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Abstract: In order to ensure the safe navigation of USVs (unmanned surface vessels) and real-time
collision avoidance, this study conducts global and local path planning for USVs in a variable
dynamic environment, while local path planning is proposed under the consideration of USV motion
characteristics and COLREGs (International Convention on Regulations for Collision Avoidance at
Sea) requirements. First, the basis of collision avoidance decisions based on the dynamic window
method is introduced. Second, the knowledge of local collision avoidance theory is used to study
the local path planning of USV, and finally, simulation experiments are carried out in different
situations and environments containing unknown obstacles. The local path planning experiments
with unknown obstacles can prove that the local path planning algorithm proposed in this study has
good results and can ensure that the USV makes collision avoidance decisions based on COLREGs
when it meets with a ship.

Keywords: local path planning; dynamic window method; USV; path planning

1. Introduction

In recent years, due to global warming, increasing environmental pollution, and the
scarcity of land resources, countries around the world have paid more attention to the
development of marine resources [1], which has led to the rapid development of intelli-
gent maritime technologies such as unmanned surface vehicles (USVs) and underwater
robots. As an intelligent robot, ASV can perform tasks independently without human
intervention [2,3]. It is a surface operating platform with the advantages of a small size
and stealthiness. Therefore, it is mainly used to perform hazardous missions [4]. USVs
play an important role in civil and military fields such as environmental monitoring,
hydrographic exploration, offshore patrol, maritime search and rescue, and long-range re-
connaissance [5,6]. During the navigation of USVs, they are affected not only by the known
static environment (shore base, shoals, islands, etc.) but also by unknown dynamic vessels
and unknown static obstacles (pontoons, offshore operating platforms, etc.) [7]. In order
to ensure safe navigation, USVs will first perform global path planning based on known
static obstacles in the navigation environment during operation, then perform real-time
detection of the dynamic ocean environment [8], and finally implement local dynamic
path planning in combination with COLREGs. During the process of the dynamic path
planning, when the vessels are in sight of one another, only by considering the rules of col-
lision avoidance can the USV in sailing be guided accurately [9]. At present, there are also
many studies focusing on ship collision avoidance algorithms; Zhang et al. [10] proposed a
distributed intelligent anti-collision decision support formulation and designed a linear
extension algorithm for both course alteration and speed reduction to keep clearance of all
the target ships, which proves that anti-collision formulation can avoid collision when all
ships have complied with COLREGs as well as when some of them do not take actions. Cai
et al. [11] proposed a Collision Risk Index of Ferry (CRIF) based on the behavior of ferries
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and multiple target ships, which makes it possible to assess real-time collision risk during
crossing and to integrate the collision risk of each voyage based on historical encounter
scenarios. Xu et al. [12] proposed a modified path-following control system using the vector
field method for USV. Unlike other methods, they considered the coupled path following
and collision avoidance task as a whole. Finally, their proposed method allows the USV
to follow a predetermined path while automatically avoiding obstacles. Zhang et al. [13]
proposed a modified path planning method called RRTes, which simultaneously considers
the ship draft and UKC to avoid grounding as well as ship maneuverability constraints
and COLREGs to identify ship dynamic collision risk. Therefore, in addition to global
path planning, USVs need to have the ability to plan paths in a dynamic environment. In
the current research on USVs [14], autonomous collision avoidance technology is a key
technology that has not been surpassed in the development of unmanned vessels and is a
prerequisite for USVs to navigate safely in dynamic environments.

Based on COLREGs, Almoaili et al. [15] propose a near-optimal algorithm to find a
feasible path for UGVs (Unmanned Ground Vehicle) in a static environment, and the per-
formance of the proposed algorithm was compared with other well-established algorithms
in the path planning literature such as A* using a simulator developed for this purpose.
Wang et al. [16] designed three-dimensional path planning and security event-triggered
cooperative path tracking for a multi-disc autonomous underwater glider (AUG) consid-
ering the presence of underwater obstacles and denial-of-service (DoS) attacks. In the
study by Jabbarpour et al. [17], a new ant-based path planning approach that considers
UGV energy consumption in the IPTS planning strategy is proposed. This method is
called Green Ant (G-Ant) and integrates an ant-based algorithm with a power/energy
consumption prediction model to reach its main goal, which is providing a collision-free
shortest path with low power consumption. Han et al. [18] propose a path planning
method based on the multi-strategy evolutionary learning artificial bee colony algorithm.
Thoresen et al. [19] propose a new method of path planning for UGVs on terrain, and the
proposed path planning method is based on the Hybrid A* algorithm and uses estimated
terrain traversability to find the path that optimizes both traversability and distance for the
UGV. Shin et al. [20] proposes a model predictive path planning algorithm by employing
a passivity-based model predictive control (MPC) optimization setup. Chen et al. [21]
introduce a new meta-heuristic path planning algorithm, the Cuckoo-Beetle Swarm Search
(CBSS) algorithm, to solve the path planning problem for heterogeneous mobile robots.
Through domestic and international research, it has been found that there are few studies
in global path planning that can ensure path safety while also considering path economy.
In local path planning, unknown static obstacles are rarely considered to be introduced into
the environment. Therefore, the improved A * algorithm is used in global path planning to
generate routes that are both safe and cost-effective. Unknown static obstacle evaluation
factors are introduced into the evaluation function of the dynamic window method (DWA)
in local path planning. This improves the sensitivity of the algorithm in local path planning.
This article integrates global and local path planning, which can provide certain feasible
suggestions for route planning before unmanned vessel navigation and collision avoidance
during navigation.

2. Global Path Planning of USV Based on an Electronic Navigation Chart

In order to realize the autonomous navigation of the USV under mutual visibility
conditions, the navigation environment is established based on a 5 m depth contour
according to web charts. It is based on the surface data in the ECDIS data, and rendering
is performed using tools such as Mapbox to achieve the display of basic surfaces such as
land, shoals, and bathymetric surfaces. Java’s SpringBoot framework is used as the main
body of the program, the ORM (Object Relational Mapping) framework of the MySQL
database is Mybatis, the Druid is used as the Connection pool of the MySQL database,
and the JedisPool is used as the Connection pool of the Redis database. A front and rear
nonseparation strategy is adopted. The security optimization objectives for global path
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planning are determined, and a global path planning model is established. The flowchart
of our work is shown in Figure 1. This work includes global path planning and local path
planning. The global path planning is the generation of a path based on known static
obstacles, including chart processing, path planning, path smoothing, etc. Local path
planning is the dynamic adjustment made by ships when navigating along the globally
planned path. During navigation, there may be static and dynamic obstacles that are not
displayed on the chart, and safe collision avoidance actions need to be taken to avoid
collisions. After avoiding collisions, it is necessary to return to the global planning path.

J. Mar. Sci. Eng. 2023, 10, x FOR PEER REVIEW 3 of 22 
 

 

nonseparation strategy is adopted. The security optimization objectives for global path 
planning are determined, and a global path planning model is established. The flowchart 
of our work is shown in Figure 1. This work includes global path planning and local path 
planning. The global path planning is the generation of a path based on known static ob-
stacles, including chart processing, path planning, path smoothing, etc. Local path plan-
ning is the dynamic adjustment made by ships when navigating along the globally 
planned path. During navigation, there may be static and dynamic obstacles that are not 
displayed on the chart, and safe collision avoidance actions need to be taken to avoid col-
lisions. After avoiding collisions, it is necessary to return to the global planning path. 

 
Figure 1. The flowchart of global and local path planning. 

2.1. Chart Data Processing 
First of all, the surface data rendered in different colors in the nautical chart are pro-

cessed by pixel threshold segmentation. Among them, the processing that satisfies the 
water depth constraints is the navigable area, and the others are the obstacle area. Using 
electronic charts displayed on the web as the initial experimental environment, a global 
path planning experimental model is constructed for a portion of the chart areas with a 
latitude range of 30°9.627′ N–30°21.306′ N and a longitude range of 121°52.356′ E–
122°8.543′ E. The values of different chart information (R, G, B) are shown in Table 1. 

Table 1. Comparison table of rendering colors for different environmental information of the 
chart. 

Chart Environmental Information Color Red Green Blue 
Areas with a water depth of 30–50 m  216 244 225 
Areas with a water depth of 10–20 m  185 225 222 

Areas with a water depth of 5 m  152 211 237 
Areas with a water depth of 1–2 m  123 193 241 

shoal  115 185 142 
land  203 199 131 

Second, the point and line data that hinder navigation in the screening experiment 
area are drawn in the experiment environment model. Next, after constructing the nauti-
cal chart data into a rasterized environment model, the generated path is the grid position 
point in the Cartesian coordinate system. In order to be able to guide the navigation of the 
USV in practice, it is necessary to convert the grid nodes and the geographic coordinate 

Figure 1. The flowchart of global and local path planning.

2.1. Chart Data Processing

First of all, the surface data rendered in different colors in the nautical chart are
processed by pixel threshold segmentation. Among them, the processing that satis-
fies the water depth constraints is the navigable area, and the others are the obstacle
area. Using electronic charts displayed on the web as the initial experimental environ-
ment, a global path planning experimental model is constructed for a portion of the
chart areas with a latitude range of 30◦9.627′ N–30◦21.306′ N and a longitude range of
121◦52.356′ E–122◦8.543′ E. The values of different chart information (R, G, B) are shown in
Table 1.

Table 1. Comparison table of rendering colors for different environmental information of the chart.

Chart Environmental Information Color Red Green Blue

Areas with a water depth of 30–50 m
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Second, the point and line data that hinder navigation in the screening experiment
area are drawn in the experiment environment model. Next, after constructing the nautical
chart data into a rasterized environment model, the generated path is the grid position
point in the Cartesian coordinate system. In order to be able to guide the navigation of the
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USV in practice, it is necessary to convert the grid nodes and the geographic coordinate
system (longitude, latitude). The coordinate conversion calculation principle is shown in
Figure 2. Figure 2 shows a chart area where the maximum and minimum latitudes are
Latmax and Latmin and the maximum and minimum longitudes are Lonmax and Lonmin.
The corresponding number of horizontal grids is m, and the number of vertical grids is n.
The conversion formula between latitude and longitude and grid coordinates is as follows:{

Lat = y(Latmax−Latmin)
n + Latmin

Lon = x(Lonmax−Lonmin)
m + Lonmin

(1)
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Among them, Lat and Lon represent the position point coordinates of the unmanned
ship during navigation, and x and y represent the horizontal and vertical coordinates in
the grid map, respectively.

2.2. Improved A-Star Algorithm

As a commonly used heuristic path search algorithm, the A-star algorithm is widely
used in the field of global path planning [22]. Its search methods include four-connected
area search and eight-connected area search. Considering the movement characteristics of
the USV in the ocean [23], this paper uses the search method of eight-connected areas to
search navigable waters. The heuristic function of the improved A-star algorithm is defined
as follows:

f (n) = g(n) + h(n) + D(n) (2)

where g(n) is the actual distance cost from the starting point to the current node, h(n)
is the estimated distance cost from the current node to the target node [24], and D(n) is
the hazard function that uses the Voronoi field to add hazards to the grid. The A-star
algorithm only uses the path length as a heuristic function, and the planned path often
approaches obstacles, which cannot effectively guide USV to navigate safely and smoothly.
This article improves the evaluation function of the A-star algorithm by using the concept
of establishing navigation boundaries based on the Voronoi field algorithm, the definition
of which is as follows:

ρV(x, y) =
(

α

α + do(x, y)

)(
dv(x, y)

do(x, y) + dv(x, y)

)
∗
[
(do − dmax

o )2

(dmax
o )2

]
(3)

where do(x, y) is the distance from the current node to the obstacle, dv(x, y) is the distance
from the current node to the Voronoi boundary, α > 0 is a constant that controls the decay
rate of the potential field, and dmax

o > 0 is a constant controlling the maximum operating
range of the potential field.
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In the process of unmanned ship navigation, not only should the constraint of water
depth be considered, but a certain safe distance should also be maintained between the
generated path and obstacles. The evaluation functions of each grid after adding hazard
levels can be defined as:

f (n) =

{
g(n) + h(n), ρv = 0 or dv(x, y) ≥ D
∞, ρv > 0 or dv(x, y) < D

(4)

ρv is the Voronoi field value at the current node, and D is the safety constraint distance.

3. Local Path Planning of USV
3.1. Collision Avoidance Decision Based on the Dynamic Window Method

First, we establish the motion model of the USV (linear velocity, angular velocity, etc.). Sec-
ond, a set of navigable speeds including linear and angular velocities {(v1, w1), . . . , (vi, wi)}
is established under the constraints of the motion model and the distribution of obstacles in
the motion environment [25]. Finally, the speed vectors under the navigable speed set are
sampled, and the predicted trajectory of each speed vector (v, w) in the next time period
is solved according to the sampled speed vectors [26]. Finally, the evaluation function is
used to optimize the trajectory, and the speed combination corresponding to the optimal
trajectory is used as the navigation speed in the next period of time [27].

The movement state of the USV during navigation is shown in Figure 3. Assume
that the current given linear velocity and angular velocity vector is (v0, w0), the current
two-dimensional position coordinate is (x0, y0), and the included angle with the abscissa is
ϕ0 [28]. The motion model of the USV is shown in Formula (5):

x = x0 + v0∆t cos ϕ
y = y0 + v0∆t sin ϕ
ϕ = ϕ0 + w0∆t

(5)
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After the USV model is established, the trajectory of the USV in the next sampling
period can be predicted according to the motion model. The speed space available for
sampling in actual voyages is limited, which is determined by the following three aspects:

(1) Velocity constraints

Suppose the maximum linear velocity of the USV is vmax, the minimum linear velocity
is vmin, the maximum angular velocity is wmax, and the minimum angular velocity is
wmin [29]. Then, the set of velocities Vm between the maximum value and the minimum
value is:

Vm = {(v, w)|v ∈ [vmin, vmax], w ∈ [wmin, wmax]} (6)
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(2) Performance constraints of USV

Assuming that the linear velocity and angular velocity vector of a given USV at a
certain moment are (v0, w0), and its maximum linear acceleration and maximum angular
acceleration are α and w [30], then the speed set Vd constrained by the power device is:

Vd =
{
(v, w)

∣∣v ∈ [v0 − a∆t, v0 + a∆t], w ∈ [w0 −
.

w∆t, w0 +
.

w∆t]
}

(7)

(3) Stopping distance constraint

Assuming that dist(v, w) is the shortest distance between the end of the USV-predicted
trajectory and the obstacle, v′ and w′ are the maximum stopping linear acceleration and
maximum stopping angular acceleration, respectively [31]; then, the speed set Vd con-
strained by the stopping distance is:

Va =

{
(v, w)

∣∣∣∣v ≤ √2 · dist(v, w) · v′, w ≤
√

2 · dist(v, w) · w′
}

(8)

In summary, if the USV is to sail safely to the destination, the speed space needs to
meet the above three constraints. Assuming that all navigable speed sets of USV in the
space are Vr, then Vr is the intersection of the speed sets under the above three constraints.

3.2. Acquisition of Optimal Trajectory

The acquisition of the optimal trajectory is divided into two parts: trajectory prepro-
cessing and trajectory evaluation, and the operation is as follows:

(1) Trajectory preprocessing

Dynamic ship risk detection is the process of screening and predicting trajectories,
as well as the operation of determining the timing of collision avoidance. Its principle is
shown in Figure 4. The distance between the sampling point of the predicted trajectory
and the corresponding position point of the obstructed ship during the period is calculated,
and the CPA is adopted. When the distance encountered recently is less than the set safety
distance, it indicates a risk of collision. The length of the USV is set to 3 to 11 m, and the
draft is less than 2 m. The size of the target ship is set to twice that of the USV, and the draft
is 3 m.
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When ships perform collision avoidance operations in head-on situations and crossing
situations, according to the requirements of the COLREGs, the give-way ship should turn to
starboard to avoid stand-on ships. Therefore, the range of angular velocity corresponding
to the predicted trajectory will be limited to ω ∈ [ωmin, ω0]. This operation needs to
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be maintained during the avoidance process until no obstructive ship is detected in the
predicted trajectory; then, the process ends.

(2) Trajectory evaluation function

On the basis of the constraints of the COLREGs, this paper sets three aspects of speed
function, heading function, and distance function to construct the trajectory evaluation
function to evaluate the navigable predicted trajectory. The optimal trajectory evaluation
function is shown in Formula (9):

G(v, ω) = α · fv(v, ω) + β · fh(v, ω) + γ · fd(v, ω) + λ · fdu(v, w) (9)

where G(v, ω) is the trajectory evaluation function, and its maximum value is used to find
the optimal solution of the predicted trajectory; the other functions are sub-functions of the
predicted trajectory function, and α, β, γ, λ are the weight coefficients of each sub-function.
The fastness function fv(v, ω) is used to evaluate the linear velocity size of the current
trajectory, the reachability function fh(v, ω) is used to evaluate the deviation degree of
the predicted trajectory end of the USV from the target point, and the safety functions of
known and unknown obstacles fd(v, ω) and fdu(v, w) are used to evaluate the safety of
predicted trajectories.

The trajectory evaluation function needs to be normalized before evaluation, as shown
in Formula (10): 

f v(i) =
fv(i)

∑n
i=1 fv(i)

f h(i) =
fh(i)

∑n
i=1 fh(i)

f d(i) =
fd(i)

∑n
i=1 fd(i)

f d(i) =
fdu(i)

∑n
i=1 fdu(i)

(10)

4. Results and Discussion
4.1. Experimental Results of Global Path Planning

In this paper, the selected nautical chart area is rasterized and divided into
500 × 500 grids, and each grid represents 25 m. Aiming at the maneuverability of the USV,
safety distance constraints of 100 m, 200 m, and 300 m are set. The results of global path
planning based on different safety distance constraints and smooth optimization are shown
in Figure 5, Figure 5a shows the display of the planned path in the grid environment, and
Figure 5b shows the planning in the redrawn sea chart water depth environment display of
the path.

Figure 5 is a comparison of the experimental results of the traditional A-star algorithm
and the improved A-star algorithm under different safety distance constraints. The solid
blue line is the result of the global path planning of the A-star algorithm without adding
a safety distance constraint. It can be seen that the planned path is close to the obstacle,
which will undoubtedly increase the collision between the USV and the obstacle risk.
Red, cyan, and magenta are the path planning results of maintaining 100 m, 200 m, and
300 m safety distance constraints, respectively. It can be seen that with the increase in
distance constraints, the planned path can maintain distance constraints when approaching
obstacles, and the path with a larger safety radius is farther away from obstacles. It can be
seen from Figure 5b that the planned paths are all outside the water depth of 5 m, and the
proposed method can guarantee the constraint of safe water depth.
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Figure 6 shows the comparison of some planned paths before and after smooth
optimization. Figure 6a shows the path before smooth optimization. The number of
turns in the path is too many and not smooth, which does not meet the requirements
of navigation practice and USV performance; Figure 6b shows the path after smooth
optimization. The number of path turns is small, and the smoothness is high, which is of
high guiding significance.
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Figure 7 shows the distance between the path node and the obstacle under three
different safety distances. From the black horizontal dotted line set in the figure, it can be
seen that the path node keeps the set safety distance from the obstacle, which can improve
the safety factor of the USV during navigation.

Table 2 shows the comparison of path planning results under different safety distances,
and it can be seen that the optimized path has good results in terms of length and number
of nodes. In terms of path length, the smoothed path has a slight decrease. On the
path nodes, there is a significant decrease in the number of smoothed path nodes. The
experimental results demonstrate that the path smoothing algorithm proposed in this paper
has good performance.
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Table 2. Comparison of path planning results under different safety distances.

Safe Distance/m Original Path
Length/km

Optimized Path
Length/km

Number of
Nodes

Number of
Optimized

Nodes

D = 0 12.08 - 398 -
D = 100 12.14 11.32 402 5
D = 200 12.23 11.38 409 6
D = 300 12.30 11.48 414 6

In summary, the global path planning method proposed in this article can achieve
dual constraints of water depth and obstacle safety distance, which is in line with the actual
requirements of USV navigation.

4.2. Experimental Simulation under Different Encounter Situations

In order to verify the effectiveness of the proposed algorithm in the collision avoidance
process, the collision avoidance simulation experiment of USV is carried out in the range
of 500 m × 500 m under the three scenarios of head-on, crossing, and overtaking between
ships. The simulation parameter setting and algorithm setting of USV are shown in
Tables 3 and 4.

Table 3. Simulation parameters of USV.

Parameter Linear Velocity Angular Velocity

minimum value 0 m/s −20◦/s
maximum value 5 m/s 20◦/s

maximum acceleration 2 m/s2 5◦/s2

sampling interval 0.2 m/s 1◦/s

Table 4. Simulation parameters of USV.

α β γ λ
Predicted

Time/s
Safe

Distance/m

0.02 0.4 0.2 0.2 5 50
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(1) Head-on situation

The collision avoidance simulation process in the head-on situation is shown in
Figure 7, where the red circle is the starting point of the USV, the green star is the target
point of the USV, the pink line is the preset route, the red line is the trajectory of the USV,
and black is the trajectory of the target ship in the situation of encountering the USV.

Figure 8a shows the positional relationship between the USV and the target ship before
sailing, which can be judged as a head-on situation according to the COLREGs. Figure 8b
starts to make a decision for the USV to detect that there is a risk of collision with the target
ship. Figure 8c shows that the USV follows the COLREGs and turns starboard to avoid the
target ship. Figure 8d shows returning to the preset route after avoiding the target ship and
reaching the target point safely.
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Figure 9 is the heading change curve and the DCPA diagram corresponding to the
trajectory sampling points during the entire avoidance process in the USV head-on situation.
It can be seen from Figure 9a that near the 150th sampling point, the USV begins to turn
and avoid. At this time, the distance between the two ships corresponding to Figure 9b
is 50 m, which is in line with the set safety distance. In the process of the encounter, the
distance between the USV and the target ship decreases rapidly due to the relatively fast
speed of the USV and the target ship. The distance decreases continuously throughout the
process, and the nearest encounter distance is 14.10 m. As the process ends, the distance
gradually increases.

Figure 10 shows the changing trend of linear velocity and angular velocity in the head-
on situation. It can be seen from the linear velocity change diagram in Figure 10a that before
the collision avoidance process, the USV first accelerates and then has a constant speed;
during collision avoidance, deceleration measures are taken; after collision avoidance,
the USV accelerates again until it approaches the target point and begins to decelerate.
Figure 10b is the diagram of angular velocity change. Before the collision avoidance process,
the USV angular velocity is 0, and the navigation is maintained at the predetermined course;
during collision avoidance, the USV turns to starboard. From the analysis, it can be seen
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that the collision avoidance behavior in the encounter process conforms to the COLREGs
and the common maneuvering behavior at sea.
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(2) Crossing situation

The simulation process of collision avoidance under the crossing situation is shown in
Figure 11. Figure 11a shows the positional relationship between the USV and the target ship
before sailing, which can be judged as a crossing situation by the COLREGs. Figure 11b
starts to make a collision avoidance decision for the USV to detect that there is a risk of
collision with the target ship. Figure 11c shows that the USV follows the constraints of
the COLREGs and turns to the starboard to successfully avoid the target ship. Figure 11d
shows that USV successfully returned to the preset route after safe avoidance and sailed
safely to the destination.

Figure 12 shows the heading change diagram and the DCPA diagram corresponding to
the trajectory sampling points during the entire avoidance process in the crossing situation.
The first section of Figure 12a shows that the USV keeps a fixed heading when no target
ship is detected; the second section is to start to turn starboard to avoid collision when the
target ship is detected. The collision avoidance behavior complies with the requirements
of the COLREGs. According to the COLREGs, the maximum collision avoidance range is
set to 17◦ since the USV is the give-way ship in the crossing situation, and it should take
substantial action to keep well clear and avoid crossing ahead the head-on ship under the
allowed circumstances case. The range of collision avoidance ensures the safety of the
collision avoidance process, which is consistent with the actual situation of navigation.
The third section is the resumption process after collision until reaching the target point.
Figure 12b shows the distance of the nearest encounter. It can be seen that the distance
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between the two ships decreases first and then increases. The distance of the nearest
encounter is 40.32 m, which can safely avoid collision.
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Figure 13 shows the change trend of the line velocity and angular velocity under the
crossing situation. Figure 13a shows the trend of linear speed change. During the whole
process, speed up first, then sail at the maximum speed and uniform speed and decelerate
near the target point. Figure 13b shows the change trend of angular velocity. It can be
seen that the course is maintained before collision avoidance. During collision avoidance,
turn to starboard to avoid the target ship. Due to the short process, the maximum angular
velocity is about 8◦/s. After collision avoidance, USV quickly resumes the course.
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(3) Overtaking situation

The simulation process of collision avoidance in overtaking situations is shown in
Figure 14. Figure 14a shows the overtaking situation. Figure 14b starts to make a decision
for the USV to detect that there is a risk of collision with the target ship. Figure 14c shows
that the USV follows the constraints of the COLREGs and turns to the port as much as
possible to avoid the target ship. Figure 14d shows that the USV returns to the preset route
after evading successfully and sails safely to the target point.
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Figure 14. Simulation results of collision avoidance in an overtaking situation.

Figure 15 shows the course change curve and the DCPA diagram corresponding to
the trajectory sampling point during the whole collision avoidance process under the
overtaking situation. The first section of Figure 15a shows that the USV keeps a fixed
heading when no target ship is detected. The second section is to start turning to the port to
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avoid collision when the target ship is detected. The collision avoidance behavior meets the
requirements of the COLREGs, and the maximum collision avoidance range is about 27◦,
which is in line with the actual situation of navigation. The third section is the resumption
process after collision until reaching the target point. In Figure 15b, when the encounter
distance is less than 50 m, the collision distance will continue to decrease due to the close
proximity of the two during the overtaking process, and the nearest encounter distance
is 19.75 m.
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Figure 16 shows the variation trend of the linear velocity and angular velocity of
the USV in the overtaking situation. Figure 16a shows the trend of linear speed change.
During the whole process, the USV first sped up, then sailed at the maximum speed and
uniform speed, and decelerated near the target point. Figure 16b shows the change trend of
angular velocity and maintains the heading before overtaking. When overtaking, the USV
has an obvious behavior turning port, the maximum turning rate reaches 10◦/s, which
is half of the maximum turning rate of the USV, and it moves towards the target point
after overtaking.
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Through the analysis, it can be seen that the algorithm proposed in this paper can
guide the USV to avoid the target ship safely. Since the algorithm in this paper considers
the constraints of the COLREGs, it has certain practical guiding significance.

4.3. Experimental Simulation in a Local Environment

In order to verify the feasibility of the algorithm in the environment with unknown
obstacles, local path planning experiments are carried out.
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(1) Local path planning with dynamic obstructing ships and unknown static obstacles in
the head-on situation.

Figure 17 shows the local path planning process in head-on situations and unknown
static obstacles. Figure 17a shows that when the USV starts sailing, the pink line represents
the preset route from the starting point to the target point to guide the navigation of the
USV, and the purple dotted area represents the unknown static obstacles that are not
considered in the global path planning. Figure 17a shows that when there are unknown
static obstacles on the route, sailing along the preset route will collide with the obstacles.
Therefore, the USV needs to avoid unknown obstacles during actual navigation. The
algorithm proposed in this paper adds constraints on unknown obstacles to the trajectory
evaluation function, which can ensure that the USV avoids unknown static obstacles in the
navigation environment. Figure 17b shows that the USV detects the dynamic ship in the
situation of collision and starts to avoid the ship to the starboard. Figure 17c shows the
moment when the USV has completed the collision avoidance process and the unknown
static obstacle is detected when it continues to sail along the route. Figure 17d shows the
time at which the USV reaches the target point. It can be seen from the figure that the USV’s
navigation path can conduct collision avoidance operation between a single ship in a local
environment and avoid unknown static obstacles.
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(2) Local path planning with dynamic obstructing ships and unknown static obstacles in
crossing situations.
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Figure 18 shows the local path planning process in crossing situations and unknown
static obstacles. Figure 18a is when the USV is sailing, where the pink line represents the
preset route that guides the unmanned ship from the starting point to the destination,
and the two purple areas represent unknown static obstacles that are not considered in
the global path planning. Figure 18b shows that the USV detects the dynamic ship in the
crossing situation and starts to turn to the starboard to avoid collision. Figure 18c shows the
moment when the USV completes the avoidance process in the crossing situation, detects
an unknown static obstacle, and begins to avoid it. Figure 18d shows the time when the
whole voyage is completed and the destination is reached. It can be seen from the figure
that the navigation path of USV can avoid collision and unknown static obstacles under
the crossing situation between a single ship in a local environment so as to ensure that the
USV can sail smoothly to the destination.
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Figure 18. Local path planning process in the crossing situation.

(3) Local path planning in the overtaking situation with dynamic obstructing ships and
unknown static obstacles.

Figure 19 shows the local path planning process with an overtaking situation and two
unknown static obstacles. Figure 18a is the state when the USV is sailing. Figure 19b shows
the dynamic ship when the USV detects the situation of overtaking and starts to turn to
starboard to overtake the ship. Figure 19c shows that the USV has completed the avoidance
process in the overtaking situation. When it continues to sail, it detects an unknown static
obstacle and begins to avoid the unknown static obstacle. Figure 19d shows the moment
when the entire voyage is completed and the destination is reached.
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(4) Local path planning in three different situations containing dynamic obstructing ships
and unknown static obstacles.

Figure 20 shows the path planning process of a multi-objective dynamic ship. At time
T1, USV begins to sail. At time T2, USV starts sailing, forms a head-on situation with the
target ship, and starts to turn to avoid. At time T3, the USV successfully evades and forms
a crossing situation with the second target ship, and it begins to turn to the starboard to
avoid. At time T4, USV has successfully evaded and returned to the preset route. Time T5
is when the USV finds the ship under the situation of overtaking and begins to implement
the overtaking process. Time T6 is when the USV successfully reaches the target point.

Overall, the innovation of this article is that the hazard function is introduced as the
evaluation function in global path planning. In local path planning, the distance function
of static unknown obstacles is introduced. The computational complexity is not high, the
speed of generating routes is improved, and the sensitivity of path planning is improved
when facing unknown static obstacles. In local path planning, this method is suitable for
simple collision avoidance situations. In more complex scenarios, the accuracy of route
generation is reduced. Next, we will focus on studying the path planning of ships in
complex scenarios.
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5. Conclusions

In the global path planning, the constraints of water depth and safety distance are
mainly considered. Using the Voronoi Field algorithm to set the safety distance constraints,
combined with the A* algorithm, this paper realizes the smoothing process under different
safety distances. Different routes are generated by setting different safety distance con-
straints such as 100 m, 200 m, 300 m, etc. Finally, the data collected in path planning are
visualized, and the rationality and feasibility of the algorithm are analyzed.
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This paper describes the problems of USV navigation based on global path planning,
that is, insufficient consideration of unknown obstacles in the environment (dynamic
and static obstacles). On this basis, this paper proposes a collision avoidance decision
of USV based on the dynamic window method, including the USV kinematics model,
trajectory sampling considering the constraints of the COLREGs, and the optimal trajectory
evaluation method. Finally, the effectiveness and rationality of the method are proved by
the simulation results of collision avoidance in different situations of ships and local path
planning with unknown obstacles.
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