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Abstract: This paper proposed an MSC-Transformer model based on the Transformer’s neural
network, which was applied to seabed sediment classification. The data came from about 2900 km2

of seabed area on the northern slope of the South China Sea. Using the submarine backscattering
intensity and depth data obtained by the sub-bottom profiler, combined with latitude and longitude
information, a seabed dataset of the slope area of the South China Sea was constructed. Moreover,
using the MSC-Transformer, the accurate identification and judgment of sediment types such as
calcareous bio-silt, calcareous bio-clay silt, silty sand, medium sand and gravel sand were realized.
Compared with the conventional deep neural network CNN, RNN, etc., the model shows advantages
when applied to the sediment dataset of the shallow sea slope region of the South China Sea. This
confirms the feasibility and validity of the model and provides a reliable and accurate tool for seabed
sediment classification in the field of marine science. The completeness and accuracy of the dataset
and the good performance of the model provide a solid foundation for the scientificalness and
practicability of the study.

Keywords: seabed sediment classification; sub-bottom profiler; deep learning; machine learning;
transformer model

1. Introduction

Seabed sediment type is a key marine environmental parameter and an integral
component in ocean exploration [1]. It is of great significance to ascertain the complex types
of seabed sediment, especially in the fields of marine technology [2], marine engineering
construction, and national defense and military [3]. Seabed sediments usually include
gravel, sand, silt, fine sand, mud, reef, etc. [4,5]. The area studied in this paper is the
northern slope of the South China Sea, where the seabed terrain fluctuates greatly. Areas
with water depths less than 1000 m are mainly affected by the ancient sand belts on the
outer edge of the continental shelf, including Silty Sand, Medium Sand, and Gravel Sand,
and areas with a water depth greater than 1000 m exhibit semi-deep-sea characteristics,
with Calcareous Bio-silt and Calcareous Bio-clay silt being the main ones. Early methods for
obtaining types of seabed sediment were in-situation and laboratory measurements [6,7].
Although these methods can directly obtain the types of sediments, the collection ranges
are limited due to the influence of sampling methods, so the amount of effective data
obtained is small, and the type of seabed sediments in the entire study area cannot be
fully displayed [8]. Due to the low efficiency and high cost of in-situation and laboratory
measurements, indirect methods are commonly used in actual ocean measurements [9].

The acoustic-based indirect methods have the advantages of high coverage, dense
sampling, high efficiency, and low cost, making them widely used in seabed sediment
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classification [10–13]. Remote acoustic measurements using acoustic detection equipment
such as multi-beam systems and side-scan sonar are commonly used in indirect meth-
ods [14–16]. For side-scan sonar, Reut et al. [17] proposed a scheme to extract power spectra
from side-scan sonar data and feature values from power spectra for seabed sediment
classification in 1985. Duncan et al. [12] established a parameter model for tracking the
power spectrum of side-scan sonar and used feature extraction methods to achieve the
classification of seabed sediments. Daniel Buscombe et al. [18] used spectral analysis based
on short-echo sequence wavelet transform to extract texture features of different attributes
from echo maps obtained from side-scan sonar, and used statistical methods to estab-
lish the relationship between texture longitudinal scale and sediment types. Afterwards,
L. Atallah et al. [19] used data from side-scan sonar to identify the seabed sediments using
the most significant wavelet features determined based on backpropagation elimination
algorithms. For multi-beam systems, Neil C. Mitchell et al. [10] first combined bathymetry
with multi-beam sonar data and used statistical methods to classify seabed sediments.
Huseby and Snellen et al. [20] used the backscatter data collected by multi-beam echo
detectors to adopt the Bayesian statistical method and K-Means clustering. Then Kazi
Ishtiak Ahmed et al. [21] studied principal component analysis and k-means clustering,
and proposed an alternative method that utilizes computational and visual data mining
to reduce the complexity of the original method. And Tang [22], based on a multi-beam
system and sampling data of seabed sediments, established a relationship model between
the backscatter intensity of the seabed and the characteristics of sediment types.

From the principles of side-scan sonar and multi-beam system, due to the high fre-
quency and low sound power of the emitted sound waves, the multi-beam system and
side-scan can penetrate the sediment layer at a shallow depth, ranging from a few centime-
ters to more than ten centimeters, making it difficult to obtain sediment information from
deeper layers and obtain more feature information to describe the type of sediment [23,24].
Therefore, the authenticity of the obtained data may be problematic.

The sub-bottom profiler is an instrument that analyzes the reflection time, amplitude,
frequency, and other information of the received reflected waves based on the differences in
the intensity of the reflected sound waves on the seabed, in order to obtain the characteristics
and properties of the effective penetration of sound waves into the formation [24–26]. By
amplifying the filtered echo signal, a clear cross-section structure of the formation can be
depicted using lines composed of different grayscale points. The frequency of sound waves
emitted by sub-bottom profilers is usually between a few hundred to tens of thousands
of hertz, and they can detect geological structures within a depth of 50 to 200 m [25]. The
relationship between the frequency of emitted sound waves and the detection depth can
be freely adjusted according to the sediment conditions of different sea areas to obtain the
required resolution and accuracy of water depth and reflection intensity [27], such as the
northern slope of the South China Sea in this study. Due to the fact that its echo contains
more information about shallow sediment, the confidence level set for inferring the type
of sediment is higher [28]. LeBlanc et al. [29] proposed a model. By using this model, it
can be observed that the pulse signal obtained by the sub-bottom profiler achieves the
purpose of bottom material classification through the difference in phase dispersion of
different bottom materials. Stevenson et al. [30] extracted the quality factor Q from the
data of the sub-bottom profiler, and compared it with the laboratory results through the
acoustic attenuation model Determine the sediment type of the seabed sedimentary layer.
Evangelos Alevizos et al. [31] used bathymetric and sub-bottom profiler data and Bayesian
methods to classify sediments based on the variability of backscatter at a single incident
angle. They also used the maximum likelihood method to classify and principal component
analysis multi-angle layers and this method can distinguish acoustic similar categories
in different bathymetric environments. Mohamed Saleh et al. [32] improved the model
originally used for high-frequency signal classification, taking into account the interaction
between low-frequency echo sub-layers, and their seabed sediment classification results
were basically consistent with the visual inspection results of their samples. Zheng et al. [3]
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used seafloor profile data from a survey line on the northern slope of the South China
Sea and used the Biot model for inversion, quantitatively estimating the particle size and
sediment types of the underlying materials in the relevant area.

However, there are still some limitations in the bottom material classification methods
of sub-bottom profiler, side-scan sonar, and multi-beam system in terms of data processing.
Traditional sediment classification methods include statistical methods and empirical
models, but they usually have drawbacks such as low efficiency, large limitations, poor
transferability, and high data dependence [24,33]. Recently, deep learning methods based
on artificial neural networks have been widely applied in fields such as object detection,
image processing, and data classification [34]. Due to their strong transfer ability and
capability to efficiently process large amounts of data, applying deep learning methods to
seabed sediment classification has gradually become a research trend [6,35].

Deep learning is a learning method based on neural networks that extracts and learns
the features of input data, undergoes multi-layer transformations, and ultimately outputs
the results [36]. The core of deep learning is tensor and auto grid, which is achieved
through the forward propagation process for auto grid of tensor, and the back propagation
algorithm used to extract data features and update node weights. The commonly used
deep neural networks are convolutional neural networks (CNN) and recurrent neural
networks (RNN). Yang et al. [37] used a CNN method to realize the classification of seabed
sediment, which added bathymetric data to the multi-beam backscatter intensity data for
auxiliary classification, improving the classification effect. Tim Berthold et al. [38] proposed
an automatic classification method for seabed sediments based on CNN side-scan sonar
images. Luo et al. [39] validated that CNN classifiers can be applied to small seabed acoustic
image datasets, and shallow CNN outperforms deep CNN in classification accuracy and
speed. Qin et al. [40] optimized the small dataset generated by side-scan sonar using deeper
CNN to improve classification accuracy in response to the problem of limited datasets.

However, CNN has limited capacity and lacks the ability to handle large amounts
of data, and the number of operations required for CNN to calculate the association
between two positions increases with distance, which greatly increases the computational
complexity [41]. In addition, RNNs have not yet been widely used in the field of seabed
sediment classification. Moreover, RNNs cannot perform parallel computation and are
prone to gradient vanishing problems, making it unable to handle encoded sequence
information [42].

In 2017, Transformer was born, and this S2S model based on attention mechanism
caused a sensation in the field of natural language processing (NLP) once it came out [43].
In 2020, DETR [44] demonstrated that Transformer can perform image classification tasks
well without CNN. Due to Transformer’s outstanding performance in the fields of visual
images and semantic analysis, more possibilities are gradually being explored. In December
2020, Amazon AWS [45] proposed TabTransformer, which first combined the character-
istics of Transformers such as parallel computing and multi-head attention mechanism,
confirming the feasibility of Transformers in processing table text and data. This paper
proposes the MSC-Transformer (Transformer of Marine Sediment Classification) based on
the TabTransformer method for processing tabular data about reflection intensity data of
the northern slope of the South China Sea obtained by the sub-bottom profiler. Compared
to other deep learning models, this model has better parallelization ability and larger
capacity and performs better when processing larger-scale data [46]. MSC-Transformer
can set static hyperparameters, and obtain high-precision classification models without
repeated training, and a single NVIDIA GeForce RTX 3090/PCle/SSE2 GPU can run. It can
propose good solutions for the processing of different batches of marine sediment datasets
and their different types of division.

In this study, we propose a new acoustic seabed sediment classification method based
on MSC-Transformer for sub-bottom profiler reflection intensity, and validate the feasibility
and accuracy of this method using reflection intensity data from the northern slope of
the South China Sea. The structure of the remaining part of this article is arranged as
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follows. Section 2 introduces the construction of the dataset, and Section 3 will elaborate
on the proposed model. Section 4 provides an experimental description and result analysis.
Finally, a summary and discussion were provided in Section 5.

2. Research Background

The area of this study is part of the northern slope of the South China Sea, including a
seabed ranging from 19◦85′ N to 20◦20′ N, and 114◦ 80′ E to 115◦60′ E, which the total area
is approximately 2900 km2. The location of the study area is shown in following Figure 1.

Figure 1. The location of study area. The red frame represents the study area.

The northern slope of the South China Sea is located at the junction of the Eurasian
Plate and the Pacific Plate. Affected by the Tethys-Pacific structural domain, the seismic
sections are complex, and many lower lifts and depressions are distributed in the northeast-
southwest direction. The area of this study is between Panyu Low Uplift and Zhu II
Depression, whose structural geological framework is shown in Figure 2.

Figure 2. Structural geological framework of study area.

Because of the complex seismic sections and the long-term internal and external
pressure, the topography and geomorphology of the seabed are characterized by great
depth, diversity and complexity. The eastern and western ends of the northern slope of the
South China Sea are respectively the southeastern end of Taiwan Island and the eastern
mouth of the Xisha Trough, spreading from north to east, with the eastern side wider than
the western side. And there are numerous submarine geomorphic units, including the
continental shelf, the South China Sea Trough, and the Nansha Steps.
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3. Construction of Seabed Sediment Classification Datasets Based on Sub-Bottom Profiler
3.1. A Method of Constructing Dataset Based on Overlay

To construct a dataset for the northern slope of the South China Sea, this paper adopts
the Overlay method. There are N parallel layers with the same projection coordinate system
in the space Cartesian coordinate system, and these layers are represented by P1, P2 . . . Pn−1.
The area identified on Pn is xPn−1min ≤ xPn−1 ≤ xPn−1max, yPn−1min ≤ yPn−1 ≤ yPn−1max. Each
layer carries a type of feature, and the point where the feature is located is represented by
(xPm1, yPm1), (xPm2, yPm2) . . . (xPmi, yPmi), (i ∈ 1, 2, 3 . . .). Each element contains an attribute,
represented by V1, V2 . . . Vn. The processing diagram of the Overlay method is shown
in Figure 3.

Figure 3. Processing of overlay.

When xPi = xPn, yPi
= yPn(i ∈ 1, 2, 3 . . .), all layers are stacked along the direction of

z-axis and projected onto a new layer Pn, where values of attribute from different layers are
recorded in the form of fields.

3.2. Introduction to Data on Northern Slope of the South China Sea

1. Acquisition of reflection intensity

In this study, a scientific research ship carrying a sub-bottom profiler was used to
obtain the reflection intensity of the northern slope of the South China Sea, with a total of
49,998 data points, forming 35 survey lines. Except for one survey line used to measure
the submarine valley, the rest of the survey lines are distributed continuously and parallel
to each other in a southwest-northeast direction, covering the entire study area. The
distribution of survey lines is shown in Figure 4.

The seabed reflection intensity of the study area was obtained by the sub-bottom
profiler. Along with the traces of survey lines, the shape of seabed and its times are
displayed, and two representative seismic sections are shown in Figure 5; Obtain the
positions of these seismic sections in all survey lines as shown in Figure 6.
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Figure 4. Schematic diagram of the study area and survey lines. White lines represent the survey lines.

Figure 5. (a) Representative seismic section I; (b) Representative seismic section II.

Figure 6. Position of representative lines in all survey lines. White lines represent survey lines, the
upper red line is corresponding to Figure 5a and the lower red line is corresponding to Figure 5b.

2. Acquisition of water depth

The sub-bottom profiler can obtain the depth of the detected sea area by calculating the
time difference between the transmission and reception of sound waves. The topographic
map of the study area is shown in Figure 7.



J. Mar. Sci. Eng. 2023, 11, 1074 7 of 19

Figure 7. Topographic map of the study area.

3. Acquisition of types of seabed sediment

The types of seabed sediment are the label in the dataset, and based on previous
research using in-situ measurements, the obtained types of seabed sediment in the study
area will be applied as true values in the supervised classification of MSC-Transformer. The
map of seabed sediment distribution in the study area is shown in Figure 8.

Figure 8. Map of seabed sediment distribution. TCa represents Calcareous Bio-silt, YT(Ca) represents
Calcareous Bio-clay silt, TS represents Silty Sand, MS represents Medium Sand, GS represents
Gravel Sand.

3.3. Construction of Dataset on Northern Slope of the South China Sea Based on Overlay

Next, the method described in Section 3.1 will be used to construct the South China
Sea North Slope data introduced in Section 3.2 to form the required dataset for the study.
In this study, WGS-84 is used as the plane coordinate system, Mercator projection is used
as the projection coordinate system, the 1985 China National Height Datum is used as the
elevation datum and the theoretical depth datum is used as the depth datum. The layers
in this study include survey lines, depth, and sediment types, respectively containing
elements such as reflection intensity, depth, and sediment type, with attribute values
corresponding to the elements. The operation diagram of the Overlay is shown in Figure 9.
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Figure 9. Operation of overlay. The red lines represent the survey lines.

After removing invalid values and normalization processing, this dataset involves a
total of 5 types of seabed sediment, and the label of calcareous bio-silt is “0”, calcareous
bio-clay silt is “1”, silty sand is “2”, medium sand is “3” and gravel sand is “4”. The
information of seabed sediment data is shown in Table 1, while the format of our dataset is
shown in Table 2.

Table 1. The information of seabed sediment data.

Types Abbreviation Quantity Gray-Values Labels

Calcareous Bio-silt TCa 3915 165 0
Calcareous Bio-clay silt YT(Ca) 7698 197 1

Silty Sand TS 13,055 242 2
Medium Sand MS 11,270 243 3
Gravel Sand GS 14,060 251 4

Table 2. Representative samples for each label of the dataset.

Longitude Latitude Depth Reflection Labels

115.0059097 20.16825028 165 0.456465 0
115.0033883 20.16775583 180 0.170332 1
114.9922325 20.16547861 251 0.107705 2
115.0038692 20.16785806 167 0.124436 3
114.9051722 20.1493725 251 0.118240 4

. . . . . . . . . . . . . . .

4. Sediment Classification Method Based on MSC-Transformer
4.1. Principle of MSC-Transformer

The architecture of MSC-Transformer consists of an Input Embedding Layer, a stack
of N Transformers connected to each other, and an optional fully connected layer. Each
Transformer layer consists of a multi-head self-attention layer, a feed-forward network,
and an optional residual connection network. These layers are interconnected and form
the architecture of the entire model. According to the characteristics of the datasets, set
the input_dim and the output_dim. Usually, the input feature dimension of the data is the
number of features in the datasets, and the output dimension is the number of types of
labels. The structure of MSC-Transformer is shown in Figure 10.
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Figure 10. (a)Structure of MSC-Transformer; (b)Training structure of MSC-Transformer.

1. Data Input

The input data is mapped from the input_dim to the hidden_dim through a fully
connected layer. In this model, the hidden_dim is set to 512. After that, the data enters the
encoding layer of the model through an optional dropout layer that prevents overfitting,
and dropout = 0.1 is set in the MSC-Transformer model.

2. Encoding layer

Each Encoder Module of the MSC-Transformer model consists of a multi-head atten-
tion layer and a feed-forward neural network. A total of 3 identical layers are stacked and
connected to each other. Except for the input of the first layer and the output of the last layer,
the input of each layer is the output of the previous layer, forming a chain structure con-
nected end to end. In this model, the number of encoding layers num_encoder_layers = 3.

In addition, since the seabed sediment data classification problem is a tabular classifi-
cation of supervised learning, the input data is the characteristics of various bottom types
(such as longitude, latitude, and depth), and the output is the Label information. Therefore,
since this classification is a purely encoding problem that does not require generation and
situation prediction of unknown data, there is no necessity of using a Decoder. This is also
confirmed in the model structure of TabTransformer.

3. Attention mechanism

The core of the MSC-Transformer model is the attention mechanism based on the
Transformer model, which is a technology that can provide better model performance.
Among them, the Dot-product Attention mechanism is one of the most commonly used
attention mechanisms, which can more effectively save computing space and improve
computing efficiency, thereby improving the training and reasoning speed of the model.
At the same time, the Dot-product attention mechanism can also help the model better
understand the input data and improve the accuracy and generalization ability of the
model. Therefore, this model MSC-Transformer uses the Dot-product attention mechanism.
The diagram of the Dot-product attention mechanism is shown in Figure 11.
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Figure 11. Mechanism of dot-production attention.

The attention function in Transformer can be described as mapping a pair of Key-
Values and Query to the output and specifying the Key (K), Value (V) and Query (Q) here.
The dimensions of (Q) are all dk. In order to avoid that when dk is large, the size of the
dot product will also become large, thereby pushing the Softmax function to the region
of extremely small gradients, so it is divided by the scaling factor

√
dk to counteract this

effect. The calculation formula for attention is as follows:

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V (1)

Among them, T means transpose, and Q, K, and V at this time are vectors after
encoding and calculation. In the MSC-Transformer model, the number of attention heads
num_heads = 4.

4. Multi-head Attention Mechanism

When the number of attention layers changes, the feature extraction ability of the data
will also change accordingly, which is especially evident in the calculation and projection
of weight information. In order to better mine the deep information in the classification
data of the seabed sediment, the MSC-Transformer model adopts a multi-head attention
mechanism. This mechanism divides the input data into multiple heads, each head calcu-
lates the attention separately, and each attention layer is distributed in parallel with each
other, and finally the calculation results are stitched together through the Concat operation
to achieve more refined features extract. The multi-head attention mechanism diagram is
shown in Figure 12.

Figure 12. Mechanism of scaled dot-product attention.
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The multi-head attention mechanism can decompose the input information and assign
different Weights, realizing the distinction and extraction of different types of data. At the
same time, through multiple attention layers distributed in parallel, the interaction and
fusion between different features can be fully considered, thus improving the efficiency and
accuracy of feature extraction. In addition, this method can effectively reduce the feature
dimension and the amount of parameters, thereby avoiding the problems of overfitting
and excessive calculation, making the training and reasoning of the model more efficient
and stable. The calculation formula of the multi-head attention mechanism is as follows:

MultiHead(Q, K, V) = Concat(head 1, head2, . . . , headi)W
O

where headi= Attention(QW Q
i , KWK

i , VWV
i ), i = 1, 2, 3, . . .

(2)

In the formula, Concat realizes the merging operation of the matrix, headi is the
attention head to be merged, and the attention head follows the operation of the atten-
tion mechanism, WQ

i , WK
i and WV

i are the Query (Q), Key (K) and Value (V) vector of
weight matrices.

5. Data Output

After the encoder layer has processed the data, it needs to be transformed into the ap-
propriate dimensions for output. To this end, the final output of the encoder layer is passed
to an optional ReLU layer, which is a hidden layer using the ReLU activation function to
increase the non-linearity of the output to improve the accuracy and effectiveness of the
classification. Then, this result is passed to the fully connected layer, which maps the data
from hidden_dim to output_dim. Finally, the model prediction value results are output to
complete the prediction of seabed sediment classification data information.

4.2. Construction of Loss Function and Optimizer
4.2.1. Loss Function

The loss function used in the MSC-Transformer model is the Cross-Entropy-Loss.
The Cross-Entropy-Loss is a commonly used loss function, and its essence is a concept
in information theory, which can be used to measure the information difference between
the model prediction result and the real value. The main feature of this loss function is
that it can measure the difference between the model prediction result and the real value,
and use the Backward algorithm to automatically update the model parameters, thereby
improving the Precision and Accuracy of the model. The model is able to predict new data
more accurately [47].

Specifically, assuming that there are n samples and k categories in a dataset,
the actual label of the i-th is yi , and the predicted probability distribution for the
i-th is pi = (pi1, pi2, pi3, . . . pik), then the Cross-Entropy-Loss function is:

loss = − 1
n

n

∑
i=1

k

∑
j=1

yijlogpij (3)

yij is the label of whether the i belongs to the j, and the value is 0 or 1, and logpij
represents the logarithm of the probability that the model predicts that the i belongs to the
j. The loss function has a certain penalty mechanism during operation. When the category
predicted by the model is inconsistent with the real label, the loss function will generate
a larger penalty value, otherwise it will generate a smaller penalty value. This penalty
mechanism is used by the backpropagation algorithm to update the parameters of the
model so that the model can more accurately predict the category of each sample.

4.2.2. Optimizer

In the training process of deep neural networks, the most commonly used optimizer
is the Stochastic Gradient Descent (SGD) optimizer [48]. The SGD optimizer and the core
stochastic gradient descent algorithm is a method with a simple mathematical form but
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good performance. It can effectively avoid large fluctuations in the gradient training process
by adjusting the learning rate. This method is based on the assumption of independent
and identical distribution. It doesn’t need to calculate the gradient values of all samples
every time, but updates all parameters by randomly selecting a sample. The mathematical
formula for this process is as follows:

⇀
g = ∇θL

(
⇀
x i,

⇀
y i;

⇀
θ

)
⇀
θ ←

⇀
θ − η

⇀
g

(4)

In this formula, (xi, yi ∈ D), η is the learning rate.
This model uses the SGD optimizer that includes momentum [49]. The momentum

optimization algorithm can accelerate the convergence speed of the SGD algorithm when
the gradient is updated and prevent excessive oscillation and escape from local minima.
Momentum is a physical concept that expresses the product of an object’s mass and velocity.
In the momentum algorithm, assuming that the gradient g of the parameter is the variation
of the particle velocity, the mathematical expression of the momentum algorithm can be
obtained as: { ⇀

v t = µ
⇀
v t− 1+

⇀
g t

⇀
θ t =

⇀
θ t− 1− η

⇀
v t

(5)

In this formula, µ is the momentum factor.
It can be seen from the above formula that in the iterative process, the parameter

update direction is not only determined by the current gradient, but also affected by the
previously accumulated gradient descent direction. If the directions of the two are the same,
the current gradient will be strengthened; if the directions of the two are not consistent,
the gradient magnitude of the current decline will be weakened. This has the effect of
accelerating convergence and reducing oscillations.

SGD itself has the nature of using only one sample to calculate the gradient at a
time, and its calculation amount has nothing to do with the size of the dataset, but only
with the Learning Rate, so it has a significant effect when processing a certain Batch. The
advantage of it is that it can process large-scale datasets in a short period of time, reducing
the amount of calculation and storage requirements. At the same time, the SGD with the
momentum optimization algorithm has the effect of accelerating convergence and reducing
shock, and the parameters can be updated in a larger range. This feature enables the
SGD with momentum to jump out of the local optimal solution, so as to better explore the
model parameter space as well as gradually optimize the model performance during the
training process.

4.3. The Scalability of the MSC-Transformer

The MSC-Transformer model is scalable and can maintain good training and experi-
mental results when dealing with different numbers of seabed substrate feature classifica-
tions. In order to meet the processing of different numbers of features, it is only necessary
to add the corresponding columns in the .csv file as the input data. If the total number of
columns including feature columns and label columns in .csv is N, the model will automat-
ically extract the data from the 1-st column to the N-1-th column and delete the header of
the first row as the model input data; and extract the last column and delete the Header as
seabed sediment classification.

In addition, the model can adjust the number of input classifications, and adjust
the output_dim provided in the model according to the number of labels of the seabed
sediment classification data.
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5. Experiment and Analysis
5.1. Experimental Environment and Parameter Setting

This paper uses a machine equipped with NVIDIA GeForce RTX 3090 GPU and Inter
Core i5-9600 k CPU. Pytorch version is 1.13, Cuda version is 11.7, python version is 3.7.

In the process of model construction and testing, we obtained parameters and hy-
perparameters that make the model achieve excellent results through experiments for the
dataset used in the study.

The model parameters of MSC-Transformer used in this paper are shown in Table 3.

Table 3. Parameters of MSC-Transformer.

Parameters Values

batch_size 300

num_encoder_layers 3

hidden_dim 512

num_heads 4

dropout 0.1

In the process of model training, the configuration of relevant hyperparameters is
shown in Table 4.

Table 4. Hyperparameters of MSC-Transformer.

Parameters Configuration

Epochs 3000

Learning Rate 0.0005

Momentum 0.09

5.2. Data Division and Model Training

The most important data structure in the deep learning framework is Tensor, which is
an array that supports efficient scientific operations and can be used to store model param-
eters, input data, and output results [49]. The input data received by the MSC-Transformer
model is in tensors. Before the data are imported into the model for calculation, it needs to
undergo data structure conversion. The conversion process involves the transformation
of data type, shape and dimension to meet the input requirements of the model. The
conversion process is shown in Figure 13.

Figure 13. Conversion of inputs.

In machine learning and deep learning, in order to meet the needs of model training
and evaluation, the entire dataset is usually divided into two parts: training set and test
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set. The training set is used to train the model, and the test set is used to evaluate the
performance of the model.

By dividing the dataset into training set and test set, the generalization ability of
the model can be effectively evaluated, that is, whether the model can make accurate
predictions on unseen data. This paper uses the model_selection.train_test_split method in
the Scikit-Learning, and sets the parameters train_size = 0.7 and test_size = 0.3 [47].

For the training set data, train after importing the model. The training process is
shown in Figure 14.

Figure 14. Model training.

For the test set data, after importing the trained model, the test process is shown
in Figure 15.

Figure 15. Model testing.

5.3. Experiment Results and Analysis

Figure 16 shows the statistics of loss values when MSC-Transformer uses the seabed
sediment dataset in 10 independent repeated experiments.

Figure 16. Loss values of 10 independent repeated experiments. The blue lines represent each
variation of loss values respectively.
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It can be seen from Figure 13 that before the number of training times reaches 500, the
value of the loss function shows a downward trend and the rate of decline is rapid; when
the number of training times is between 500 and 1500 times, the value of the loss function
shows a downward trend and the decreasing. The rate has eased compared to the first
500 times; when the number of training times is greater than 1500 times, the value of the
loss function decreases slowly until it converges.

This paper uses Accuracy, F1, Recall, and Precision to characterize the performance
of the model. Accuracy is the ratio of the number of samples correctly classified by the
model on the test set to the total number of samples. The recall is the proportion of correctly
predicted positive samples to all actual positive samples. Precision is the proportion of the
number of correctly predicted positive samples to the total number of predicted positive
samples. F1 is the result of comprehensively considering Precision and Recall and taking
their harmonic mean. Generally, the higher the values of these 4 evaluation indicators, the
better the performance of the representative model, and the predicted results are closer to
the real seabed sediment situation.

The Accuracy, F1, Recall, and Precision of MSC-Transformer’s 10 independent repeated
experiments are shown in Figures 17–20.

Compared with BP, CNN, and RNN, MSC-Transformer conducted multiple experi-
ments and found that the differences and fluctuations in Accuracy, F1, Recall, and Precision
were small, maintaining good stability. This laid a good foundation for the accurate
reproduction of the model.

Figure 17. Accuracy of 10 independent repeated experiments.

Figure 18. F1 of 10 independent repeated experiments.
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Figure 19. Recall of 10 independent repeated experiments.

Figure 20. Precision of 10 independent repeated experiments.

In addition, Figure 21 is the result of Accuracy, F1, Recall, and Precision at the seabed
sediment dataset when we compared MSC-Transformer with commonly used BP in ma-
chine learning and CNN, RNN in deep learning, and took 10 independent repeated experi-
ments and the average value.

Figure 21. Accuracy, F1, Recall and Precision of Each each model.

In addition, compare MSC-Transformer with commonly used BP in machine learning
and CNN, RNN in deep learning, and take 10 independent repeated experiments and the
average value, Figure 21 is the result of Accuracy, F1, Recall, and Precision at the seabed
sediment dataset.
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It can be seen from Figure 18. In the seabed sediment dataset, MSC-Transformer has
significant advantages in Accuracy, F1, Recall, and Precision compared to BP, CNN, and
RNN. And the fluctuation degree of MSC-Transformer is relatively small, which reflects
the stability and generalization of MSC-Transformer.

6. Conclusions

Seabed sediment is an important factor in the marine environment, and the has always
been a major focus and difficulty in the field of marine environment research. In order to
enhance and improve the classification quality of seafloor sediments, this paper applies
the Transformer to marine sediment classification for the first time, proposes an MSC-
Transformer based on deep learning and Transformer framework, trains and verifies the
feasibility and accuracy of the model using data from the northern slope of the South China
Sea obtained by a sub-bottom profiler. Through experiments, the conclusions can be drawn
as follows:

(1) The improved Transformer can be combined with data obtained from sub-bottom
profilers and applied to seabed sediment classification. MSC- Transformer proposed
in this paper has shown good performance in sediment classification in the north-
ern slope of the South China Sea, with Accuracy, F1, Recall, and Precision all four
evaluation indicators above 96%.

(2) In the experiment, this paper compares MSC-Transformer with common machine learn-
ing and deep learning neural networks such as BP, CNN, and RNN. The results showed
that the Accuracy, F1, Recall, and Precision of MSC-Transformer were all higher than
other neural networks. Meanwhile, in 10 independent repeated experiments, MSC-
Transformer showed the smallest fluctuation in all indicators and high stability, which is
more conducive to seabed sediment classification in practical applications.

In addition, based on the characteristics of the model in the construction, training, and
application process in this article, as well as the characteristics of the dataset of the northern
slope of the South China Sea, further research directions are as follows:

(1) Some scholars believe that one of the cores of the Transformer model is the complete
Encoder-Decoder system. If you ignore the Decoder and only use the Encoder to
complete the classification task of the seabed, this cannot be regarded as a formal
Transformer. This paper tries to use the output parameters and input parameters of
the Encoder, and add them to the Decoder to build a model. However, the model
does not work properly. Therefore, under the premise of not affecting the prediction
information of the seabed sediment classification, the MSC-Transformer model in
this paper discards the Decoder. However, whether it is actually possible to achieve
results by adding a Decoder remains to be further studied.

(2) In the process of processing the types of seabed sediment classification, the selection
of the learning rate of the model needs further study. The learning rate currently
used is obtained through experiments, which can make the current model show good
performance. Whereas, whether there is a more scientific method to calculate the
learning rate requires further exploration by researchers in related industries.

(3) Since the data used in the experiment are all collected from the northern slope of the
South China Sea, the optimal parameters of the model are also debugged based on
this dataset and good results have been achieved. Nevertheless, whether this model is
applicable to datasets of other sea areas and substrate types needs to be further verified.

In summary, the MSC-Transformer in this article has excellent results under the four
evaluation indicators of Accuracy, F1, Recall, and Precision, which confirms the feasibility
and effectiveness of the model. The model proposed by this research institute provides a
high-precision and high-tech classification tool for seabed sediment classification, providing
important support for the field of marine science research. It has important practical
application value for the development of marine technology, the construction of marine
engineering, and the security of national defense.
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