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Abstract: A seasonal predictability barrier has long been noticed in ENSO forecasting with numerical
models. Previous studies explored the impact of seasonal optimal initial perturbation evolutions
in sea surface temperature anomalies (SSTA) on ENSO forecasting using the intermediate coupled
model (ICM) via the conditional nonlinear optimal perturbation (CNOP) method. In this paper,
we investigate the joint effects of SSTA and sea level anomalies (SLA) from the perspective of the
optimal growth initial error (OGE). After determining the four seasonal OGEs about SSTA and SLA
(i.e., SSTA-OGE, SLA-OGE and Joint-OGE), we first demonstrate the patterns, evolutions and the
resulting spring predictability barrier (SPB) of the above OGEs. Then, we analyze the mechanism of
OGE evolutions and SPB. Finally, we conduct observing system simulation experiments to determine
the best (economic) observation network. Our experimental results indicate that the ENSO evolution
error induced by SSTA-OGE and Joint-OGE presents season dependency, but SLA-OGE has no impact
on ENSO evolution. Moreover, Joint-OGEs induce error evolutions and the SPB with more significant
intensity than SSTA-OGEs and SLA-OGEs. From mechanism analyses, the evolutions of SSTA-OGEs
are mainly dominated by Bjerknes feedback. Further, the evolution dynamics of Joint-OGEs primarily
contain the continuous heating between the upper ocean combined with Bjerknes feedback and
thermal diffusion in response to the discharge process. In addition, comprehensive and economical
sensitive areas are identified through Joint-OGE, including the central-eastern equatorial Pacific and
the western and north-eastern tropical Pacific boundary, which contribute to the ENSO prediction
benefits reaching 58.31% on average.

Keywords: ENSO; joint effects; predictability barrier; seasonal OGE; CNOP; target observation
sensitive area

1. Introduction

The El Niño–Southern Oscillation (ENSO), the most prominent year-to-year climate
variation on Earth, occurs irregularly every 2–7 years in the equatorial Pacific Ocean [1].
The origins and development of ENSO have an enormous impact on the global climate and
economy [2]. Thus, the accurate forecasting and understanding of this phenomenon are
crucial for meteorological researchers worldwide. The marine aspect of the ENSO can be
characterized by two main opposite states: El Niño events defined by positive sea surface
temperature anomalies (SSTAs) in the equatorial Pacific Ocean and La Niña events marked
by negative SSTA in the same region [3].

In the late 20th century, numerical models were able to effectively predict ENSO
events with lead times of 6 to 12 months [4]. Even though such progress was achieved, the
ENSO prediction still has great uncertainties [5]. For example, Figure 1, provided by the
IRI/CPC [6], including 17 dynamic models and 7 statistical models, shows forecast results
in the Niño3.4 index, which are widely divergent from the observations reaching roughly
3 ◦C. The primary reason is that numerical models are often established based on the
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air–sea coupling model in a certain period [7]. As a result, the limited dynamics lead to a
decrease in ENSO forecasting skill. Typically, most numerical models display significant
declines in ENSO prediction skill across the boreal spring, i.e., spring predictability barrier
(SPB). As shown in Figure 1, the prediction divergence even exceeds 4 ◦C in spring, marked
by two blue rectangles. It also points out that the SPB phenomenon has a more serious
impact on ENSO forecasting [8].
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Figure 1. ENSO predictions provided by the IRI/CPC from April 2020 to March 2022.

IOCAS ICM (intermediate coupled model, developed at the Institute of Oceanology,
Chinese Academy of Sciences) [9] stands out as one of the prediction models listed in
Figure 1, which has provided ENSO forecasting for IRI/CPC since August 2015 and
successfully predicted a strong El Niño event in 2015/2016 [10,11] and consecutive third La
Niña events in 2020/2021, 2021/2022 and 2022/2023 [12,13]. Many researchers have utilized
IOCAS ICM for ENSO predictability studies, including the maximal initial error [14,15],
prediction barrier [14] and the sensitive area of target observation [16].

Reducing the initial field error is effective in improving the ENSO prediction skill [17,18],
which inspires us to explore how the spatial structure of the error affects the predic-
tion [19,20]. It is also critical to establish the characteristics of initial field errors in different
seasons [21], which makes the error evolutions induce the SPB for ENSO prediction [22].
Further, identifying critical regions for intensive observation is also highly necessary to
reduce the initial field error and minimize the forecast error [23–25]. The CNOP method [26]
is used to study the optimal growth initial error (OGE) [27–29], which represents a pertur-
bation under a given physical constraint, resulting in the largest nonlinear error evolution
at the prediction time.

Previous studies explored the impact of optimal initial perturbation evolution of SSTA
on ENSO forecasting using the ICM via the CNOP method. Mu et al. [30] determined the
OPR (the optimal precursor) of SSTA in ENSO occurrence and explored the seasonal varia-
tion. Tao et al. [14] clarified the impact of the OGEs of SSTA and SLA across four seasons
on the forecast results. All these studies obtained meaningful results, but the interaction
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between SSTA and SLA cannot be ignored for ENSO from Bjerknes’ theory [31,32]. Thermo-
cline height anomalies (THA) expressed by sea level anomalies (SLA) reestablish vertical
advection of the upper ocean and generate an upwelling pathway transported from the
thermocline to the sea surface, thereby affecting the sea surface temperature (SST) [33,34].
Taking into account the joint effect of multivariable optimal initial errors is bound to reveal
the distinctive mechanism of error growths and seasonal predictability barriers.

In this paper, we investigate the joint effects of SSTA and SLA for four seasons from
the perspective of OGE. After determining the OGEs in four seasons of SSTA and SLA
(i.e., SSTA-OGE, SLA-OGE and Joint-OGE), we first demonstrate the spatial structures and
error growths of the OGEs for every season, respectively. Then, we perform the mechanism
analyses on OGE evolutions. Finally, we conduct observing system simulation experiments
to determine the effective economic observation network.

The rest of this paper is organized as follows: Section 2 describes the model and
methods. Section 3 shows the experimental schema in detail. The main results, including the
OGE patterns and evolutions, and related mechanism analyses are presented in Section 4,
and the results of the observing system simulation experiments are presented in Section 5.
Finally, the conclusion is given in Section 6. All abbreviations involved in this paper can be
viewed in Table A1 in Appendix A.

2. Model and Methods
2.1. IOCAS ICM

The IOCAS ICM was developed by Zhang et al. [9] to simulate and predict ENSO
events in the tropical Pacific, which consists of a dynamic ocean model and an empirical
atmospheric model, as shown in Figure 2. The dynamic ocean model is based on IOM
(intermediate ocean model, developed by Keenlyside and Kleeman [35]), an SST anomaly
model and an Te model (the temperature of subsurface water entrained into the mixed layer
model). The empirical atmospheric model is a statistical model for wind stress (marked as
τ model).
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By importing Te, the ICM involves the interaction of sea–air physical variables between
the surface layer and subsurface layer (e.g., sea surface current, sea vertical current, 20 ◦C
depth anomalies, sea entrainment salinity, etc.), which improves the model simulation and
prediction of sea surface temperature in the tropical Pacific. The ocean region of the ICM
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extends from 31◦ S to 31◦ N and from 124◦ E to 30◦ E, which covers the tropical Pacific
and Atlantic basins. The region for variables is divided into 134 × 61 grid points. In detail,
it has 2◦ zonal grid spacing and a meridional grid stretching from 0.5◦ within 10◦ of the
equator to 3◦ at the meridional northern and southern boundaries.

2.2. CNOP Method

The conditional nonlinear optimal perturbation (CNOP) method was proposed by Mu
and Duan [26]. The following is a brief introduction to CNOP.

Assume that a meteorological numerical model can be simplified as follows:{
∂U
∂t + F(U) = 0,
U| t=0 = U0,

(1)

where F is the nonlinear operator of the numerical model, U(t) = (U1(t), U2(t), · · · , Un(t))
is the state at t time and U0 is the state at zero time (the initial state).

By adding initial perturbation u0 to the initial state, after the integration time T,
we have

U(T) + u(T) = M(U0 + u0)(T) (2)

where M is a propagator governed by the integration time and initial state, and u(T)
describes the evolution of the initial perturbation u0.

In general, u0, which satisfies the initial perturbation constraint ‖u0‖ ≤ δ and Equation (3),
is represented as u∗0 , i.e., the CNOP.

J(u∗0) = max
‖u0‖≤δ

‖M(U0 + u0)(T)−M(U0)(T)‖2 (3)

2.3. Solving CNOP of ICM with GD Algorithm

Solving CNOP of the numerical models is an optimization problem. Generally, the
gradient of the numerical models when iterating every time step is calculated by the adjoint
model. Mu et al. [36] adopted the gradient definition to obtain the gradient and success-
fully applied it to the ZC model. To effectively calculate the gradient of high-dimensional
numerical models, firstly, the feature space (low-dimensional space) of numerical models
is obtained, and then the gradient is calculated in the feature space through the gradient
definition. Mu et al. [30,37] successfully applied it to MM5 and ICM models. In this paper,
the same method is used to solve the CNOPs of ICM. Different from Mu et al. [30], there are

three initial perturbations, whose nondimensionalized forms are
→
u

Joint
0 =

(
→
u

SLA
0 ,

→
u

SSTA
0

)
,

→
u

SLA
0 and

→
u

SSTA
0 . They, respectively, represent simultaneously superimposing SLA and

SSTA perturbations on the initial field, superimposing SLA perturbation and SSTA per-
turbation. Corresponding constraints are δSLA, δSSTA and δJoint as Equations (4)–(6). We
integrate ICM for 200 years from 1960 to 2160; then, means and standard deviations of
SSTA and SLA on grid point (i, j) are calculated.

‖→u
SLA
0 ‖ =

√√√√∑i,j

[
uSLA

0 (i, j)−USLA(i, j)
σSLA(i, j)

]2

≤ δSLA (4)

‖→u
SSTA
0 ‖ =

√√√√∑i,j

[
uSSTA

0 (i, j)−USSTA(i, j)
σSSTA(i, j)

]2

≤ δSSTA (5)

‖→u
Joint
0 ‖ =

√√√√∑i,j

[
uSLA

0 (i, j)−USLA(i, j)
σSLA(i, j)

]2

+ ∑i,j

[
uSSTA

0 (i, j)−USSTA(i, j)
σSSTA(i, j)

]2

≤ δJoint (6)
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On grid point (i, j), uSLA
0 (i, j) is the SLA perturbation, and uSSTA

0 (i, j) is the SSTA perturba-
tion. USLA(i, j) is the mean value of SLA, USSTA(i, j) is the mean value of SSTA. σSLA(i, j)
is the standard deviation of SLA and σSSTA(i, j) is the standard deviation of SSTA.

The parameter settings for solving CNOP of ICM with the GD algorithm are in Table 1.
The dimension of the feature space (DoF) is determined when the sum of corresponding
eigenvalues reaches 95% of the whole feature space [30]. After multiple experiments,
the proper δ is ascertained to avoid too-large constraint leading to the forecast results
deviating from natural laws or too-small constraint causing unobvious error evolution. In
our experiment, δSLA and δSSTA are set to 15, and δJoint is set to 20. The maximum iteration
step (Maxit) is set to 50, which can ensure the convergence and efficiency of SPG2. The
integrating time of ICM (lead time) is set to 12 months for ENSO, generally going through
12 months from the growth phase to the mature phase [28].

Table 1. The parameter settings for solving CNOP of ICM with the GD algorithm.

Parameters Value Meaning

SSTA SLA Joint
DoF 48 48 72 Dimension of the feature space

δ 15 15 20 The constraint of the initial perturbation
Maxit 50 The maximum iteration step of SPG2

Lead time (T) 12 months The integrating time of ICM

3. Experimental Schema

We integrate the ICM model from 1960 to 2000 (Figure 3a) and then select two reference
states, namely the El Niño event in 1982/1983 (Figure 3b) and the La Niña event in
1984/1985 (Figure 3c). For each reference state, we mark the year when it reaches mature
phase as year (1). The year prior to year (1) is marked as year (0), and the year preceding
year (0) is referred to as year (−1). We focus on the onset phases of the reference states
(from July (−1) to June (0)).
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For the El Niño reference state, we take each month from July (−1) to June (0) as the
start month and integrate the ICM model for 12 months to obtain the simulation results.
Then, we, respectively, superimpose the SSTA, SLA and joint perturbation on the initial field
and integrate them to obtain the simulation results, i.e., M(U0 + u0)(T) in Equation (2).
According to Equation (3) in Section 2.2, we solve CNOPs of ICM with GD algorithm to
obtain 36 CNOPs for the El Niño reference state. Similarly, we also obtain 36 CNOPs for
the La Niña reference states. Remarkably, we discovered that the 36 CNOPs for the El Niño
reference state are the same as those for the La Niña reference state. Moreover, when we
select other El Niño or La Niña events from Figure 3a as reference states, we also obtain the
same 36 CNOPs. In other words, the resulting CNOPs are found to be independent of the
reference state.

The obtained CNOPs (i.e., u∗0 in Equation (3)) stand for optimally growing initial errors
(OGEs). We accordingly mark them as SSTA-OGEs for the SSTA perturbation, SLA-OGEs
for the SLA perturbation and Joint-OGEs for the joint perturbation. Notably, there are a
total of 12 OGEs for each type of perturbation, with each OGE corresponding to the start
month from July (−1) to June (0).

To analyze the seasonal dependence of OGEs for each type of perturbation, we obtain
summer OGEs, autumn OGEs, winter OGEs and spring OGEs by averaging OGEs of
three months (July (−1), August (−1), September (−1)), (October (−1), November (−1),
December (−1)), (January (0), February (0), March (0)) and (April (0), May (0), June (0)),
respectively. That is, there are 4 seasonal OGEs for each type of perturbation.

For each selected reference state, we evaluate the error evolutions of seasonal OGEs
by comparing the simulation results of integrating the ICM model for 12 months, with
or without superimposing summer OGEs, autumn OGEs, winter OGEs and spring OGEs
on the initial field, respectively (August (−1), October (−1), February (0) and May (0) as
the start month). For investigating the error evolutions of seasonal OGEs over 12 months,
we also integrate ICM for 3, 6 and 9 months, in addition to 12 months. To demonstrate
the SPB resulting from seasonal OGE, we obtain the total error evolution every month
by calculating the root square mean for the error evolution of each grid over 12 months.
The growth rate is also used to measure the SPB. The experiment results are shown in
Section 4.1.

The mechanism analysis on error evolutions of SLA-OGE, SSTA-OGE and Joint-OGE
is performed in Section 4.2. Then, we show the observing system simulation experiment
results in Section 5.

4. Result Analyses
4.1. Patterns, Evolutions of OGEs and the Resulting SPB
4.1.1. SLA-OGEs

Figure 4 shows the patterns of seasonal SLA-OGEs and the simulation results after
integrating ICM for 12 months, with and without superimposed SLA-OGEs on the initial
field of El Niño/La Niña reference state.

From Figure 4(1), the patterns of four seasonal SLA-OGE show dipole distribution,
with the negative in the west and the positive in the east. In other words, SLA-OGEs
exhibit almost no seasonal dependence. For the El Niño reference state, whether SLA-OGEs
are superimposed or not, all events reach the mature phase, and the simulation results
for each season are the same as Figure 4(2),(3). For the La Niña reference state, the same
phenomenon also occurs in Figure 4(4),(5). It indicates that SLA-OGEs do not trigger
error evolution.

Figure 5 displays the total error evolution and its growth rate every month for four
seasonal SLA-OGEs over 12 months for two selected reference states. It can be seen that the
total error evolutions are all less than 0.25, which indicates that seasonal SLA-OGEs have
almost no impact on ENSO evolutions. Likewise, despite the growth rates showing regular
fluctuations for seasonal SLA-OGEs, they are too little in magnitude to be considered as a
predictability barrier.
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reference state. (1) SLA−OGE patterns; (2) the simulation results for SSTA (◦C) and wind stress
anomalies (dyn/cm2) without superimposing SLA−OGEs on the initial field of El Niño reference
state; (3) the same as (2), superimposing SLA−OGEs; (4) the same as (2) for La Niña reference state;
(5) the same as (4), with superimposing SLA−OGEs.

4.1.2. SSTA-OGEs

Figure 6 shows the patterns of seasonal SSTA-OGEs and the simulation results after
integrating ICM for 12 months, with and without superimposed SSTA-OGEs on the initial
field of El Niño/La Niña reference state. From Figure 6(1), the patterns of spring and
summer SSTA-OGEs exhibit positive SSTA in the central and eastern Pacific Ocean, which
almost covers the Niño3 and Niño4 areas. Those of autumn and winter SSTA-OGEs keep a
kind of seesaw-like structure, with a negative SSTA in the west and a positive SSTA in the
east. That is, SSTA-OGEs possess obvious seasonal dependence.

From Figure 6(2),(3), SSTA with superimposed summer and spring SSTA-OGEs on
the initial field has more intense amplitudes and SSTA with superimposed autumn, and
winter SSTA-OGEs have weaker amplitudes for the El Niño reference state. For the La Niña
reference state, the opposite situation occurs from Figure 6(4),(5). It indicates that seasonal
SSTA-OGEs have different effects on the evolution of El Niño or La Niña events.
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reference state. (1) SSTA patterns of SSTA−OGE; (2) the simulation results for SSTA (◦C) and wind
stress anomalies (dyn/cm2) without superimposing SSTA−OGEs of El Niño reference state; (3) the
same as (2), with superimposing SSTA−OGEs; (4) the same as (2), for La Niña reference state; (5) the
same as (4), with superimposing SSTA−OGEs.

To further investigate the evolutions of seasonal SSTA-OGEs, the patterns and the
evolutions of four seasonal SSTA-OGEs in 3, 6, 9 and 12 months are shown in Figure 7. The
evolution of summer SSTA-OGE in Figure 7a is characterized by the warming anomalies
growth, which is rapid in the western tropical Pacific, spreading eastward and dispersing
the cooling anomalies in the eastern Pacific. With the enhancement of westerly wind anoma-
lies, the warming anomalies are further propelled and amplified in the eastern Pacific.
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Figure 7. The patterns and the evolutions of seasonal SSTA−OGE over 12 months. (1) SSTA−OGE
patterns; (2) evolution of SSTA−OGE for SSTA (◦C) and wind stress anomalies (dyn/cm2) in summer
(a), autumn (b), winter (c) and spring (d) for 3 months; (3) the same as (2), for 6 months; (4) the same
as (2), for 9 months; (5) the same as (2), for 12 months.

From Figure 7b, the evolution of autumn SSTA-OGE depicts that the cooling anomalies
first appear in the western-central Pacific and then extend eastward. Along with the
easterly wind stress anomalies, the cooling anomalies converge in the eastern Pacific, while
warming anomalies gradually intensify in the western Pacific. In addition, from Figure 7c,
the evolution of winter SSTA-OGE is almost consistent with autumn SSTA-OGE. From
Figure 7d, the evolution of spring SSTA-OGE shows large positive SSTA accumulated in
the eastern equatorial Pacific, while negative SSTA converges in the western Pacific. Then,
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the westerly anomalies carry the negative SSTA eastward and weaken the positive SSTA in
the equatorial eastern Pacific.

In brief, the summer and spring SSTA-OGEs propel SSTA in the central-eastern tropical
Pacific to grow toward the positive phases, leading to overestimating El Niño events and
underestimating La Niña events. The evolution difference is that the evolution of summer
SSTA-OGE undergoes a transition from the negative to positive phase, while the evolution
of spring SSTA-OGE undergoes a transition from maturity to decay in the positive phase.
On the contrary, the autumn and winter SSTA-OGEs propel SSTA in the central-eastern
tropical Pacific to grow toward the negative phases, which leads to underestimating El
Niño events and overestimating La Niña events. The evolutions of autumn and winter
SSTA-OGEs are similar, differing only in terms of stronger magnitude for winter.

Figure 8 illustrates the total error evolution and its growth rate every month for four
seasonal SSTA-OGEs over 12 months for two selected reference states. The total error
evolutions are all large for four seasonal SSTA-OGEs, indicating that SSTA-OGEs have a
significant seasonal impact on ENSO evolutions.
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Figure 8. The total error evolution (histogram, left axis) and its growth rate (curves, right axis) every
month for four seasonal SSTA−OGEs over 12 months. The first two months are omitted considering
the unstable initial phase. (1) For El Niño reference state, (2) for La Niña reference state.

For the El Niño reference in Figure 8(1), the SPB occurs in mid to late spring of the
next year for summer SSTA-OGE, in early spring of the next year for autumn and spring
SSTA-OGEs and in the entire spring of the next year for winter SSTA-OGE. For La Niña
reference state in Figure 8(2), the SPB occurs in the same phase, although the largest growth
rate is in October (−1) for autumn SSTA-OGE, which is only in the unstable phase of ICM.
There are varying intensities of SPB caused by seasonal SSTA-OGEs, with the strongest
resulting from spring SSTA-OGE, followed by winter and summer SSTA-OGEs, and the
weakest is autumn.

4.1.3. Joint-OGEs

Figure 9 shows the patterns of seasonal Joint-OGEs and the simulation results after
integrating ICM for 12 months, with and without superimposing Joint-OGEs on the initial
field of the El Niño/La Niña reference state. For Figure 9(1), the patterns of summer, spring
and winter Joint-OGEs in SLA exhibit dipole distribution, with negative anomalies in the
west and positive anomalies in the east. However, for autumn Joint-OGE, the positive
SLA is distributed along the equatorial Pacific, and the negative SLA is located on both
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sides. From Figure 9(2), the patterns of spring and summer Joint-OGEs in SSTA emerge as
positive anomalies in the central-eastern Pacific Ocean and show positive anomalies near
the dateline in the central Pacific for autumn and winter Joint-OGEs. In total, Joint-OGEs
are relatively less sensitive to the season than SSTA-OGEs. Furthermore, Joint-OGEs are
not the results of SSTA-OGEs plus SLA-OGEs linearly, which indicates that Joint-OGEs
contain nonlinear characteristics between multivariable optimal initial perturbation.
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Figure 9. The patterns of seasonal Joint−OGEs and the simulation results after integrating ICM for
12 months, with and without superimposing Joint−OGEs on the initial field of the El Niño/La Niña
reference state. (1) SLA patterns of Joint−OGE; (2) SSTA patterns of Joint−OGE; (3) the simulation
results for SSTA (◦C) and wind stress anomalies (dyn/cm2) without superimposing Joint−OGEs
on the initial field of El Niño reference state; (4) the same as (3), with superimposing Joint−OGEs;
(5) the same as (4), for La Niña reference state; (6) the same as (5), with superimposing Joint−OGEs.

From Figure 9(3),(4), SSTA with superimposed all-seasonal Joint-OGEs on the initial
field has more intense amplitudes for the El Niño reference state. For the La Niña reference
state, the opposite situation occurs from that in Figure 9(5),(6). These results demonstrate
that Joint-OGEs also greatly impact the evolution of El Niño or La Niña events.

Figure 10 describes the patterns and the evolutions of seasonal Joint-OGEs in 3, 6, 9 and
12 months. For the evolution of summer Joint-OGE in Figure 10a, both the positive SSTA
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and the westerly wind anomalies first appear in the western Pacific and then propagate to
the eastern Pacific. As the integration time increases, the warming anomalies occupy the
eastern Pacific and are further enhanced.
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Figure 10. The patterns and the error evolutions of seasonal Joint−OGE over 12 months. (1) The SLA
pattern of Joint−OGE; (2) the SSTA pattern of Joint−OGE; (3) error evolution of Joint−OGE for SSTA
(◦C) and wind stress anomalies (dyn/cm2) in summer (a), autumn (b), winter (c) and spring (d) for
3 months; (4) the same as (3), for 6 months; (5) the same as (3), for 9 months; (6) the same as (3), for
12 months.

For the evolution of autumn Joint-OGE in Figure 10b, at the early stage, the continuous
warmth is induced by positive SSTA and westerly wind anomalies over the central-eastern
tropical Pacific. Then, along with an accumulation of cooling anomalies in the western
tropical Pacific, the warming anomalies in the eastern Pacific continually amplify. Likewise,
from Figure 10c, the evolutions of winter Joint-OGE are almost consistent with autumn
Joint-OGE.

From Figure 10d, the evolution of spring Joint-OGE manifests that along with the
easterly anomalies, warming anomalies continue to amplify in the eastern Pacific. Then,
the positive SSTA in the eastern Pacific is gradually erased by negative SSTA from the
western Pacific.
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In summary, when the initial field contains the Joint-OGE type of perturbation, with
enhanced ocean–atmosphere interactions, error growths are more pronounced than SSTA-
OGE and SLA-OGE. All seasonal Joint-OGEs propel SSTA in the central-eastern tropical
Pacific to grow toward the positive phases, leading to overestimating the El Niño events
and underestimating the La Niña events. The evolution difference is that the summer
Joint-OGE undergoes a transition from negative to positive. The autumn and winter Joint-
OGE is from the onset to maturity of the positive phase; only the winter OGE has stronger
magnitude. Meanwhile, the spring OGE undergoes a transition from maturity to decay of
the positive phase.

Figure 11 illustrates the total error evolution and its growth rate every month for
four seasonal Joint-OGEs over 12 months for two selected reference states. All seasonal
Joint-OGEs have larger total error evolutions than SSTA-OGEs and SLA-OGEs, which
indicates that Joint-OGEs also have a significant influence on ENSO evolutions, with
evident seasonal effects.
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Figure 11. The total error evolution (histogram, left axis) and its growth rate (curves, right axis)
of every month for four seasonal Joint−OGEs over 12 months. The first two months are omitted
considering the unstable initial phase. (1) for El Niño reference state, (2) for La Niña reference state.

The results of growth rates manifest that all seasonal Joint-OGEs induce the SPB with
more significant intensity than SSTA-OGEs and SLA-OGEs. For the El Niño reference state
in Figure 11(1), the SPB occurs in mid to late spring of the next year for summer Joint-OGE,
in the entire spring to early summer for autumn Joint-OGE, in the entire spring of the
next year for winter Joint-OGE and in early spring of the next year for spring Joint-OGEs.
Additionally, the SPB occurs in the same phase for La Niña reference state in Figure 11(2)
and, as with the autumn SSTA-OGE, the autumn Joint-OGE presents the same exception
for the same reason. Moreover, the most intense SPB is caused by the spring Joint-OGE,
followed by winter, and the weaker is autumn and summer.

4.2. The Mechanism Analysis on OGE Evolutions and SPB

Mechanism analyses on OGE evolutions and SPB are performed in this section. We
illustrate the evolutions of OGEs in several crucial variates (Z20, SLA, etc.) to provide an
exhaustive demonstration of the error evolution dynamics and the SPB process.
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4.2.1. Dynamics Analysis on SLA-OGEs

From the conclusions in Section 4.1.1, all seasonal SLA-OGEs have almost no impact
on event evolutions with total error evolutions less than 0.25. This is explainable through
the Bjerknes positive feedback [31]. The SSTA and THA are essential factors that induce
ocean state changes. Despite SLA-OGEs impacting oceanic thermocline to some extent, the
stable SSTA counteracts the feeble effects of THA, eliminating the ENSO deviation after a
few weeks of integration.

4.2.2. Dynamics Analysis on SSTA-OGEs

From the conclusions in Section 4.1.2, all seasonal SSTA-OGEs significantly impact the
evolution of ENSO events and induce SPB. By taking winter as an example, we derive an
explicit and full-cycle understanding of the error evolution dynamics and SPB origin for
SSTA-OGEs (the mechanisms for other seasonal SSTA-OGEs are consistent with winter).

Figure 12 displays the evolution of the winter SSTA-OGE in SSTA and wind stress
anomalies, Te, SLA and 20 ◦C depth anomalies (Z20) for 3, 6, 9 and 12 months. From
Figure 12(1),(2), in the early stage, the cooling anomalies first concentrate in the central
Pacific and propagate eastward accompanied by easterly anomalies. During this time, the
eastward Kevin wave and westward Rossby wave are triggered. Due to an upwelling
Kevin wave and easterly anomalies, shallow thermocline promotes the cooling effects of
the sea subsurface in the eastern tropical Pacific, which continuously penetrate the surface.
The Bjerknes positive feedback is generated in the tropical Pacific, which leads to rapid
error growth and the SPB in the early integration period. From Figure 12(3),(4), at the later
stage of integration, the Rossby wave turns back at the western boundary of the Pacific,
which carries the warming anomalies, dispersing the cold anomalies in the central-eastern
Pacific and attenuating Bjerknes positive feedback.
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Figure 12. Evolutions of winter SSTA−OGE over 12 months. (1) Error evolution for (a) SSTA (◦C)
and wind stress anomalies (dyn/cm2), (b) Te (◦C), (c) SLA (m) and (d) Z20 for 3 months; (2) the same
as (1), for 6 months; (3) the same as (1), for 9 months; (4) the same as (1), for 12 months. The contour
interval is 5 m for Z20.
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To summarize, the evolutions of SSTA-OGEs are consistent with the ENSO dynamic.
In addition, the principal physical processes involved in SSTA-OGE evolutions also gov-
ern the SPB, whose dynamics primarily involve establishing and attenuating Bjerknes
positive feedback.

4.2.3. Dynamics Analysis on Joint-OGEs

From the conclusions in Section 4.1.3, all seasonal Joint-OGEs result in error growths
and SPB with more significant intensity than SSTA-OGEs and SLA-OGEs. For dynamic
analysis, the evolution of winter Joint-OGE in SSTA and wind stress anomalies, Te, SLA
and Z20 for 3, 6, 9 and 12 months is exhibited in Figure 13. From Figure 13(1),(2), large-scale
warming anomalies concentrate in the central tropical Pacific and then propagate eastward,
with strengthened westerly wind anomalies. Downwelling Kelvin waves characterized
by the deepened thermocline are triggered and propagate eastward. Meanwhile, the
dipole SLA pattern of Joint-OGE promotes coherent warming at the subsurface, and the
Bjerknes feedback is set up to enlarge the error growth. Through thermal transmission and
convection, the warming anomalies at the subsurface then penetrate the surface, further
enhancing the warming effect in the eastern tropical Pacific and causing the SPB.
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Figure 13. Evolutions of winter Joint−OGE over 12 months. (1) Error evolution for (a) SSTA (◦C) and
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(1), for 6 months; (3) the same as (1), for 9 months; (4) the same as (1), for 12 months. The contour
interval is 5m for Z20.

From Figure 13(3),(4), as the integration time increases, the apparent dispersion of
the 20 ◦C isotherm within the tropical Pacific is observed, which indicates that there is
continuous thermal diffusion toward the mid-latitudes. At the same time, the upwelling
Rossby wave propagates westward beyond the equator and reaches the western boundary.
With the Rossby wave back, a large SLA appears in the western boundary and transmits
eastward along the equator. Subsequently, the positive SSTA in the eastern Pacific Ocean
is dispersed by the negative SSTA from the western tropical Pacific, which increases the
forecasting uncertainty.
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Briefly, the evolutions of seasonal Joint-OGEs are characterized by an El Niño-like
evolution. The main physical processes involved in Joint-OGE evolutions also dominate
the SPB, whose dynamics primarily contain the continuous heating between the upper
ocean combined with Bjerknes feedback and the thermal diffusion in response to the
discharge process.

In particular, the SPB induced by autumn SSTA-OGE and Joint-OGE presents a signifi-
cant distinction, which manifests that the autumn SSTA-OGE produces the SPB occurring in
early spring, but the autumn Joint-OGE persists for the entirety of spring to early summer.
This is due to the dominance of the positive SSTA and SLA in autumn Joint-OGE (the au-
tumn SSTA-OGE is a dipole mode), resulting in the continuous heating being pronounced.
Meanwhile, thermal diffusion also contributes to forecasting uncertainty and prolongs the
SPB duration.

Overall, as compared to SLA-OGEs and SSTA-OGEs, the joint effects of SSTA and SLA
act on THA and sea subsurface temperature anomalies, thereby promoting continuous
heating and thermal diffusion in the upper ocean [38,39]. This makes both error evolutions
and the SPB induced by Joint-OGEs more intense than SLA-OGEs and SSTA-OGEs.

5. Target Observation Sensitive Area Identification

Recently, the validity of the OGE-type initial error as a sensitive area for conducting
intensive observations has been confirmed [16]. According to the spatial structures of
OGEs in Section 4.1, sensitive areas determined by the Joint-OGEs of SSTA are mainly
concentrated in the central-eastern Pacific Ocean, and those of SLA cover almost the entire
tropical Pacific Ocean. Despite possible increases in prediction accuracy observed from con-
ducting intensive observations in the abovementioned sensitive areas, it also tremendously
raises observation costs. Hence, we propose an effective economic observation network by
quantifying the crucial dynamics contributions of Joint-OGEs.

In this trial, Joint-OGEs with different scales are divided into one control group and
eight experimental groups. Concretely, the entire areas of Joint-OGEs are referred to as the
control group. After erasing weak signals in Joint-OGEs, the core areas of Joint-OGEs are
set as the experimental group (Exp. 1), which contains the areas within the absolute isoline
of 0.1◦ in the SSTA and 0.03 m in the SLA for Joint-OGEs. In addition, we also set 90–30%
of the core areas as experimental groups (Exp. 2–7), and the corresponding absolute isoline
settings are listed in Table 2. To measure the contribution of Joint-OGEs in different scales
on the predicted error, we perform the observing system simulation experiments of two
reference states with superimposing various initial errors from control and experimental
groups. When the predicted error of the experimental group exceeds 60% of the control
group, the area involved in the specific experimental group is the best (economic) targeted
observation area.

Table 2. The absolute isoline setting for control and experimental groups.

Absolute Isoline (SSTA(◦C)/SLA(m))

Summer Autumn Winter Spring

Control group Entire areas of Joint-OGEs
Core area (Exp. 1) 0.1/0.003

90% of core area (Exp. 2) 0.125/0.0332 0.1185/0.03112 0.1109/0.03216 0.113/0.0333
80% of core area (Exp. 3) 0.1487/0.0367 0.134/0.03275 0.1245/0.03485 0.127/0.0372
70% of core area (Exp. 4) 0.1806/0.0403 0.156/0.03453 0.143/0.0376 0.142/0.0415
60% of core area (Exp. 5) 0.2173/0.0459 0.1825/0.03678 0.1689/0.0408 0.1662/0.0479
50% of core area (Exp. 6) 0.255/0.0521 0.216/0.03912 0.204/0.0438 0.2026/0.0548
40% of core area (Exp. 7) 0.3055/0.05915 0.25/0.042 0.243/0.0474 0.25405/0.062
30% of core area (Exp. 8) 0.4102/0.06928 0.36/0.04453 0.3235/0.0523 0.381/0.0708

Figure 14 displays the prediction errors for the El Niño reference state, superimposing
varying seasonal Joint-OGEs from the control and experimental groups over 12 months.
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Accordingly, at the beginning of the integration, there are small prediction error differences
between the control and experimental groups. Further, with increasing predictive time, the
difference gradually rises, which may be because the error accumulation induced by the
areas beyond the experimental groups resulted in instability in the ocean state.
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Figure 14. The prediction errors in the Niño3.4 index (◦C) of every month for El Niño reference
state with superimposing varying seasonal Joint−OGEs from control and experimental groups over
12 months.

From differences in forecast errors between the control and experimental groups,
appropriate sensitive areas vary with different forecast start seasons. The forecast error
can be effectively eliminated by conducting intensive observations in 30% of the core area
for forecasts starting from summer, and in the 50% core area for forecasts starting from
autumn, winter and spring. Hence, the sensitive areas for different forecast start seasons
mainly contain the central-eastern equatorial Pacific and the western and north-eastern
tropical Pacific boundary. Furthermore, there is a significant forecast error dropping in
30% and 40% of the core area (Exp. 7, 8) for forecasts starting from autumn, winter and
spring, demonstrating that the eastern equatorial Pacific and east-southern tropical Pacific
boundary omitted by Exp. 7 and 8 have a crucial role in El Niño forecasting [40].

Figure 15 displays the prediction errors for the La Niña reference state, superimposing
varying seasonal Joint-OGEs from the control and experimental groups over 12 months. It
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can be found that the difference between the control and experimental groups in forecast
error is also initially slight and gradually grows with increasing predictive time.
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state with superimposing varying seasonal Joint−OGEs from control and experimental groups over
12 months.

Furthermore, when intensive observations are conducted on 30% of the core area (Exp.
8) for forecasts starting from summer, on 50% of the core area (Exp. 6) for forecasts starting
from autumn and spring and on 70% of the core areas for winter, forecast errors can be
significantly eliminated. Notably, for forecasts starting from winter, the forecast error in
30%, 40% and 50% of the core area (Exp. 6, 7, 8) exhibits noticeable deviation from the
control group, which indicates that the west-southern tropical Pacific boundary is a critical
area for La Niña forecasting [41].

Even though the best (economic) observation network (sensitive areas) vary depending
on the forecast start seasons, universal sensitive areas can be concluded for four seasons
through the above experiments. As shown in Figure 16a,b, the sensitive areas of SSTA
concentrate in the central-eastern equatorial Pacific. The sensitive areas of SLA are located
in the eastern equatorial Pacific and the western and north-eastern tropical Pacific boundary.
The universal sensitive areas mentioned above cover approximately 50% of the tropical
Pacific Ocean.
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Moreover, through a reduction in the prediction error after removing Joint-OGEs
in specific sensitive areas, we measure the prediction benefit of effective observations in
universal sensitive areas for improving the forecast results. The benefit is calculated using
Equation (7).

Bpred =

∣∣∣Niño3.4Joint−OGE
k − Niño3.4ref

k

∣∣∣− ∣∣Niño3.4remove
k − Niño3.4ref

k

∣∣∣∣∣Niño3.4Joint−OGE
k − Niño3.4ref

k

∣∣∣ × 100% (7)

The Bpred represents the degree of reduction in prediction errors after implementing
target observation in universal sensitive areas. As shown in Figure 16a,c, Niño3.4Joint−OGE

k
and Niño3.4ref

k , respectively, represent the prediction results after integrating ICM for k
months, with and without superimposed Joint-OGEs on the initial field of the El Niño/La
Niña reference state, and Niño3.4remove

k represents the prediction results removing Joint-
OGEs in universal sensitive areas from Niño3.4Joint−OGE

k .
The prediction benefits for different forecasts starting from four seasons in two ref-

erence states are shown in Figure 16c. The results demonstrate that if the initial error of
Joint-OGEs in universal sensitive areas is eliminated, the prediction errors of ENSO can
be reduced efficiently, especially the average prediction benefit starting from the autumn,
winter and spring, which can reach more than 66.57%. The exception occurs in the sum-
mer, which shows negative benefits during the leading 3–7 months. Since the sensitive
areas for summer are relatively small, evidence shows that additional observations in
non-sensitive areas may not be beneficial in weakening the SPB and may even strengthen
the forecast error [16]. Nevertheless, the average benefits of seasonal forecast still reach
58.31%. Meanwhile, the prediction benefit starting from summer exhibits a stable tendency
over the leading 8 months, which also confirms the validity of the universal sensitive areas
in long-term ENSO forecasting.

The universal sensitive areas shown in Figure 16a,b are consistent with the conclusions
of Duan and Hu [42], Tao et al. [16] and Shin et al. [43] in previous studies. Duan and
Hu emphasized the importance of subsurface signals in the western Pacific for ENSO
predictions, which can influence the surface through equatorial waves and thermodynamic
effects. Tao et al. indicated that the initial states in the central and eastern equatorial Pacific
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are essential to effectively improve El Niño prediction skills. Shin et al. proposed that
intensive observations of SSH in the eastern and western equatorial Pacific boundary and
eastern equatorial Pacific are necessary, especially in extreme ENSO forecasting.

6. Conclusions

In this paper, we explored the error evolutions for the joint effects of SSTA and SLA
on growth dynamics and seasonal predictability barriers from the perspective of OGE
based on the ICM and CNOP methods. The crucial contributions and conclusions can be
summarized as follows:

1. We obtained a wide variety of OGE patterns. In addition to covering almost all the
OGE modes obtained by previous studies, there are also extended OGE modes with
more detailed information. Various OGEs have varying seasonal dependence and
distinct effects on ENSO evolutions and the SPB.

From the spatial structures of OGEs, SSTA-OGEs exhibit seasonal dependence, Joint-
OGEs have less, but SLA-OGEs have no seasonal dependence. Moreover, both SSTA-OGEs
and Joint-OGEs have seasonal effects on ENSO evolutions. Concretely, the summer and
spring SSTA-OGEs lead to overestimating El Niño events and underestimating La Niña
events (and vice versa for autumn and winter SSTA-OGEs). Meanwhile, all seasonal Joint-
OGEs induce an overestimation of the El Niño events and underestimation of the La Niña
events. From error evolutions and the resulting SPB, both SSTA-OGEs and Joint-OGEs
result in obvious error evolutions and the SPB but Joint-OGEs with more intensity than
SSTA-OGEs. In addition, SLA-OGEs have almost no impact on ENSO evolutions;

2. By analyzing the mechanism of OGE evolutions and the SPB, we found that the
principal physical processes involved in OGE evolutions also govern the SPB, which,
induced by SSTA-OGEs, is mainly owing to Bjerknes feedback. For Joint-OGEs, the
SPB is primarily due to the continuous heating between the upper ocean and the
thermal diffusion in response to the discharge process.

We demonstrate that the joint effects of SSTA and SLA have a significant impact on
error evolutions and the SPB. Both error evolutions and the SPB induced by Joint-OGEs
are more intense than SSTA-OGEs and SLA-OGEs, indicating that THA represented by
SLA reconstructs the vertical convection in the upper ocean and contributes significantly
to SSTA evolution. Meanwhile, the sea subsurface temperature anomalies influenced by
SLA [34] accelerate the thermal dissipation to mid-latitudes in response to the discharge
process, which is a dynamical detail ignored by previous studies of the univariate optimal
initial errors.

3. Based on the Joint-OGE patterns, our observation scheme proposals include not only
the most (economically) sensitive area schemes for each forecast starting from different
seasons but also generic multivariate observation schemes. In detail, generic sensitive
areas encompass the central-eastern equatorial Pacific and the western and north-
eastern tropical Pacific boundary, where conducting intensive observation contributes
to the ENSO prediction benefits, reaching 58.31% on average.

Many endeavors have previously been made to explore the OGEs of ENSO based
on the CNOP approach. The OGE modes obtained in this paper cover almost all the
SSTA patterns determined by previous studies. Precisely, Mu et al. [44] identified seasonal
OGEs according to adjoint methods and the CNOP approach in the ZC model, whose
spatial structures are similar to seasonal SSTA-OGEs (Figure 6) (only the summer mode
sees the opposite phase). Tao et al. [14] also calculated OGEs using an adjoint method
and investigated the seasonal OGEs in ICM; all of them have negative SSTA errors in
the equatorial central Pacific, which was somewhat consistent with the winter mode of
SSTA-OGE (Figure 6c). Similarly, our OGE patterns also corresponded to non-seasonal
OGEs [45,46]. In particular, Xu et al. [28] obtained three types of OGEs with distinct El Niño
events in CESM, which were somewhat similar to the winter mode of SSTA-OGE (Figure 6c),
autumn mode of Joint-OGE (Figure 8b) and spring mode of Joint-OGE (Figure 8d). The
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comprehensive OGE patterns imply the validity of our experimental methods and are
reliable and valuable supports for dynamic analyses.

This study aims to examine the error evolution of the joint effects of SST and SL
induced by the initial perturbation on ENSO predictions. However, extensive evidence has
suggested that there are still many variates that also play an essential role in influencing
ENSO events. For example, Zheng and Zhu [47] used the ICM to show that the SST
prediction errors were reduced by improving the simulation of the zonal wind stress
anomalies. The salinity is also an essential factor in the oceanic evolution from seasonal to
interannual timescales; its interannual variations significantly affect the density and mixed
layers of the central and western tropical Pacific, thus affecting the sea temperature and the
development of ENSO. Geng T, et al. [48] found that changes in atmospheric convection
significantly impact the ENSO asymmetry. Thus, further exploration will focus on more
physical variables, researching the joint variable mechanisms in ENSO predictability. In
addition, identifying the OPR, OGE and corresponding sensitive areas is also essential for
target observations. The observation network can be refined to explore ENSO and advance
the scientific understanding of its causes. Furthermore, a real-time observation system
can be established based on multivariate predictability research, which can strengthen the
adoption of target observational sensitive areas, supporting prediction systems for the
ocean, weather and climate services.
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Appendix A

Table A1. List of acronyms involved in this article along with their brief descriptions.

No. Term Description

1 ENSO data The El Niño–Southern Oscillation

2 Niño3.4 index mean of SST anomalies in the Niño 3.4 region (120◦ W–170◦ W,
5◦ N–5◦ S)

3 IOCAS ICM an intermediate coupled model developed at the Institute of
Oceanology, Chinese Academy of Sciences

4 CNOP conditional nonlinear optimal perturbation
5 PB predictability barrier
6 SPB spring predictability barrier
7 OGE the optimal growth initial error
8 OPR the optimal precursor
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Table A1. Cont.

No. Term Description

9 SSTA sea surface temperature anomalies
10 SLA sea level anomalies
11 THA thermocline height anomalies

12 Te
the temperature of subsurface water entrained into the

mixed layer
13 Z20 20 ◦C depth anomalies
14 SLA-OGE the optimal growth initial error of SLA
15 SSTA-OGE the optimal growth initial error of SSTA
16 Joint-OGE the optimal growth initial error of SSTA and SLA
17 GD gradient definition algorithm
18 ZC model Zebiak–Cane model
19 MM5 Mesoscale Model fifth Generation
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