motion trajectory of the robot joint as polynomial functions or B-spline func-
tions, transforms the discrete dynamic variables into parameter optimization problems and
suppresses the flexible vibration of the flexible robot by optimizing the parameters [14–16].

The most commonly used optimization algorithms include traditional optimization
algorithms (simplex method and compound shape method) and intelligent optimization
algorithms (particle swarm optimization algorithm, genetic algorithm and sparrow search
algorithm). The compound shape method is a direct method to solve the constrained
nonlinear optimization problem. Lin et al. proposed an optimization method for the
shortest total travel time under physical constraints such as joint velocity and acceleration
based on the compound shape method [17]. Yin et al. optimized the two joint trajectories
based on the Nelder–Mead simplex method in the feedforward control of the flexible
manipulator to reduce the residual vibration of the flexible manipulator [18]. Since the
selection and replacement of each vertex of the complex shape algorithm needs to meet
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the requirement of decreasing the value of the objective function and constraints, the
search efficiency is relatively low. In processing optimization problems with complex
models and constraints, the intelligent optimization algorithms have more advantages
than traditional optimization algorithms. Wu et al. used a uniform aperiodic fourth-order
B-spline curve to describe the trajectory of the manipulator, and conducted vibration
suppression optimization for B-spline control points based on PSO [14]. Li et al. used a
polynomial function to describe the trajectory of the manipulator, and used PSO for the
optimization of polynomial interpolation points to suppress vibration [19]. Yue et al. and
Kazem et al. studied the trajectory planning of robots based on the genetic algorithm (GA)
to optimize the time in motion [20,21]. Li et al. used the GA to control the coefficients of
cubic spline interpolation to suppress the vibration of the manipulator [22]. Different from
GA, PSO does not use hybridization, mutation or replication for individuals, but instead
treats each individual as a particle without volume in a multi-dimensional search space. In
the process of vibration suppression trajectory optimization, the PSO algorithm has lower
computational complexity than the GA. PSO has no special requirements for the objective
function, while the GA requires a constant positive fitness function. However, the standard
PSO algorithm is an unconstrained optimization algorithm, while the vibration suppression
optimization of underwater flexible manipulators is constrained by the joint angle and
flexible vibration. For the application of the PSO algorithm in constrained optimization
problems, researchers have proposed a series of schemes to solve constrained optimization
problems, among which the penalty function method and the constraint-based individual
sorting method are the most widely used [23–25]. Cao et al. proposed a PSO algorithm
with a compression factor as a penalty function to correct the joint trajectory and suppress
the vibration of flexible joints [26]. Wang et al. studied the application of the PSO strategy
under constraints of trajectory planning for a free-floating dual-arm robot [27]. Due to the
constraints, PSO is more prone to premature convergence in the constrained optimization
process. Although various improved PSO algorithms to solve constrained optimization
problems have improved the optimization performance to a certain extent, premature
convergence still exists. SSA is a new heuristic algorithm for swarm intelligence, proposed
by Xue and Shen [28]. Zhang et al. proposed a path planning method for bionic mobile
robots based on the sparrow search algorithm [29]. Liu et al. proposed an improved
sparrow search algorithm to solve the obstacle avoidance problem of UAV route planning,
and achieved good results [30]. Compared with the traditional heuristic search method,
the SSA has more diversified position updating strategies, faster convergence speeds and
more extensive application scenarios, indicating its great potential in dealing with robot
vibration suppression trajectory planning.

Although there are some studies on the vibration suppression of flexible manipulators,
in these studies, the suppression optimization effect remains to be further improved due to
the relatively simple constraints and largely simplified models of flexible manipulators,
and the vibration suppression of underwater manipulators is not involved. In addition,
most of the current optimization algorithms suffer from premature convergence and poor
accuracy in the constrained optimization process, and the optimization time is too long and
costly for the case of complex models, making it difficult to be applied directly to practice.

To solve the problems of the premature convergence and low accuracy of traditional
optimization algorithms in the process of constrained optimization, this paper proposes
ISSA, which combines the sine algorithm and elite opposition-based learning strategy to
optimize the trajectory of constrained underwater flexible manipulators. To obtain a large
number of optimization results in a shorter time, this paper proposes IKA-ISSA, based on
ISSA, to quickly generate vibration suppression trajectories of underwater flexible manip-
ulators. The main contributions of this paper are summarized as follows. (i) In the past,
the research object of vibration suppression trajectory planning was land-based flexible
manipulators, while the research object of this paper is underwater flexible manipulators,
considering the influence of hydrodynamics. (ii) The previous vibration suppression trajec-
tory planning of flexible manipulators has greatly simplified the model. This paper is based
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on a more accurate dynamic model, and also considers the velocity, acceleration, maximum
flexible displacement and other complex constraints. (iii) Based on the combination of the
sine algorithm and OBL strategy, an improved sparrow algorithm is proposed, which is
used for the first time to solve the vibration suppression trajectory planning problem for
underwater flexible manipulators. (iv) IKA-ISSA is proposed for the problems of large
computation demands and long optimization times for complex models. The algorithm has
good robustness and nonlinear approximation capability, and can obtain accurate vibration
suppression trajectories in a short time.

The rest of this paper is organized as follows. Section 2 presents the dynamic modeling
approach for an underwater flexible manipulator. Section 3 describes the motion and vibra-
tion constraints, and establishes the manipulator vibration evaluation function. Section 4
designs the vibration suppression trajectory strategy of the underwater flexible manipulator
based on PSO and ISSA and verifies the optimization effect of ISSA by simulation. Section 5
proposes IKA-ISSA and verifies its high optimization accuracy and efficiency by simulation.
Finally, the conclusions can be found in Section 6.

2. Materials and Methods

The modeling of underwater flexible manipulator systems involves the complex
integration of multiple disciplines, such as fluid mechanics and multi-body dynamics. The
underwater flexible manipulator is usually disturbed by hydrodynamics, as well as some
uncertain factors. These influences and disturbances are highly nonlinear and time-varying,
which increases the difficulty of flexible manipulator modeling [31,32]. The authors of
this paper fully consider the coupling effect of hydrodynamic force and flexible vibration,
and we have established the dynamic equation of rigid–flexible coupling in our previous
work [33,34].

The mechanism diagram of a two-link rigid–flexible coupling manipulator can be
simplified as in Figure 2, in which arm 1 is abstracted as a rigid link and arm 2 is abstracted
as a flexible link. The flexible link adopts the Euler–Bernoulli beam model, and the trans-
verse shear deformation is ignored. θi and li, respectively, represent the rotation angle and
length of the i-th link. w represents the flexible displacement. According to the assumption
of small elastic deformation, only the first two-order modes are considered when w is
expanded based on the assumed mode method (AMM).
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By combining the Morrison formula and Lagrange equation, the dynamic equations of
the underwater flexible manipulator can be expressed in the following compact form [33,34]:(

Mθθ Mθq
Mqθ Mqq

)( ..
θ
..
q

)
+

(
Cr

Kqq + C f

)
=

(
τ
0

)
+

(
Fθ

Fq

)
(1)

where θ =
[
θ1 θ2

]T is the joint angle, q =
[
q1 q2

]T is the first two-order modes, M∗∗ is
the mass matrices, Kq is the stiffness matrix, Cr and C f is the terms of centrifugal forces,
Coriolis forces, and gravity. τ is the joint torque, and Fθ and Fq are the generalized forces
related to hydrodynamic force.

3. Vibration Suppression Trajectory Planning
3.1. Cubic Polynomial Trajectory Planning

According to (1), the flexible motion part of the dynamic equation of the underwater
flexible manipulator can be expressed as

Mqq
..
q + Kqq + C f − Fq = −Mqθ

..
θ (2)

From (2), it can be known that the inertia moment generated during the rotation of
the flexible manipulator arouses the elastic vibration of the manipulator, which can be
controlled by optimizing the trajectory of the manipulator during the working process to
suppress the vibration of the manipulator. In order to improve the optimization efficiency
and the search speed, the basic displacement value of the trajectory control point can be
obtained by discretely using a reference trajectory curve. In this paper, a quintic polynomial
is used as the reference trajectory curve; it is expressed as

θd(t) =

[
6(

t
t f
)

5
− 15(

t
t f
)

4
+ 10(

t
t f
)

3
]
×
(

θ f − θ0

)
+ θ0 (3)

where t f is the ending time; θ0 and θ f are the positions of the start and end times of the
manipulator, respectively.

After obtaining the reference curve, sufficient nodes are taken in the reference trajec-
tory curve, and then some floating changes to the basic value are made. By adding the
interpolation point increment to change the position of each interpolation point, a new set
of interpolation point values are obtained. Then, different trajectory curves are obtained
by curve fitting. As shown in Figure 3, the dotted line represents the initial trajectory,
and the solid line is the optimization trajectory. Since the speed and acceleration of the
underwater manipulator are limited by the rated power and working environment, the
speed and acceleration constraints need to be satisfied in the optimization process, and the
cubic polynomial function has second-order derivability at both the interpolation point
and the interpolation interval; it has good stability and it is easy to calculate the velocity
and acceleration. Therefore, after the trajectory control points are obtained, the cubic
polynomial interpolation function is used to fit the obtained two adjacent control points.

The joint angle at the i-th trajectory control point can be expressed in the follow-
ing form:

θBi =


θ0, i = 1

θ̃Bi + ∆θi−1, i = 3, 4...n− 2
θ f , i = n

(4)

where θ̃Bi is the basic value of the trajectory control point and ∆θi−1 is its floating value.
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Let ti be the corresponding time series at node i, and Qi(t) is a cubic polynomial over
the time interval [ti, ti+1]. Since the second derivative of Qi(t) is a linear function, it can be
expressed as

Qi
′′
(t) =

ti+1 − t
hi

Qi
′′
(ti) +

t− ti
hi

Qi
′′
(ti+1), i = 1, 2, . . . , n− 1 (5)

where hi = ti+1 − ti, and the interpolation function Qi(t) can be obtained by integrating
Qi
′′
(t) twice and substituting the node conditions

Qi(t) =
Qi
′′
(ti)

6hi
(ti+1 − t)3 +

Qi
′′
(ti+1)

6hi
(t− ti)

3 +

[
θB(i+1)

hi
− hiQi

′′
(ti+1)

6

]
(t− ti)

+

[
θBi
hi
− hiQi

′′
(ti)

6

]
(ti+1 − t), i = 1, 2, . . . , n− 1

(6)

In order to determine the undetermined coefficient of the cubic fitting function, each
selected interpolation point should satisfy the joint trajectory function over the interpolation
point, the joint trajectory function continuity, the joint trajectory first-order derivative
function continuity and the joint trajectory second-order derivative function continuity.
Coupled with the upper boundary conditions, the following equations in matrix form can
be obtained [17]:

D


Q2
′′
(t2)

Q3
′′
(t3)
...

Qn−1
′′
(tn−1)

 = b (7)

In this paper, the trajectory planning adopts uniform interpolation and hi = h. D is
the matrix describing the continuous relationship of the interpolation curve, which can be
expressed as

D =



6h h
0 4h h O

h 4h h
...

h 4h 0
O h 6h


(8)
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The matrix b can be expressed as

b =



6
h2 (−θ0 + θB3 − 2hω0 − 5h2

6 a0)
6
h2 (θ0 + hω0 +

h2

3 a0 + θB4 − 2θB3)
6
h2 (θB(i+1) + θB(i−1) − 2θBi)

...
6
h2 (θ f − hω f +

h2

3 a f − 2θB(n−2) + θB(n−3))
6
h2 (−θ f + hω f − 5h2

6 a f + θB(n−2))


(9)

where ω0 and ω f are the angular velocities at the start time and the end time, and a0 and
a f are the angular acceleration at the start time and the end time.

In (8), the matrix is an upper triangular matrix, and each element on the diagonal is
greater than zero; thus, this is a non-singular matrix. Therefore, the unique solution of
[Q2

′′
(t2), · · · , Qi

′′
(ti), · · · , Qn−2

′′
(tn−2)] can be calculated. By substituting the solution

into (21), the values of trajectory control point 2 and point n-2 can be obtained.

θBi =

{
θ0 + h×ω0 +

h2

3 a0 +
h2

6 Q2
′′
(t2), i = 2

θ f − h×ω f +
h2

3 a f +
h2

6 Qn−1
′′
(tn−1), i = n− 1

(10)

The final optimal trajectory is obtained by combining (4), (6) and (10).

3.2. Constraint Condition

When the underwater manipulator is working, the angular velocity and angular
acceleration are limited by the rated power and working environment. The joint angular
velocity and angular acceleration constraints of the i-th trajectory control point of joint j can
be expressed as ∣∣∣Q′ji(t)∣∣∣ ≤ ωCj , i = 1, 2, . . . , n− 1 (11)

∣∣∣Q′′ji(t)∣∣∣ ≤ aCj , i = 1, 2, . . . , n− 1 (12)

where ωCj is the velocity constraint for joint j, aCj is the acceleration constraint for joint
j, and the joint angular velocity is a quadratic polynomial. The maximum of the absolute
value of the angular velocity exists at the endpoint ti, ti+1 or extreme point ti. The velocity
constraint can be expressed as

max
∣∣∣Q′ji(t)∣∣∣ = max

{∣∣∣Q′ji(ti)
∣∣∣∣∣∣Q′ji(ti+1)

∣∣∣∣∣∣Q′ji(ti)
∣∣∣} ≤ ωCj (13)

where ∣∣∣Q′ji(ti)
∣∣∣ = ∣∣∣∣∣ aji

2
h +

(θB(j,i+1) − θB(j,i))

h
+

(aji − aj,i+1)h
6

∣∣∣∣∣ (14)

∣∣∣Q′ji(ti+1)
∣∣∣ = ∣∣∣∣∣ aj,i+1

2
h +

(θB(j,i+1) − θB(j,i))

h
+

(aji − aj,i+1)h
6

∣∣∣∣∣ (15)

From the condition of the extreme point that
∣∣∣Q′′ji(ti)

∣∣∣ = 0, we can derive that

|Q′ji(ti)| =


∣∣∣∣ ajiaj,i+1

2(aji−aj,i+1)
h +

(θB(j,i+1)−θB(j,i))
h +

(aji−aj,i+1)h
6

∣∣∣∣, i f aji 6= aj,i+1 and Q′′ji(ti)Q
′′
ji(ti+1) ≤ 0

0 i f aji = aj,i+1 or Q′′ji(ti)Q
′′
ji(ti+1) > 0

(16)
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Since the joint angular acceleration is a first-order polynomial, and the maximum
value of the instantaneous velocity can only be obtained at the endpoint, the joint angular
acceleration constraint can be expressed as

max
∣∣∣Q′′ji(t)∣∣∣ = max

{∣∣aj1
∣∣, ∣∣aj2

∣∣, . . . ,
∣∣ajn

∣∣} ≤ aCj (17)

In addition, in order to improve the safety performance of the flexible manipulator, it
is necessary to limit the amplitude of the manipulator, and the vibration constraint can be
expressed as

w = |φ1(L2)q1(t) + φ2(L2)q2(t)| ≤ wmax (18)

3.3. Objective Function

In order to minimize the vibration of the flexible manipulator, the objective func-
tion of vibration suppression trajectory planning based on the accumulation of vibration
displacement at the end of the flexible manipulator is proposed:

f (θ) = α1

∫ t f

0
w(θ, t)dt + α2

∫ 3t f

t f

w(θ, t)dt (19)

The first half of the objective function is used to measure the vibration deviation of the
flexible manipulator during the movement process. The latter part of the objective function
is used to measure the residual vibration of the flexible manipulator in time interval t f to
3t f after the motion stops. α1 and α2 are weight factors.

4. Optimization Algorithm
4.1. PSO Algorithm

For a d-dimensional optimization problem, suppose that the position and velocity of
the particle are Xi = (xi,1 xi,2 . . . xi,d), Vi = (vi,1 vi,2 . . . vi,d). The particle individual
optimal solution is recorded as Pi = (pi,1 pi,2 . . . pi,d), and the global optimal solution
currently found from the whole group is recorded as Pg = (pg,1 pg,2 . . . pg,d). The
particles update their position and velocity according to the following rules [35]:{

vi,j(t + 1) = vvi,j(t) + c1ς1[pi,j − xi,j(t)] + c2ς2[pg,j − xi,j(t)]
xi,j(t + 1) = xi,j(t) + vi,j(t + 1)

(20)

where v is the inertia weight, c1 and c2 are positive learning factors, and ς1, ς2 are random
numbers evenly distributed from 0 to 1.

The speed update formula of a PSO algorithm with a shrinkage factor is [36]{
vi,j(t + 1) = ϕ

{
vvi,j(t) + c1ς1[pi,j − xi,j(t)] + c2ς2[pg,j − xi,j(t)]

}
ϕ = 2

|2−C−
√

C2−4C|
(21)

where C = c1 + c2 to ensure the smooth solution of the algorithm.
PSO is an optimization method without variable constraints. For the application of

the PSO algorithm in constrained optimization problems, researchers have proposed a
series of schemes to solve constrained optimization problems. Among them, the penalty
function method is the most widely used because of its simple design and stable calculation
results [23,24]. In this paper, the penalty function method is introduced to expand the
objective function to deal with the constraints. The new objective function is expressed as

F(θ) = f (θ) + Kp

n

∑
i=1

[min(0, gi(x))]2 (22)

where Kp is the penalty factor, and gi(x) is the constraint discriminant. When the constraint
is satisfied, gi(x) = 1; otherwise, gi(x) = −1.
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The steps of the particle swarm optimization algorithm for vibration suppression
trajectory planning are as follows. Firstly, when the trajectory of the end actuator of
the manipulator is known, the joint motion trajectory can be obtained through inverse
kinematics, as shown in the dashed blue frame in Figure 4. The initial value of the joint
interpolation point increment is generated by tent chaotic mapping, and the value of the
discrete trajectory control point is obtained by (4), (6) and (10). Secondly, the discrete
trajectory control points are fitted segmentally by using a cubic polynomial to obtain the
angular displacement, angular velocity and angular acceleration of the trajectory to be
optimized. Next, the dynamic equation of the system is calculated through (2) to obtain
the vibration mode of the flexible manipulator. Then, the objective function is calculated
according to (22) and the speed is updated according to (21) until the maximum iterative
steps are reached. Finally, the optimal variables are output and the optimal trajectory is
obtained by cubic polynomial fitting. The entire process is shown in Figure 4.
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4.2. Sparrow Search Algorithm (SSA)

SSA is a new heuristic optimization algorithm, the position update strategy of the
sparrow algorithm is richer than that of PSO and it has better optimization ability in
benchmark functions and certain applications [28]. There are two types of sparrows in
sparrow algorithms, namely the discoverer and follower, and the proportion of discoverers
in the population is set as PD. Discoverers with better fitness values will give priority
to obtaining food in the search process and providing the direction of foraging for the
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followers. Therefore, the foraging search range of the discoverer is larger than that of
the followers. For a d-dimensional optimization problem, the position information of the
i-th sparrow can be expressed as Xi =

[
xi1 xi2 . . . xid

]
. During each iteration, the

discoverer updates the position according to the following rules:

X(t+1)
i =

{
X(t)

i · exp(− i
γ·itermax ), i f Re < ST

X(t)
i + Ψ · L, i f Re ≥ ST

(23)

where itermax is the maximum number of iterations, γ ∈ [0, 1] is a random number,
Re ∈ [0, 1] represents the early warning value, ST ∈ [0.5, 1] represents the safety value, Ψ is
a random number subject to a normal distribution, and L stands for a 1 × d-dimensional
matrix in which each element is l. When Re < ST, there is no predator in the foraging
environment, and the discoverer can conduct an extensive search operation; when Re ≥ ST,
some sparrows spot predators and send an early warning to others, and all sparrows need
to fly to a safe area.

During foraging, some followers will always monitor the discoverer. Once they realize
that the discoverer has found better food, they will leave to compete with the discoverer. If
they win, they can immediately obtain the food of the discoverer and execute the rule as
the discoverer (23); otherwise, they continue to execute the rule (24). The position update
of participants is described as follows:

X(t+1)
i =

 Ψ · exp(Xw−X(t)
i

i2 ), i f i > n/2

Xp +
∣∣∣X(t)

i −Xp

∣∣∣ · E+ · L, i f i ≤ n/2
(24)

where Xp is the best position of the current discoverer, and Xw is the worst position in the
current global situation. E stands for a 1 × d-dimensional matrix in which each element is
randomly assigned 1 or −1 and E+ = ET(EET)

−1. When i > n/2, it indicates that the i-th
follower has a low fitness value, and it needs to fly to other places to obtain more energy.

In addition, the sparrow algorithm assumes that some sparrows in the population
perceive danger. The proportion of these sparrows is set as SD, and their initial positions
are randomly generated in the population. If the individual fitness value of these sparrows
is greater than the current global optimal fitness value, it means that the sparrow is on the
verge of being attacked by predators. When the individual fitness value of these sparrows
is equal to the current global optimal fitness value, it means that the sparrow is aware of
the danger and needs to be close to other sparrows to minimize the risk of predation. It can
be expressed as follows:

X(t+1)
i


X(t)

g + β·
∣∣∣X(t)

i −X(t)
g

∣∣∣, i f fi > fg

X(t)
i + Kr·

( ∣∣∣X(t)
i −Xw

∣∣∣
( fi− fw)+ε

)
, i f fi = fg

(25)

where Xg is the current global optimal location, β is the step control parameter, Kr ∈ [−1 , 1]
is a random number indicating the moving direction and step size, and ε is a small constant.
fi is the fitness value of the current sparrow; fg and fw are, respectively, the current global
best and worst fitness values.

4.3. Improved Sparrow Search Algorithm (ISSA)

In order to improve the global search ability of the sparrow optimization algorithm and
reduce the risk of falling into local optima, this paper integrates the sine cosine algorithm
(SCA) and elite opposition learning strategy into the sparrow algorithm, and proposes
a new, improved sparrow algorithm. The SCA algorithm has a simple structure, few
parameter settings and easy implementation, offering certain advantages over PSO and GA
in some optimization examples. SCA carries out global exploration and local development
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according to the oscillation change of the sine cosine model. The position update formula
of the standard SCA is as follows [37]:

X(t+1)
i =

 X(t)
i + ς3 × sin(ς4)×

∣∣∣ς5Xbest −X(t)
i

∣∣∣ ς6 < Pr

X(t)
i + ς3 × cos(ς4)×

∣∣∣ς5Xbest −X(t)
i

∣∣∣ ς6 ≥ Pr
(26)

where Xbest is the best individual of the group after the t-th iteration; ς4, ς5 and ς6 are
random numbers, and ς4 ∈ [0, 2π], ς5 ∈ [−2, 2], ς6 ∈ [0, 1]. Pr is a constant indicating the
probability of switching between sine and cosine. ς3 is the conversion parameter.

ς3 = are−
t

itermax (27)

where ar is a preset constant, t is the current iteration, and itermax is the maximum number
of iterations.

The improved sparrow algorithm introduces the sine algorithm into the position
update formula of the discoverer of the standard sparrow search algorithm; it is described
as follows:

X(t+1)
i =

{
X(t)

i + ς3 × sin(ς4)×
∣∣∣ς5Xbest −X(t)

i

∣∣∣ , i f Re < ST

X(t)
i + Ψ · L, i f Re ≥ ST

(28)

The elite opposition-based learning strategy seeks to find the reverse solution for
some elite individuals, and then liberate the reverse solution of elite individuals into the
population to participate in competition [38]. It is proven that this method can effectively
improve the search ability of intelligent optimization algorithms. The improved sparrow
algorithm uses the inverse solution of elite points to further update the sparrow position
after sparrow optimization. The elite group is represented by Xe. The proportion of elite
groups is ED. Xei= (xei,1, xei,2, . . . , xei,d) ∈ [`, u] is an elite point in d-dimensional space,

and its inverse solution X′ei = (x′i,1, x′i,2, . . . , x′i,d
)

can be expressed as

X′ei = k · (`+ u)−Xei (29)

where k is a constant. When f (Xei) > f (X′ei), we take X′ei as the elite individual of the next
iteration to replace Xei. Then, we calculate the global optimal position of the group and
rearrange the new sparrow population.

The steps of trajectory optimization of flexible manipulators by using ISSA are as
follows. Firstly, the initial value is generated by tent chaotic mapping, and then the
objective function is calculated according to (19). The positions of the discoverer, follower
and early warning sparrow are updated, respectively, according to (28), (24) and (25), and
then the position of the sparrow is further updated through the opposition-based learning
of the elite solution, until the optimization variable that minimizes the objective function of
the flexible manipulator is found. Finally, the optimal variables are output and the optimal
trajectory is obtained by cubic polynomial fitting. The entire process is shown in Figure 5.
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4.4. Simulation

To verify the effectiveness of the proposed ISSA in vibration suppression trajectory opti-
mization, the flexible manipulator shown in Figure 2 is used as an example for optimization
simulation, and compared with the traditional PSO algorithm, SSA and OBLSSA. The sim-
ulation is carried out in the Matlab2020 environment, using the 10-core parallel operation
provided by the National Supercomputing Center in Jinan, China. The size of the manipula-
tors in the simulation is l1 = 0.975 m, l2 = 1 m; the density is ρ1 = 13.507, ρ2 = 12.363; the
bending stiffness of the flexible link is EI = 125 N ·m2. The parameters of the manipulator
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are shown in Table 1. In the selection of the initial parameters, we refer to some existing
methods [19,26] and study the sensitivity of some important parameters. The selected
parameters can ensure that the 4 optimization algorithms have good performance.

Table 1. Parameters of underwater flexible manipulator.

Parameter Symbol Value

Length (m) l l1 = 0.975, l2 = 1
Density (kg·m−1) ρ ρ1 = 13.507, ρ2 = 12.363

Bending stiffness (N·m2) EI 125
Water resistance coefficient CD 1.1
Additional mass coefficient CM 1

4.4.1. Trajectory Planning with Different Gravity Conditions

Firstly, the trajectory optimization effects of the traditional PSO, SSA, OBLSSA and
ISSA for the underwater flexible manipulator are studied under two conditions: considering
the influence of gravity (the resultant force of gravity and buoyancy is 0.1 times that of
gravity) and not considering the influence of gravity (the resultant force of gravity and
buoyancy is zero). In this case, the accelerations at the initial and termination moments
are known and the accelerations are zero. The starting position is set as θ0 = [0,0], and the
target position is set as θ f = [π/4, π/2]; the weight coefficient of objective function α2 = 0,
seven groups of time points are evenly selected, and the optimization parameters are set as
[∆θ13, ∆θ14, ∆θ15, ∆θ23, ∆θ24, ∆θ25]. The dynamic equation of the flexible manipulator is
solved by the fourth-order Runge–Kutta method, and the number of data points is taken as
Num = 500. The corresponding sampling step is taken as 2π/499; the joint angle, velocity
and acceleration constraints are |θ|max =

∣∣∣ .
θ
∣∣∣
max

=
∣∣∣ ..θ∣∣∣

max
= 2; the maximum flexible

vibration displacement is 0.1 m. The size of the population is N, and the dimension of the
optimization problem is recorded as d; the parameters of several optimization algorithms
are shown in Table 2.

Table 2. Optimization algorithm parameters.

Case Algorithm Optimization Algorithm Parameters

Case 1
(without gravity)

PSO N = 30, d = 6, c1 = 2.05, c2 = 2.05, K = 150, v = 0.9, Num = 500
SSA N = 30, d = 6, ST = 0.7, PD = 0.7, SD = 0.2, K = 150, Num = 500

OBLSSA N = 30, d = 6, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, K = 150, Num = 500
ISSA N = 30, d = 6, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, ar = 2, K = 150, Num = 500

Case 1
(with gravity)

PSO N = 30, d = 6, c1 = 2.05, c2 = 2.05, K = 150, v = 0.9, Num = 500
SSA N = 30, d = 6, ST = 0.7, PD = 0.7, SD = 0.2, K = 150, Num = 500

OBLSSA N = 30, d = 6, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, K = 150, Num = 500
ISSA N = 30, d = 6, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, ar = 2, K = 150, Num = 500

Case 2
(α2 = 1)

PSO N = 30, d = 8, c1 = 2.05, c2 = 2.05, K = 150, v = 0.9, Num = 500
SSA N = 30, d = 8, ST = 0.7, PD = 0.7, SD = 0.2, K = 150, Num = 500

OBLSSA N = 30, d = 8, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, K = 150, Num = 500
ISSA N = 30, d = 8, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, ar = 2, K = 150, Num = 500

Case 2
(α2 = 0)

PSO N = 30, d = 8, c1 = 2.05, c2 = 2.05, K = 150, v = 0.9, Num = 500
SSA N = 30, d = 8, ST = 0.7, PD = 0.7, SD = 0.2, K = 150, Num = 500

OBLSSA N = 30, d = 8, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, K = 150, Num = 500
ISSA N = 30, d = 8, ST = 0.7, PD = 0.7, SD = 0.2, ED = 0.2, ar = 2, K = 150, Num = 500

After iterative operation, an optimal trajectory consisting of three cubic polynomial
trajectories can be obtained. Figure 6a shows the evolution process of the four optimization
algorithms without considering the influence of gravity, and Figure 6b shows the evolution
process of the four optimization algorithms considering the influence of gravity. In order to
eliminate the influence of accidental factors, each optimization algorithm is implemented
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three times to take the average. The optimization results are shown in Table 3. It can be
seen from Figure 6a and Table 3 that, compared with the other three algorithms, SSA falls
into the local optimum earlier; the OBLSSA optimization results are improved compared
with SSA; the optimization result of PSO is better than that of SSA and OBLSSA, but the
optimization time is much longer than that of the other three algorithms; ISSA improves
the global search ability, and the search accuracy and convergence speed are better than for
the other three optimization algorithms. Combined with Figure 6b and Table 3, it can be
seen that the optimization effect of the SSA optimization algorithm is better than that of
the PSO optimization algorithm. Under the set parameters, the best fitness values of the
optimization trajectories when using the OBLSSA optimization algorithm are not improved
compared with the use of SSA. This may be due to the increase in random factors in the
process of generating elite solutions and controlling the boundaries of elite solutions, which
reduces the accuracy of the optimization results. The ISSA optimization algorithm combines
the advantages of the strong global search ability of the sine and cosine algorithm and
opposition elite learning to avoid falling into local optima, and it overcomes the influence of
random factors. Figure 7 shows the optimized trajectory without considering the influence
of gravity. It can be seen from Figure 7 that the interpolation point increment of the ISSA-
optimized trajectory is much larger than that of the SSA optimization algorithm. Figure 8
is the optimized trajectory considering the influence of gravity. Compared with Figure 7,
it can be seen that the curvature of the optimized trajectory when gravity’s influence is
considered is greater than that when gravity’s influence is not considered, which is caused
by the inherent vibration characteristics of the manipulator. Figure 9a shows the flexible
displacement at the end of the manipulator under each optimized trajectory when the
influence of gravity is not considered. Compared with the non-optimized trajectory, the
flexible vibration at the end of the manipulator based on the SSA- and ISSA-optimized
trajectories is significantly suppressed in the first 4 s, and the total vibration is smaller than
that of the non-optimized trajectory. The vibration accumulation and maximum vibration
displacement of the manipulator optimized by ISSA are obviously lower than those of
the one optimized by SSA. Figure 9b shows the flexible displacement at the end of the
manipulator generated by the SSA- and ISSA-optimized trajectories when the influence of
gravity is considered. Compared with the non-optimized trajectory, the flexible vibration is
effectively suppressed at 1.5–4 s. Due to the large flexible displacement caused by gravity,
the vibration displacement reduced by trajectory planning is not obvious compared with
the total flexible displacement.
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Table 3. Optimization results.

Case Algorithm
Optimal Solution Running

Time/sBest Worst Mean

Case 1
(without
gravity)

PSO 0.0096 0.0111 0.0101 66,838
SSA 0.0162 0.0166 0.0163 16,434

OBLSSA 0.0108 0.0121 0.0110 19,978
ISSA 0.0095 0.0095 0.0095 17,518

Case 1
(with

gravity)

PSO 0.0622 0.0622 0.0622 65,619
SSA 0.0617 0.0617 0.0617 19,058

OBLSSA 0.0630 0.0632 0.0631 22,286
ISSA 0.0608 0.0612 0.0609 18,673

Case 2
(α2 = 1)

PSO 0.0191 0.0191 0.0191 67,459
SSA 0.0174 0.0174 0.0174 16,893

OBLSSA 0.0206 0.0208 0.0207 20,974
ISSA 0.0148 0.0148 0.0148 18,146

Case 2
(α2 = 0)

PSO 0.0217 0.0217 0.0217 82,930
SSA 0.0137 0.0145 0.0142 15,743

OBLSSA 0.0132 0.0135 0.0133 19,876
ISSA 0.0112 0.0113 0.0113 22,495

4.4.2. Trajectory Planning with Different Weight Factors

When the acceleration at the initial and terminal times is not zero and is unknown,
the residual vibration will interfere with the control of the manipulator after the joint stops
moving. In order to study the influence of residual vibration on the optimization of the
vibration suppression trajectory, the paper discuss the trajectory optimization effect of PSO,
SSA, OBLSSA and ISSA for underwater flexible manipulators in α2 = 1 and α2 = 0. The
starting position is set as θ0 = [0, 0], and the target position is set as θ f = [π/4, π/2]. The
resultant force of gravity and buoyancy is zero. Seven groups of time points are evenly
selected, and the joint angle increment at the middle time point and the initial acceleration
of joint2 are taken as the parameters to be optimized. The optimization parameters can
be expressed as [∆θ13, ∆θ14, ∆θ15, ∆θ23, ∆θ24, ∆θ25,

..
θ20,

..
θ2 f ]; the joint angle, velocity and

acceleration constraints are |θ|max =
∣∣∣ .
θ
∣∣∣
max

=
∣∣∣ ..θ∣∣∣

max
= 2; the maximum flexible vibration

displacement is 0.1 m.
Figure 10a shows the optimization processes of four optimization algorithms at α2 = 1.

Combining these with Table 3, it can be seen that the optimization result of SSA is better
than that of the PSO optimization algorithm. The optimization point obtained by the PSO
optimization algorithm in the initial stage of optimization exceeds the constraint boundary.
Due to the effect of the penalty function, it overcomes the constraints and obtains a good
optimization result. The fitness value of the OBLSSA optimization result is lower than
that of SSA, which is related to the increase in random factors in the process of generating
and controlling the boundary of the elite solution. The ISSA optimization algorithm
combines the global search ability of the sine and cosine algorithm and opposition elite
learning to avoid falling into the local optimum and overcome the influence of random
factors, obtaining better results than other algorithms. Figure 10b shows the optimization
processes of four optimization algorithms at α2 = 0, The optimization points obtained
by the PSO optimization algorithm in the initial stage of optimization also exceed the
constraint boundary. According to Table 3, it can be seen that the optimization results of
the three sparrow optimization algorithms are better than those of the PSO. The OBLSSA
optimization algorithm reverse elite solution works in overcoming the local optimum. The
optimization results are better than those of the SSA optimization algorithm, and ISSA
improves the global search ability and avoids falling into the local optimum, and it obtains
optimization results that are better than those of other algorithms. By comparing the
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optimal fitness values obtained by the four optimization algorithms in Table 3, it can be
seen that the fitness values of SSA, OBLSSA and ISSA when α2 = 1 are greater than those
when α2 = 0. This is because we add the residual vibration after the joint motion stops.
The fitness value of the PSO algorithm when α2 = 1 is less than that when α2 = 0; this
may be caused by the PSO algorithm falling into the local optimum. Figures 11 and 12,
respectively, show the joint optimization trajectories when α2 = 1 and α2 = 0. Figure 13
shows the comparison of the optimization trajectories of ISSA when α2 = 1 and α2 = 0.
Compared with the joint optimization trajectory when α2 = 0, the joint optimization
trajectory has smaller curvature and a smaller interpolation point increment when α2 = 1.
Figure 14 shows the vibration displacement of the manipulator endpoint. It can be seen
from Figure 14a that the residual vibration of the trajectory optimized by SSA and ISSA is
significantly suppressed at t = [t f , 3t f ]. It can be seen from Figure 14a,b that the vibration
suppression is mainly within 1–5 s, and the vibration amount of the optimized trajectory
by ISSA is less than that by SSA. Although the amplitude of residual vibration is less than
that in the process of motion, the accumulation of residual vibration will also have a great
impact on the optimization results.
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Remark 1. Since the initial value of the joint interpolation point increment is automatically
generated by tent chaotic mapping, different optimization algorithms will have different initial
fitness values, as shown in Figures 6 and 10. The fitness value of the PSO algorithm in Figure 10 in
the early iteration is much higher than that of other optimization algorithms, which is caused by the
action of the penalty function.
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Remark 2. The optimized objective function is the accumulation of vibration displacement in the
whole optimization process. In Figure 14b, although the vibration accumulation of SSA is smaller
than that of ISSA in the first 4 s, the vibration accumulation of the SSA optimization algorithm
increases sharply in the following seconds, resulting in a total vibration accumulation greater than
that of ISSA.

To further analyze the optimization performance of the four optimization algorithms,
two optimization performance indicators, the average optimization percentage λ and
average relative optimization time κ, are introduced.

λ =
1
4

4

∑
i=1

Fni − Fi

Fni

(30)

κ =
1
4

4

∑
i=1

ti
tIi

(31)

where Fn is the non-optimized objective function value, F is the optimized objective function
value, t is the optimization time, and tI is the optimization time of the ISSA algorithm.

The optimization performance indicators are shown in Table 4. According to Table 4,
the ISSA algorithm takes only 1/3.68 of the time of PSO. Compared to PSO, SSA and
OBLSSA, the optimization performance is improved by 17.3%, 13.1% and 9.7%, respectively.
This is because the PSO algorithm and the SSA algorithm are more likely to fall into the
local optimum compared with OBLSSA and ISSA. The introduction of the opposition
learning strategy improves the optimization ability of SSA to a certain extent, but random
factors are added in the process of generating and controlling the boundary of the elite
solution, which will affect the optimization accuracy of OBLSSA. As the application of SA in
ISSA overcomes the effects of random factors, compared with the other three optimization
algorithms, ISSA has higher optimization accuracy and a faster convergence speed and
obtains a good vibration reduction effect.

Table 4. Optimization performance indicators.

Optimization Algorithm λ κ

PSO 25.0% 3.68
SSA 29.2% 0.90
OBLSSA 32.6% 1.10
ISSA 42.3% 1.00

5. Incremental Kriging-Assisted ISSA

The numerical simulation in Section 4 verifies that the ISSA-based vibration suppres-
sion trajectory planning method can obtain better optimization results. Due to the long
optimization time, ISSA is difficult to be directly applied in practice. In order to achieve
a fast online search of vibration suppression trajectories, neural networks and intelligent
algorithms are used as optimal path generators [19], which can generate vibration sup-
pression trajectories in real time after the start and end positions of the joint angle are
given. These methods require a large number of optimization results as sample data. To
obtain a large amount of optimized trajectory data in a shorter time, this paper uses an
incremental Kriging model based on an improved additive point criterion to construct a
global surrogate model, and combines the ISSA optimization algorithm to train the model.

5.1. Incremental Learning Kriging Model

Data-driven technology has great potential in engineering applications [39]. The
Kriging model is widely used in engineering optimization because of its good robustness
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and nonlinear approximation capability [40,41]. The Kriging model introduces statistical
assumptions to represent the objective function as a stochastic process as follows.

Y(x) = µ + Z(x) (32)

The following Gaussian correlation function is often used for the Kriging model:

R(x(i), x(j), ϑ) = exp[−
d

∑
i=1

ϑi(x(i) − x(j))
2
] (33)

The estimated value of the model is expressed as

ŷ(x) = µ̂ + rTR−1(y− 1µ̂) (34)

The mean square deviation of the estimated value is expressed as

ŝ2(x) = σ̂2

[
1− rTR−1r +

(1− 1TR−1r)2

1TR−11

]
(35)

where ϑ, µ, σ2 are hyperparameters and ϑ̂, µ̂, σ̂2 are the corresponding maximum likelihood
estimations.

The training complexity of the Kriging model mainly comes from the optimization of
the hyperparameters, which requires solving the correlation matrix R and its inverse. The
Cholesky decomposition can improve the accuracy of the numerical solution. The Cholesky
decomposition of the correlation matrix R can be expressed as

R = LLT (36)

The training and updating of the Kriging model have O(n3) complexity. Since each
new piece of data is a small amount, it is not necessary to completely retrain the current
Kriging model, but only to learn the effect of the new data on the current Kriging model.
The incremental Kriging model approach proposed by Zhan and Xing can significantly
reduce the computational complexity and greatly shorten the surrogate model construction
time by chunking the incremental relationship matrix R̃ with respect to old data and new
data [42].

R̃ =

[
R A

AT B

]
(37)

where A, B is the incremental matrix of new data. For the new data with q incremental
points, we can obtain

1̃ = [1, 11, · · · , 1q]
T (38)

ỹ = [y, y(n+1), · · · , y(n+q)]
T

(39)

r̃ = [r, R(x, x(n+1); ϑ̂), · · · , R(x, x(n+q); ϑ̂)]
T

(40)

R̃ = L̃L̃
T

(41)

L̃ =

[
L 0

AT(LT)
−1 chol(B−AT(LT)

−1L−1A)

]
(42)

After obtaining the incremental relationship matrix R and the incremental matrices A,
B, the trained Kriging model can be obtained, and then the predicted values and predicted
standard deviations of the unknown points can be obtained by the new Kriging model.
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5.2. Infill Criteria

At present, the most commonly used infill criteria include the MSP and EI criteria. The
MSP criterion aims to find the optimal solution x∗ of the objective function directly on the
surrogate model, and then obtain the exact solution of x∗ as new sample data. The EI crite-
rion finds the point with the highest probability of improvement of the objective function
as a new sample point. The probability value of EI improvement can be expressed as

EI(x) = (ymin − ŷ(x))Φ(
ymin − ŷ(x)

ŝ(x)
) + ŝ(x)ϕ(

ymin − ŷ(x)
ŝ(x)

) (43)

where ymin is the current optimal response function value, Φ is the standard normal
cumulative distribution function, and ϕ is the standard normal probability density function.

Similar methods are used to establish the Kriging model of constraint gi(x),
gi(x) ∈ N[ĝi(x), sgi

2(x)]. Then, the probability of satisfying the constraint at any position is

P[−ζ ≤ gi(x) ≤ ζ] = 2Φ(
ζ − ĝi(x)

sgi(x)
)− 1 (44)

The EI value with constraints is expressed as

EcI(x) = EI(x) ·
Nc
Π

i=1
P[−ζ ≤ gi(x) ≤ ζ] (45)

Studies have shown that the combination of the MSP criterion and EI criterion has a
better optimization effect than a single infill criterion [43]. The IKA-ISSA used in this paper
constructs an incremental Kriging model based on the MSP + EI hybrid infill criterion and
combines the ISSA optimization algorithm to train the model. The IKA-ISSA optimization
process is shown in Algorithm 1.

Algorithm 1. Optimization process of IKA-ISSA.

Parameters: number of sample points Nt, maximum number of sample points Nm, learning increment step of Kriging model
generation

1. Initial sample set generation: Latin superelevation method to generate N initial design points sample_x. the response value of
vibration accumulation sample_y1 and the maximum flexible displacement constraint value sample_y2 obtained by the dynamic
model.
2. Generate objective function values: generate objective function y with penalty factors based on response and constraint values
and rank y to obtain the optimal value y_min.
3. While Nt < Nm do
4. If generation = = 1
Generating the initial Kriging model: the initial sample set is used to generate the responding Kriging model kriging_model1 and
the constrained Kriging model kriging_model2, respectively.
5. Else
Update the Kriging model: generate new Kriging models kriging_model1, kriging_model2 based on the Kriging model from the
previous learning increment step generation and the sample set increments in f ill_x, in f ill_y1, in f ill_y2.
End if
6. ISSA optimization: set the optimal population P, obtain the predicted value of the population sample based on the initial
Kriging model and perform K iterations of ISSA optimization to obtain the optimized population P1.
7. Generate candidate increment set: merge similar individuals in population P1 to generate population P2. Remove points in
population P2 that are similar to sample set sample_x as candidate increment set P_candi.
8. Generate increment sets: select sample set increments in f ill_x, in f ill_y1, in f ill_y2 from the candidate increment set P_candi
based on MSP + EI infill criterion and Kriging model.
9. Generate objective function values of infill points: obtain the response value in f ill_y1 and the constraint value in f ill_y2 for
the sample set increment through the dynamic model and calculate the objective function in f ill_y for the increment sample set.
10. Update variables: update the sample sets sample_x, sample_y1, sample_y2;
update Nt and generation;
update the optimal value y_min and the corresponding optimal point x_min.
11. End while
12. Output optimal solution: Output y_min and x_min.
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5.3. Simulation

Taking the example of case 1 (without gravity), six groups of time points are evenly
selected, d = 4 and the optimization parameters are set as [∆θ13, ∆θ14, ∆θ23, ∆θ24]. The
maximum flexible displacement is selected as the constraint, and five groups of differ-
ent joint angle initial and termination positions [θ11, θ1t, θ21, θ2t] are used to verify the
learning ability of IKA-ISSA under the constraint. The five groups of joint angle initial
and termination positions are set as [0, π/4, 0, π/2], [0, π/2, 0, π/4], [0, π/4, π/6, π/2],
[π/6, π/2, 0, π/4], [π/6, π/2, π/6, π/2]. In IKA-ISSA, the number of initial sample points
NK = 100, the maximum number of samples in the sample set Nm = 180, the size of
the sparrow population N = 30, and the number of sparrow optimization iteration steps
K = 10. The parameter of normal ISSA is the same as that in case 1.

From Figure 15, it can be seen that the vibration accumulation of the optimized trajec-
tory is significantly smaller than that of the non-optimized trajectory, and the optimized
result of IKA-ISSA is slightly different from that of ordinary ISSA after a short learning and
training period, and even better than that of ordinary ISSA in some cases. Figure 16 shows
the optimization times of the two methods. IKA-ISSA takes less than 3% of the time of ISSA,
among which the time to generate the initial sample set accounts for a large proportion,
which is caused by the complex dynamic calculation. In addition, the learning and training
time of IKA-ISSA is much less than that of ISSA optimization training, which indicates that
IKA-ISSA integrates the strong nonlinear approximation ability of the incremental Kriging
model and the high search efficiency of ISSA.
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6. Conclusions

In this paper, ISSA combining an elite strategy and the sine algorithm is proposed
for the trajectory planning of underwater flexible manipulators. The simulation results
show that ISSA has the advantages of the global search ability of the sine and cosine
algorithm and the reverse elite learning ability to avoid falling into local optima. It is
more computationally efficient than the PSO algorithm, and the average time consumption
is only 1/3.68 of that of the PSO algorithm. In order to solve the problem of the long
optimization time of ISSA, this paper further proposes IKA-ISSA, which integrates the
strong nonlinear approximation capability of the incremental Kriging model and the high
search efficiency of ISSA to greatly reduce the time required for optimization and ensure the
accuracy of optimization. This method can obtain a large number of optimization results in
a shorter time to construct real-time optimal path generators.
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Nomenclature
A nomenclature table for variables and abbreviations in the paper is provided as follows:

SSA Sparrow search algorithm Re Early warning value
ISSA Improved sparrow search algorithm ST Safety value
PSO Particle swarm optimization SD The proportion of early warnings
IKA-ISSA Incremental Kriging-assisted ISSA PD The proportion of discoverers
GA Genetic algorithm ED The proportion of elite groups
UUV Unmanned underwater vehicles Pr Sine cosine switching coefficient
AMM Assumed mode method Xe Elite group
θ Joint angle K Optimize iteration steps
q First two-order modes c1, c2 Learning factor
Kq Stiffness matrix itermax Maximum number of iterations
Cr, C f Centrifugal forces, Coriolis forces and gravity terms Ψ Random number subject to normal distribution
M∗∗ Mass matrices, ∗ represents θ or q L 1 × d-dimensional matrix in which each element is l
Fθ , Fq Generalized force related to hydrodynamic force Xp Best position of the current discoverer
τ Joint torque Xw Worst position in the current global situation
θd Reference joint angle trajectory Xg Global optimal position
θ0 Initial joint angle β Step control parameter
θ f Joint angle at end time N Number of individuals in the population
t f End time d Optimized dimensionality
θBi Joint angle of the i-th trajectory control point Num The number of data points for the fourth-order

Runge–Kutta model
∆θi Floating value of the i-th trajectory control point EI EI criterion
θ̃Bi Basic value of the i-th trajectory control point EcI EI criterion with constraints

https://pan.baidu.com/s/1AfesaXXT5hlV8TlgLDQFIA?pwd=zyip
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Qi Cubic polynomial over the time interval [ti, ti+1] Y Objective function
ω0, ω f Angular velocities at the start time and the end time ϑ, µ, σ2 Hyperparameters
a0, a f Angular acceleration at the start time and the end time Z Gaussian process with mean zero
ωCj Maximum angular velocity for joint j R Correlation matrix
aCj Maximum angular acceleration for joint j ϑ̂, µ̂, σ̂2 Maximum likelihood estimation of hyperparameters
w Flexible displacement at the end of the manipulator r Correlation vector
φ1, φ2 First two-order modal shape functions L Lower triangular matrix
α1, α2 Weight factors A, B Incremental matrix of new data
Xi Position of the population y Objective value of sample points
Vi Velocity of the particle ŷ Best linear unbiased prediction
Pi Optimal solution of the particle ŝ Error estimation of the prediction
Pg Global optimal solution currently found Φ Standard normal cumulative distribution function
γ Random number ϕ Standard normal probability density function
Kr Random number ỹ, L̃ Incremental form of y, L
Xbest Best individual of the group after the t-th iteration R̃ Updated correlation matrix
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3. Sivčev, S.; Coleman, J.; Omerdić, E.; Dooly, G.; Toal, D. Underwater manipulators: A review. Ocean Eng. 2018, 163, 431–450.
[CrossRef]

4. Vakil, M.; Fotouhi, R.; Nikiforuk, P.N. A new method for dynamic modeling of flexible-link flexible-joint manipulators. J. Vib.
Acoust.-Trans. ASME. 2011, 134, 014503. [CrossRef]

5. Meng, D.; Wang, X.; Xu, W.; Liang, B. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and
vibration suppression. J. Sound Vib. 2017, 396, 30–50. [CrossRef]

6. Sahu, U.K.; Patra, D. Observer based backstepping method for tip tracking control of 2-DOF Serial Flexible Link Manipulator.
In Proceedings of the Region 10 Conference, Singapore, 22–25 November 2016.

7. Yang, Y.-L.; Wei, Y.-D.; Lou, J.-Q.; Fu, L.; Fang, S.; Chen, T.-H. Dynamic modeling and adaptive vibration suppression of a
high-speed macro-micro manipulator. J. Sound Vib. 2018, 422, 318–342. [CrossRef]

8. Rahmani, B.; Belkheiri, M. Adaptive Neural Network Output Feedback Control for Flexible Multi-Link Robotic Manipulators.
Int. J. Control. 2018, 92, 2324–2338. [CrossRef]
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