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Abstract: Model mismatch is inevitable in robot control due to the presence of unknown dynamics
and unknown perturbations. Traditional model predictive control algorithms are usually based on
constant value assumptions and are not able to overcome the degradation of controller performance
due to model mismatch. In this paper, a model predictive control (MPC) algorithm based on Gaussian
process regression (GPR) is proposed. Firstly, the kinematic equations of the mobile robot are
established by the mechanistic analysis method; similarly, the dynamics of the mobile robot system
are modeled using the second-class Lagrangian equations. Secondly, the problem of stability and
reliability degradation due to model mismatch during the operation of mobile robot is considered.
This paper uses a MPC algorithm with a main model plus residual model to solve the MPC closed-
loop control strategy. The state at each moment is decomposed into a predicted state based on the
first-principles model and a residual state. The residual state is learned by GPR in real-time and
used to compensate for deviations between the real process model and the predicted model. The
proposed method requires fewer data samples, enhancing the technique’s practicality. Finally, the
simulation results show that the proposed algorithm is more stable and achieves the desired tracking
faster. Compared with the MPC algorithm, the arrival time of the system is reduced by 28% and the
speed error is controlled within 0.07.

Keywords: model predictive control; mobile robots; gaussian process; residual model; uncertainty;
trajectory tracking

1. Introduction

Omnidirectional mobile robots have good stability and load-bearing capacity [1,2].
Mobile robots have great application potential in high-end manufacturing fields such as
aviation, aerospace, and industrial transportation [3]. However, their complex gear train
structure renders them difficult to accurately control. In [4], the dynamic equation of a
mobile robot was proposed, which was derived using the second Lagrange equation. In [5],
a two-stage control system was designed to realize the indoor navigation of the robot. It
is well known that the dynamic model of a mobile robot is highly nonlinear and contains
model uncertainties. In addition, it is necessary to consider the input saturation constraint,
which brings significant challenges to dynamic control [6].

Trajectory tracking control is one of the main problems of mobile robots control.
Accurate trajectory tracking is also the first prerequisite for mobile robots to complete
their tasks. In the previous research on trajectory tracking, the control is based on the
precise attitude information of the mobile robots, and it is assumed that the ideal speed
tracking of the mobile robots can be dynamically realized [7]. However, this situation is too
idealistic. In practical applications, it is difficult to achieve ideal speed tracking due to the
influence of errors and disturbances. Aiming at such problems, the literature [8] proposed
a nonlinear disturbance observer technique to estimate disturbance and compensate for
modelling errors. Considering the unknown disturbance and uncertainty, a sliding mode
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control method based on extended state observer is proposed for the trajectory tracking of
mobile robots [9]. In addition, a fuzzy-model-based control framework deals with vehicle
dynamics and highly uncertain behavior [10].

MPC is widely used in trajectory tracking control of mobile robots due to its robustness
and stability [11]. This is because MPC provides a method that incorporates both goals and
constraints. However, in the practical application of MPC, model mismatch is inevitable.
It comes from modeling errors caused by external disturbances and system modeling
errors. This also means that MPC needs to fully consider the model’s uncertainty and
adaptively update the model. Luo et al. [12] designed a heterogeneous robust MPC with
modelling uncertainty and external disturbances. Cao et al. [13] further control the tracking
error through constraint transformation in MPC to reduce the workload of tracking error
control. In [14], an MPC planning controller is proposed to enable path planning systems
for autonomous vehicles to cleanly handle different obstacles and road structures while
exploiting vehicle dynamics for optimal path planning. In [15], Rasekhipour et al. provided
a vehicle collision avoidance path planning and tracking method based on multi-constraint
model predictive control. They used the Hildreth quadratic programming method to
solve it. In [16], Ji designed a high-speed obstacle avoidance path planning algorithm
based on real-time output constraints MPC. In [17], Kim et al. proposed an MPC-based
trajectory tracking implementation that considers the road’s feasible area and the vehicle’s
shape. In [18], Guo et al. proposed a quasi-infinite time-domain nonlinear MPC scheme for
general reference trajectory tracking, which obtains available terminal-reachable trajectories
without increasing online computational complexity.

1.1. Related Work

With the rapid development of machine learning in recent years, many “learning”
ideas have also been introduced into model predictive control [19,20]. Aswani [21] was
the first to propose learning-based model predictive control (LBMPC), which has been
the subject of intensive research for more than ten years. In recent reports, many LBMPC
algorithms have emerged [22–24].

The LBMPC algorithm aims to mine historical and/or online operating data, using
machine learning algorithms to improve the accuracy of the predictive model or optimize
the controller design, thereby improving the control quality of the closed-loop system. The
LBMPC algorithm considers using data collected online (such as input and output or state
measurements) to update the model and/or describe the uncertainty. Recently, the LBMPC
control strategy has been widely used in mobile robot control.

The combination of robust reachability guarantees of control theory with Bayesian
analysis based on empirical observations guarantees that the constraints of MPC are
satisfied. In [25], Zhang et al. propose an adaptive LBMPC scheme for track tracking of
disturbed ground vehicles subject to input constraints.

Due to the existence of model uncertainty, algorithms such as learning system models
are similar to adaptive MPC algorithms. The work mainly focuses on using some machine
learning algorithms (such as neural networks [25,26], reinforcement learning [27], etc.) to
learn MPC offline or online. The controller’s internal model or uncertainty description
and the MPC controller’s design are based on the learned model. To realize the real-time
response of the controller, the literature [24,28,29] uses a deep neural network to train the
sample database offline. However, such methods rely too much on prior knowledge [30].
The literature results [31] show that GPR requires less prior process knowledge, can di-
rectly provide a measure of the uncertainty of the residual model, and improve control
performance by learning periodic time-varying disturbances. As a supervised learning
method, GPR improves robustness to overfitting under small data conditions by applying
a “kernel trick” to implicitly compute in a high-dimensional space since there is no need to
check an uncountable set of possible functions when using the training data for regression.
In a recent report, the literature [32,33] utilizes the uncertainty variation in the GP learning
process to ensure the system’s stability.
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Lukas et al. [34] propose using GP as a prediction function to model the residuals and
test the proposed method in a racing path planning scenario. The results show that the
performance and security of the controller can be improved significantly.

Bonzanini et al. [35] proposed a GPs-based strategy to monitor model changes due to
model-plant mismatch.

1.2. Contributions

Although model uncertainty and unknown disturbances are considered in the existing
studies, few studies on the mobile robots have considered these factors simultaneously.
Ignoring these factors in robot control may reduce the stability of the system. Based on
the above analysis and considering the problem of degraded MPC closed-loop control
performance, we aim to train a residual model using GPR to learn the deviation of the main
model from the mobile robot dynamics to complement the prediction results further.

We use a GPR-MPC control strategy with a main model plus a residual model. Where
the main model is used to describe the main dynamic relationship between the input
and the state. The residual model is trained with GPR. The state and input-dependent
uncertainty model describes the relationship between the state of the controlled object and
the actual state using GPR to correct the estimation results. In the initial moment, the state
of the controlled object is used as the initial main model state. Then the main model’s and
residual model’s output are predicted based on the control inputs to be optimized. The
sum of the two is the estimate of the actual state. In the second prediction step, the main
model state is used as the base point to predict the main model’s output and the residual
model’s output corresponding to the inputs to be optimized, respectively. In this way, it is
iterated until the end of the prediction time domain. The method proposed in this paper
updates the mismatch model of the prediction error of the MPC controller for the control
action online. It improves the performance of the MPC controller.

2. Mobile Robot Kinematics Model

The kinematic model of a mobile robot is modeled by analyzing its motion law and
using the mechanism analysis method because its actuator spacing, geometric center and
other parameters are known or measurable, and the kinematic model is relatively simple.

The mobile robots mechanism is mounted on the chassis in an O-rectangular layout.
Assume that the mobile robot actuator is a rigid body. Firstly, the coordinate system xoyz
of the mobile robot itself is established, and the geometric center of the mobile robot is its
coordinate origin O. The motion of the mobile robot is decomposed into three separate
parts, which are as follows: the translation in the x-axis direction, the translation in the
y-axis direction and the rotation around the z-axis (vertical xoy plane outward). The body
is specified as the positive direction of the x-axis in the right direction, the positive direction
of the y-axis in the forward direction and the counterclockwise direction is the positive
direction of rotation around the z-axis. Schematic diagram of mobile robot mechanism is
shown in Figure 1.

The meaning of the parameters are listed below,

O denotes the geometric center of the mobile robot.
~v denotes the translational velocity of the mobile robot in its own coordinate system.
~vx denotes the component of the mobile robot in the x-axis direction in its own coordinate
system.
~vy denotes the component of the mobile robot in the direction of y-axis in its own coordinate
system.
~ω denotes the rotation speed of the mobile robot around its geometric center in its own
coordinate system.
a denotes the distance from the center of the mobile robot axis in the x-axis direction to the
geometric center of the mobile robot mechanism.
b denotes the distance from the axis center of the mobile robot in the y-axis direction to the
geometric center of the mobile robot mechanism.
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r denotes the radius of the mobile robot.
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Figure 1. Schematic diagram of mobile robot mechanism.

Specify ~v1, ~v2, ~v3, and ~v4 as the axial velocities of actuator 1, actuator 2, actuator
3 and actuator 4, respectively; ~ω1, ~ω2, ~ω3, and ~ω4 as the angular velocities of actuator
1, actuator 2, actuator 3 and actuator 4, respectively, and the counterclockwise rotation
direction is positive.

As the mobile robot moves in the direction of the x-axis.
~v1 = −~vx
~v2 = +~vx
~v3 = −~vx
~v4 = +~vx

(1)

As the mobile robot moves in the direction of the y-axis.
~v1 = ~vy
~v1 = ~vy
~v1 = ~vy
~v1 = ~vy

(2)

As the mobile robot rotates around its geometric center.
~v1 = +~ω(a + b)
~v2 = +~ω(a + b)
~v3 = +~ω(a + b)
~v4 = +~ω(a + b)

(3)

The general speed relationship for the motion of the driven mechanism in the plane
can be obtained by summing the three aforementioned motions as follows

~v1 = −~vx +~vy + ~ω(a + b)
~v2 = +~vx +~vy − ~ω(a + b)
~v3 = −~vx +~vy − ~ω(a + b)
~v4 = +~vx +~vy + ~ω(a + b).

(4)
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The collation leads to
~v1
~v2
~v3
~v4

 =


−1
1
−1
1

1
1
1
1

a + b
−(a + b)
−(a + b)

a + b


 ~vx

~vy
~ω

. (5)

Let

J(α) =


−1
1
−1
1

1
1
1
1

a + b
−(a + b)
−(a + b)

a + b

,

that is: 
~v1
~v2
~v3
~v4

 = J(α)

 ~vx
~vy
~ω

. (6)

The above Equation (6) is the inverse kinematic equation of the mobile robot. The
matrix J(α) represents the mapping relationship from

[
~vx,~vy, ~ω

]T to
[
~v1,~v2,~v3,~v4

]T .
According to Equation (6), it is known that the velocity of each actuator can be solved by
the velocity components of the whole mechanism in each direction.

The inverse kinematic equation of the omnidirectional mobile robot mechanism em-
bodies the velocity of the omnidirectional mobile robot as a function of the velocity of each
actuator. The kinematic properties of the drive mechanism can be represented by the Jacobi
matrix of the inverse kinematic equations. When the Jacobi matrix of inverse kinematics
is not full rank, the omnidirectional mobile robot will have singularities during motion,
i.e., the robot loses degrees of freedom during motion and does not have omnidirectional
motion capability. Therefore, the Jacobi matrix of the inverse kinematic equations is a full
rank matrix, which is necessary for the robot to have omnidirectional mobility.

The generalized inverse kinematic equation J(α)+ can be obtained by performing a
matrix transformation on J.

J(α)+ =
(

J(α)T J(α)
)−1

J(α)T =
1
4

 −1
1
1

a+b

1
1
− 1

a+b

−1
1
− 1

a+b

1
1
1

a+b

 (7)

Therefore, the kinematic equations of the mobile robot during horizontal travel are
as follows.

 ~vx
~vy
~ω

 =
1
4

 −1
1
1

a+b

1
1
− 1

a+b

−1
1
− 1

a+b

1
1
1

a+b




~v1
~v2
~v3
~v4

 (8)

Converting the axial velocity of an actuator to its angular velocity can be achieved
with the following equation.

 ~vx
~vy
~ω

 =
r
4

 −1
1
1

a+b

1
1
− 1

a+b

−1
1
− 1

a+b

1
1
1

a+b




ω1
ω2
ω3
ω4

 (9)
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3. Mobile Robot Dynamics Model

As with the kinematic model, the kinetic modeling is performed by analyzing its
kinematic laws using the mechanism analysis method because its specific parameters can
be measured or easily estimated, and the model is relatively simple.

The dynamics is modeled using the Lagrangian method. In order to simplify the
model and facilitate the analysis, the following assumptions were made.

Assumption 1. The potential energy of a mobile robot traveling on a horizontal surface remains
constant at 0.

Assumption 2. The inertia of the mobile robot is neglected.

Assumption 3. The robot’s own coordinate system is located on its center of gravity.

The kinetic energy of the system Ek

Ek =
1
2

m(v2
x + v2

y) +
1
2

IZω2 +
1
2

Iω ∑4
i=1 ω2

i (10)

According to the kinematic equation established by Equation (8), the following equa-
tion is obtained: 

v2
X =

( r
4 × (−ω1 + ω2 −ω3 + ω4)

)2

v2
Y =

( r
4 × (ω1 + ω2 + ω3 + ω4)

)2

ω2 =
(

r
4 ×

1
a+b × (ω1 −ω2 −ω3 + ω4)

)2
(11)

where m is the total mass of the mobile robot; IZ is the rotational inertia of the mobile robot
in the z-axis direction; Iω is the rotational inertia of the actuator; and ωi is the angular
velocity of the i-th (i = 1, 2, 3, 4) actuator.

From the second type of Lagrangian equation, we get

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= τ (12)

where q denotes the generalized coordinates, which in this paper are expressed as the
coordinates and the positional offset angle of the mobile robot in the world coordinate
system; q̇ denotes the generalized velocity, which is the differentiation of the generalized
coordinates; and L denotes the Lagrangian function, which is equal to the kinetic energy of
the system minus the potential energy of the system. The potential energy of the system is
0; so, the Lagrangian function of mobile robot system is its kinetic energy. τ denotes the
generalized force, which in this thesis represents the inertial driving moment of the actuator.

Considering the effect of friction in the internal structure of the mobile robot. Force
analysis for each actuator can be obtained:

T = τ + Tg + Tf (13)

where T denotes the total driving moment to which the actuator is subjected. Tg denotes
the frictional moment of actuator. Tf denotes the frictional moment applied to the axle
center when the actuator is rotating.

The friction moment Tg is also the load moment of the robot, which is related to the
mass m of the robot and the coefficient of friction µ of actuator, and the weight of the robot
is divided equally among the four actuators. The following equation is shown.

Tg = µ
mg
4

r (14)
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The friction torque Tf is related to the speed ωi of the actuator and the axial viscous
friction coefficient f of the actuator, as shown in the following equation.

Tf = f ωi (15)

Since the ratio between the actuators and the motor in the mobile robot system is 1, the
driving torque and the electromagnetic torque of the machine are equal and can be obtained
as follows.

T = Tg (16)

According to the electromagnetic torque equation of the brushless DC motor, Te =
p·2eaia

ω =
p · KTi, and joint Equations (13) and (16), we can get

p · KTi = τ + µ
mg
4

r + f ω. (17)

Considering the mobile robot system from a single actuator, the association of
Equations (11), (12) and (17) yields

pKT


i1
i2
i3
i4

 = M


ω1
ω2
ω3
ω4

+ f


ω1
ω2
ω3
ω4

+ µ
mg
4

r


1
1
1
1

. (18)

where

M =


C
−B
D
B

−B
C
B
D

D
B
C
−B

B
D
−B
C

, (19)


A = mr2

8

B = IZr2

16(a+b)2

C = A + B + Iω

D = A− B

(20)

The collation of Equation (18) leads to a drive dynamics model for a mobile robot
containing a DC brushless motor model.

i1
i2
i3
i4

 =
M

pKT


ω1
ω2
ω3
ω4

+
f

pKT


ω1
ω2
ω3
ω4

+ µ
mg

4pKT
r


1
1
1
1

 (21)

where
[

i1, i2, i3, i4
]

denotes the input matrix of the control current of the system.

4. Gaussian Process Based Model Predictive Control

According to the kinematic model of the mobile robot traveling on the plane, it is
known that the mobile robot can achieve the omnidirectional motion of any attitude in
three degrees of freedom in the plane. The controller designed in this section expects that
the mobile robot can move according to the desired trajectory with low error state as much
as possible under the control and regulation of the controller, and reach the desired location
to improve the stability and reliability of the robot at work. In this section, the kinematic
model of the mobile robots, the driving method, and the GPR-based model predictive
control algorithm are used to design the controller to study the relationship between the
speed and position of the mobile robots.
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4.1. Model Predictive Control

The form of the optimization problem to be solved by the GPR-MPC algorithm is given
in this section. As shown in Figure 2, the Mpc control strategy block diagram is mainly
composed of an optimizer and a GPR-based master and residual model. We consider a
general nonlinear dynamical system that can be modeled as

xk+1 = f (xk, uk) (22)

where x ∈ Rnx denotes the state vector and u ∈ Rnu denotes the input vector. It is assumed
that both the state and the input vary in a bounded range and that the controlled system has
no measurement noise in order to avoid the interference of measurement noise affecting the
effectiveness of GPR model modeling. In the above equation, f (·) represents the modelable
relation, which is the modelable part of the controlled system and is assumed to be linear.

Next, some necessary assumptions utilized in the following sections are given below.
These assumptions ensure the existence and uniqueness of the solution of the MPC initial
value problem.

Assumption 4. The nonlinear System (27) is controllable and observable. f : X × U → X is a
continuous Lipschitz function.

Assumption 5. For the initial conditions, the System (27) has a unique solution, that is, there
exists an optimal control policye π∗.

The use of state feedback can improve the closed-loop dynamics of the system, espe-
cially when the controlled object itself does not have stability. Here, closed-loop feedback
is added to the main model to form a control law:

uk = −Kx f
k . (23)

To differentiate the representation, the main state of the model is denoted as x f and
the state of the residual model is represented as xg. The feedback gain K can be designed
according to the system requirements.

To differentiate the representation, x̂k is used to denote the estimation of the actual
state vector, and the prediction model is the sum of the main model and the residual model.

x̂k = x f
k + xg

k (24)

At the initial moment, the state xk of the controlled object is used as the initial main
model state, and then the output x f

k+1 of the main model and the output xg
k+1 of the residual

model are predicted based on the control input uk to be optimized, and the sum of the two
is an estimate of the actual state x̂k+1.

In the actual system, due to some physical constraints of the equipment itself or the
need to meet some security constraints in the operation process, it is usually required
that the input and output of the system and some intermediate variables meet specific
constraints. The system state and input are constrained by

x(k) ∈ X = {x(k)|−xmin ≤ x(k) ≤ xmax } ⊆ Rn,
u(k) ∈ U = {u(k)|−umin ≤ u(k) ≤ umax } ⊆ Rm,

(25)

where each element of xmin,xmax,umin and umax is positive real number.
The performance index function should ensure that the mobile robot can track the

reference trajectory quickly and smoothly. After consulting the references and considering
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the use of many performance index functions in the trajectory tracking of the mobile robot,
the following performance index functions will be used:

min
Π

J(x, Π) = ‖x(N)‖2
F +

N−1
∑

k=0
‖x(k|k )‖2

Q + ‖u(k|k )‖2
R

s.t.

x(k + 1|k ) = f (x(k), u(k))
u(k) = π(x(k))
x(k) ∈ X
u(k) ∈ U

(26)

where Q > 0,R > 0 and F > 0 are symmetric weighting matrices; x(k + i|k ) refers to the
predicted value of the measured state vector at time k + i based on the measured value at
time k, and x(k|k ) represents the measured value of the measured state vector at time k
.u(k + i|k ) represents the control input at time k + i calculated by the optimization problem
at time k, and u(k|k ) represents the control input at time k. The decision variables are
defined by a control policy Π = {π0, . . . , πN} that is a sequence of control laws πi(x) over
the prediction horizon N. The objective function is composed of a scalar stage cost J.

Optimizer J x,u; Plant

f(x,u)+g(x,u; )

Cost 

function
Constraints

Future

Errors

System

Response

Future Control 

Moves

Past Outputs/Inputs

Preduction

Reference 

Trajectory

+ -

Figure 2. MPC Block Diagram.

4.2. GPR Model Mismatch Online Modelling

The previous section briefly introduced the MPC algorithm. The main model in the
MPC controller cannot accurately describe the process dynamics due to the impossibility
of accurate modelling and possible changes in the system dynamics over time (such as
changes in characteristics due to equipment ageing). This will lead to a decrease in control
performance. This section will consider how to compensate for the model mismatch in
the rolling optimization process of MPC, assuming that the prediction error between the
actual output and the predicted output of the system comes from the influence of model
mismatch and measurement noise.

In this section we consider a state-space equation with a GPR residual model.

xk+1 = f (xk, uk) + g(xk, uk, ωk; θ) (27)

where g(·) represents the unmodeled or mismatched part of the controlled system, which
can be linear or nonlinear. It is also assumed that the unmodeled part is bounded. The
residual model building process is a process of model identification based on historical
data, i.e., fitting the input and output data using a given model form. The ω is an external
disturbance, which is assumed to be bounded and θ is a vector of unknown parameters
that defines the latent dynamics.
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From System (27), and linearize f (·), we can get the following formula:

g(·) = x(k + 1)− f (x(k), u(k))
≈ x(k + 1)− (Ax(k) + BKx f (k)).

(28)

Using GPR to learn an unknown model that contains w in the system from the input
and output data. We collected N state and input measurement values for GPR to quantify
the uncertainty to obtain g(·).

Letting zj = (xj, uj), j = 1, . . . N, the training data set can be defined as

D =
{
(g(·), zj)|j = 1, . . . , N

}
. (29)

We assume that each dimension of w in g(·) is learned separately to reduce the
difficulty of online calculation of MPC. Taking the training data D as the condition, we
obtain the Gaussian posterior distribution of the mean and covariance at any given test
point z = (x, u) with mean µ∗ and covariance ∑∗.

µ∗ = K(X∗, X)(K(X, X) + σ2 I)−1y
∑∗ = K(X∗, X∗) + σ2 I−

K(X∗, X)(K(X, X) + σ2 I)−1K(X∗, X)
(30)

Remark 1. We can understand the mean function and covariance function as, for any z, zl ∈ Z,
there is

m(z) = E[Z]
k(z, zl) = E[(z−m(z))− (zl −m(zl))]

(31)

KGP =

 k(z1, z1) · · · k(z1, zm)
...

. . .
...

k(zm, z1) · · · k(zm, zm)


where m can be any real function, KGP is a multivariate Gaussian covariance matrix; so, KGP must
be positive semi-definite.

This condition is actually equivalent to the condition of the legal kernel function
(Mercer condition), so any legal kernel function can be used as a covariance function.

To simplify the representation, we assume that each dimension of g is learned sepa-
rately. At each moment, the GPR model evaluates the linearization error. The resulting
closed-loop MPC problem is formulated as:

min
Π

J(x, Π) = ‖x(N)‖2
F +

N−1
∑

k=0
‖x(k|k )‖2

Q + ‖u(k|k )‖2
R

s.t.

x(k + 1|k ) = Ax(k) + Bu(k) + g(x(k), u(k), ω(k); θ)
u(k) = π(x(k))
x(k) ∈ X
u(k) ∈ U

(32)

where the decision variables are defined by a control policy Π = {π0, . . . , πN} that is a
sequence of control laws πi(x) over the prediction horizon N. The objective function is
composed of a scalar stage cost J.

5. Controller Design

The mobile robot consists of four parts: ESC, DC brushless motor, drive gear and
actuator. In this paper, the GPR-MPC algorithm is used to control the motor with speed
feedback by using the difference between the desired speed of the motor and the feedback
speed as the control input value of the ESC. The motor is made to have smooth torque,



J. Mar. Sci. Eng. 2023, 11, 893 11 of 16

low noise, high efficiency, and high speed dynamic response. According to the kinematic
equations in Section 2, it is known that when the mobile robot is driven by the actuator,
the rotational speed of the four actuators cooperating with each other can be translated
into the speed of the whole platform in three directions in the plane, i.e., the speed of the
mobile robots itself is related to the rotational speed of each actuator and there exists a
definite mapping relationship. Therefore, the control of the speed of the mobile robots can
be translated into the control of the speed of each actuator.

Assume that the desired velocity of the mobile robots in its own coordinate system
is vr =

[
vxr, vyr, ωr

]T and the actual velocity is va =
[
vxa, vya, ωa

]T , the error between the

desired velocity and the actual velocity can be derived as er =
[
ex, ey, eω

]T .
ex = vxr − vxa
ey = vyr − vya
ew = ωr −ωa

(33)

Assume that the control vector is u =
[
ux, uy, uω

]T and the state vector is x =[
ex, ey, eω

]T . The control output for speed is translated into a control output for each
actuator through the kinematic equations. The mapping from the speed control input to
the desired speed of each actuator motor is shown in the following equation.

um1
um2
um3
um4

 =
J(α)

r

 ux
uy
uω

 (34)

where umi(i = 1, 2, 3, 4) denotes the control input of the i− th actuator wheel.
Based on the MPC prediction model in the approximate, the control action of solving

for a certain performance index under constraint conditions can be expressed as

min J(x, u∗mi; g) (35)

where u∗mi(i = 1, 2, 3, 4) are the optimal control input, and g ∼ N (0, KGP) is the parameter
of the performance function based on GPR training.

The motivation behind GPR-MPC is to use the target J of MPC to reason about
achieving the desired control. Intuitively, this means that the performance of the control
system can be significantly enhanced by using GPR to model and approximate the system’s
unknown dynamics. According to the recursive natural definition of some f̂ , according
to Assumption 3. In order to minimize the MPC objective Ĵ(x(k), u(k); θ(k)) with these
simulations. If we start with x(k) by applying the control distribution θ, it is intended to
predict the performance of the system. In other words, we hope to find the θ(k) to solve
the problem. Once θ(k) has been established, u(k) is drawn from k, the first control u(k) is
extracted, and it is applied to the real dynamic system f in System (27) to move to the next
state x(k + 1). Since θ(k) is determined by x(k), MPC is an effective state feedback.

6. Simulation

This section analyzes the motion state of the mobile robots trajectory tracking. In order
to verify the effectiveness of the algorithm, numerical simulations of the trajectory tracking
of the mobile robots were performed in the Matlab simulation environment. The simulation
parameters are given as follows. The motion parameters of the mobile robot simulation are
set as initial position [0,−1], initial velocity 0, and initial angle 0. The tracking trajectory
is − 1

2 x sin(x/20), and the target velocity is 2.7 m/s; the maximum steering is 1
3 π. The

parameters about the mobile robots and the controller parameters are shown in the Table 1.
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Table 1. Mobile robots simulation parameters.

Parameters Numerical Value

r 50 mm
a 150 mm
b 125 mm

Prediction horizon 5
Control horizon 3

Sample time 0.1 s

Due to the different dimensions of the input features, the difference between the
values is too large. In order to improve the model training accuracy, the input features
are normalized with zero mean. The processed feature data have a mean value of 0 and a
variance of 1, and the training set input samples are:

X =

[
x1 − x̄x

σx
, · · · ,

xN − x̄x

σx

]
(36)

where x̄x is the training set sample mean vector, σx is the training set sample standard
deviation vector. The test set input samples also need to use x̄x and σx for normalization.
The output features are used for model predictive control without normalization.

Figure 3 shows the track tracking status of the robot in the xoy plane under different
control strategies. It reflects the relationship between the actual position of the wheels and
the reasonable position during the track tracking process. From the trajectory tracking
curves, it can be seen that the trajectory tracking performance of GPR-MPC algorithm is
better in the XY plane and θ direction, and it can reach the steady state faster, and the
difference between the actual position trajectory of the robot and the desired trajectory is
smaller. Compared with MPC, the GPR-MPC algorithm has less error.

0 20 40 60 80 100 120 140 160 180 200

-80

-60

-40

-20

0

20

40

60

0 2 4 6

-1

-0.5

0

Figure 3. Mobile robot track tracking position status.
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Figure 4 shows the velocity real-time position tracking tracking error under GPR-MPC
and MPC control strategies. Since GPR-MPC keeps the cost function in the controller at
a minimum value during each control cycle, the optimal control signal is computed to
ensure the minimization of the error state. the GPR-MPC controller can force the mobile
robot to complete the path tracking task with linearly increasing directional angles. The
steady-state tracking error of the velocity is kept within 0.07 under GPR-MPC control,
which is obviously well controlled. The results show that GPR-MPC has good performance
with fast convergence and sufficiently small steady-state error.

0 5 10 15 20 25 30

-0.5

0

0.5

1

1.5

2

2.5

Figure 4. Mobile robot trajectory tracking error.

The curves of the velocity component response on xy during the trajectory tracking
of the mobile robot with the angular velocity response of the four actuators under the
GPR-MPC and MPC control strategies are shown in Figures 5 and 6. As can be seen from
the figure, under the GPR-MPC control strategy, the maximum deviation of the GPR-MPC
algorithm in the start-up stage is very small, and the time required for the mobile robot to
reach the steady state is much smaller than that of the MPC. Under the GPR-MPC control
strategy, the velocity along the Xand Yaxes rises rapidly, reaching a predetermined value
of about two seconds. By comparison, the MPC algorithm costs about five seconds. At the
same time, under the GPR-MPC control strategy, the speed of the mobile robot reaches the
predetermined value stably with small fluctuation and error fluctuation, and the whole
control process is relatively stable.
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Figure 5. Mobile robot trajectory tracking speed.
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Figure 6. Mobile robot trajectory speed response.

7. Conclusions

In this paper, we establish a dynamic model of the movement of a mobile robot, and
then use the model predictive controller to control the system. A GPR-MPC algorithm is
proposed to solve the deviation between the model and the actual mobile robot dynamics.
The deviation between model prediction and actual dynamics is learned by using GPR
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in the controller. The controller can perform accurate trajectory tracking with random
disturbances and modeling errors. Therefore, it can adapt to unexpected changes such as
movement obstacles and inaccuracies in the model. The proposed GPR-MPC mobile robot
trajectory tracking control algorithm is more stable and can achieve the desired tracking
faster. The speed and RPM response converges quickly to zero and stabilizes in about
two seconds. For future research, we suggest the following: (1) Test the controller on real
robots; (2) Add more complex targets, such as moving targets; (3) It should also be noted
that, due to the introduction of Gaussian process learning, the current learning-based MPC
becomes more difficult in calculation, the real-time calculation speed needs to be improved,
and some problems need to be solved to implement the above algorithm on the actual robot.

Author Contributions: Conceptualization, methodology, writing—original draft preparation, in-
vestigation, C.W.; Validation, formal analysis, writing—review and editing, X.T.; Writing—review
and editing, supervision, X.X. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, D.; Ye, J. Adaptive robust control of wheeled mobile robot with uncertainties. In Proceedings of the 2014 IEEE 13th

International Workshop on Advanced Motion Control (AMC), Yokohama, Japan, 14–16 March 2014; pp. 518–523. [CrossRef]
2. Alakshendra, V.; Chiddarwar, S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn.

2017, 87, 2147–2169. [CrossRef]
3. Zijie, N.; Qiang, L.; Yongjie, C.; Yongjie, C. Fuzzy Control Strategy for Course Correction of Omnidirectional Mobile Robot. Int. J.

Control Autom. Syst. 2019, 17, 2354–2364. [CrossRef]
4. Hendzel, Z.; Rykala, L. Modelling of Dynamics of a Wheeled Mobile Robot with Mecanum Wheels with the use of Lagrange

Equations of the Second Kind. Int. J. Appl. Mech. Eng. 2017, 22, 81–99. [CrossRef]
5. Qian, J.; Zi, B.; Wang, D.; Ma, Y.; Zhang, D. The Design and Development of an Omni-Directional Mobile Robot Oriented to an

Intelligent Manufacturing System. Sensors 2017, 17, 2073. [CrossRef]
6. Baek, J.; Jin, M.; Han, S. A New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators. IEEE Trans. Ind.

Electron. 2016, 63, 3628–3637. [CrossRef]
7. Shen, K.; Wang, M.; Fu, M.; Yang, Y.; Yin, Z. Observability Analysis and Adaptive Information Fusion for Integrated Navigation

of Unmanned Ground Vehicles. IEEE Trans. Ind. Electron. 2020, 67, 7659–7668. [CrossRef]
8. Chen, J.; Shuai, Z.; Zhang, H.; Zhao, W. Path Following Control of Autonomous Four-Wheel-Independent-Drive Electric Vehicles

via Second-Order Sliding Mode and Nonlinear Disturbance Observer Techniques. IEEE Trans. Ind. Electron. 2021, 68, 2460–2469.
[CrossRef]

9. Yuan, Z.; Tian, Y.; Yin, Y.; Wang, S.; Liu, J.; Wu, L. Trajectory tracking control of a four mecanum wheeled mobile platform: An
extended state observer-based sliding mode approach. IET Control. Theory Appl. 2020, 14, 415–426. [CrossRef]

10. Nguyen, A.T.; Rath, J.; Guerra, T.M.; Palhares, R.; Zhang, H. Robust Set-Invariance Based Fuzzy Output Tracking Control for
Vehicle Autonomous Driving Under Uncertain Lateral Forces and Steering Constraints. IEEE Trans. Intell. Transp. Syst. 2021,
22, 5849–5860. [CrossRef]

11. Yakub, F.; Mori, Y. Comparative study of autonomous path-following vehicle control via model predictive control and linear
quadratic control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 1695–1714. [CrossRef]

12. Luo, Q.; Nguyen, A.T.; Fleming, J.; Zhang, H. Unknown Input Observer Based Approach for Distributed Tube-Based Model
Predictive Control of Heterogeneous Vehicle Platoons. IEEE Trans. Veh. Technol. 2021, 70, 2930–2944. [CrossRef]

13. Cao, M.; Hu, C.; Wang, R.; Wang, J.; Chen, N. Compensatory model predictive control for post-impact trajectory tracking via
active front steering and differential torque vectoring. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 903–919. [CrossRef]

14. Amidi, O. Integrated Mobile Robot Control. Proc. SpieInt. Soc. Opt. Eng. 1990, 91, 504–523. [CrossRef]
15. Rasekhipour, Y.; Khajepour, A.; Chen, S.K.; Litkouhi, B. A Potential Field-Based Model Predictive Path-Planning Controller for

Autonomous Road Vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1255–1267. [CrossRef]
16. Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path Planning and Tracking for Vehicle Collision Avoidance Based on Model

Predictive Control With Multiconstraints. IEEE Trans. Veh. Technol. 2017, 66, 952–964. [CrossRef]
17. Kim, J.C.; Pae, D.S.; Lim, M.T. Obstacle Avoidance Path Planning Algorithm Based on Model Predictive Control. In Proceedings

of the 2018 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Republic of Korea, 17–20
October 2018; pp. 141–143.

http://doi.org/10.1109/AMC.2014.6823335
http://dx.doi.org/10.1007/s11071-016-3179-1
http://dx.doi.org/10.1007/s12555-018-0633-5
http://dx.doi.org/10.1515/ijame-2017-0005
http://dx.doi.org/10.3390/s17092073
http://dx.doi.org/10.1109/TIE.2016.2522386
http://dx.doi.org/10.1109/TIE.2019.2946564
http://dx.doi.org/10.1109/TIE.2020.2973879
http://dx.doi.org/10.1049/iet-cta.2018.6127
http://dx.doi.org/10.1109/TITS.2020.3021292
http://dx.doi.org/10.1177/0954407014566031
http://dx.doi.org/10.1109/TVT.2021.3064680
http://dx.doi.org/10.1177/0954407020979087
http://dx.doi.org/10.1117/12.25494
http://dx.doi.org/10.1109/TITS.2016.2604240
http://dx.doi.org/10.1109/TVT.2016.2555853


J. Mar. Sci. Eng. 2023, 11, 893 16 of 16

18. Guo, Hongyan and Cao, Dongpu and Chen, Hong and Sun, Zhenping and Hu, Yunfeng Model predictive path following control
for autonomous cars considering a measurable disturbance: implementation, testing, and verification. Mech. Syst. Signal Process.
2019, 118, 41–60. [CrossRef]

19. Xu, W.; Chen, R.T.Q.; Li, X.; Duvenaud, D. Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations. In
Proceedings of the Proceedings of the 25th International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 28–30
March 2022; Volume 151, pp. 721–738. [CrossRef]

20. Shen, D. Iterative learning control with incomplete information: a survey. IEEE/CAA J. Autom. Sin. 2018, 5, 885–901. [CrossRef]
21. Aswani, A.; Gonzalez, H.; Sastry, S.S.; Tomlin, C. Provably Safe and Robust Learning-Based Model Predictive Control. Automatica

2013, 49, 1216–1226. [CrossRef]
22. Soloperto, R.; Köhler, J.; Allgöwer, F. Augmenting MPC Schemes With Active Learning: Intuitive Tuning and Guaranteed

Performance. IEEE Control Syst. Lett. 2020, 4, 713–718. [CrossRef]
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