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Abstract: Detection of underwater coherent interference is necessary as its presence affects the
estimation of the desired target. In this work, a method based on high-order particle velocity
gradient polarization characteristics is proposed to distinguish the presence of coherent interference.
Characteristics including ellipse ratio and inclination angles of the high-order particle velocity
gradient are chosen as effective detection features because they remain unchanged at different orders
of the desired target but changed at different orders of coherent signals when there is coherent
interference. Based on such altered properties, a quick and effective marine detection system can be
established. Both simulation and experimental results validate the proposed detection method.

Keywords: high-order particle velocity gradient; polarization characteristics; polarization filter;
coherent signals

1. Introduction

Coherent jammers in marine electronic warfare systems can generate signals that are
coherent with the desired signal, even when the signals approach the hydrophones from
different directions [1]. They can degrade the performance of underwater adaptive array
system direction finding algorithms. In actuality, coherent signals appear to be a single
signal impinging on the hydrophones and arriving from a completely different direction
than the desired signals [2]. Detecting the underwater coherent jammers is crucial for
taking additional precautions [3]. In the following, the research progress in the fields of
polarization and high-order particle velocity gradients are illustrated in order to introduce
the high-order particle velocity gradient polarization characteristic proposed in this study.

Polarization is a feature common to all vector signals that describe the time-varying
space trajectories of vector endpoints at a fixed point in wave propagation space. Wave po-
larization is a hot topic in many fields, including electromagnetism [4,5] and geophysics [6–8].
With the further study of polarization, the concept was introduced into acoustics [9,10].
The coherence function between acoustic pressure and particle velocity and the curl of
active intensity are proposed as two indicators for estimating the degree of coherence
and the polarization of acoustic fields [11]. Because of energy oscillations due to the in-
stantaneous reactive intensity, a kind of energy polarization is shown to occur in certain
acoustic fields [12]. In recent years, polarization has also been widely used in underwa-
ter acoustics. The Stokes parameter framework was presented by Bonnel [13], it enables
a description of the polarization of the underwater acoustic field. It differs from other
underwater vector acoustic works in that it focuses exclusively on the particle velocity v
rather than on the complex intensity I = pv*, which requires a concurrent and collocated
measure of both pressure p and particle velocity v. We also only use particle velocity in
the acoustic field. Moreover, the Stokes parameter framework is used by Dahl [14] to
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help obtain the circularity and degree of polarization, clearly demonstrating properties
of bivariate signal trajectory. We also use the characteristics of circularity. Shchurov [15]
hypothesized that when measuring a single plane wave field, the incident acoustic wave is
a single longitudinal wave. When two incident plane waves of identical frequency coexist,
the particle velocity is a rotation vector, and the trajectory at the end of the vector is an
ellipse. We have conducted exhaustive research to address the following case: when the
phase difference between the desired target and coherent interference signals is 0 and π,
the trajectory turns into a straight line. To solve this problem, we propose employing
high-order particle velocity polarization characteristics.

The emergence of vector sensors has allowed the scalar information processing of
the sound pressure to the vector information processing of the particle velocity [16]. The
high-order particle velocity gradient sensor makes it possible for vector hydrophones to
achieve better performance [17].

For decades, high-order acoustic vector sensors and their array processing technology
have been a hot topic in underwater acoustic engineering. High-order hydrophones provide
a novel approach to underwater acoustic problem solving [18,19]. The concept of high-
order hydrophones was first proposed in 1992 by Spain [20], carried out by Taylor series
expansion of sound pressure in a limited region. The results showed the relationship
between sound pressure, sound pressure gradient and particle velocity; the idea of using
the second-order gradient of sound pressure was proposed to improve the directivity of
the acoustic array. In 1999, Bastyr used a neutral buoyant u-u sound intensity probe [21] to
measure the particle velocity at two adjacent points; it was the first attempt to measure the
particle velocity gradient in water. In 2001, M.T. Silvia [22] successfully used a vector sensor
and measured the directivity of cos2 θ and sin2 θ. In 2003, Cray [23] and others deduced
the Taylor series expansion of the sound pressure at the origin of the Cartesian coordinate
system, pointing out that the first-order sound pressure gradient is proportional to the
particle velocity, the second-order sound pressure gradient is proportional to the first-order
particle velocity gradient, and the spatial pure partial derivative of the particle velocity
component is proportional to the instantaneous density of the sound field.

With more and more indepth research on high-order sensors, a number of scholars
have focused on the acquisition and optimization of a high-order gradient model to obtain
better high-order application. Schmidlin introduced a generalized function approach
for estimating spatial partial derivatives of pressure [24]. This approach was utilized to
develop a theoretical scheme for implementing directional acoustic sensors of an arbitrary
order. Explicit formulas were found for the filter coefficients that maximize the array
gain of the filter and establish an explicit expression for the maximum array gain [25]. A
linear prediction model was used to write the high-order derivatives in terms of the lower
order derivatives, which was then used to estimate the high-order spatial derivatives [26].
Using the high-order derivatives, the signal can be extrapolated over a larger aperture.
A subtractive beamform for short vector hydrophone arrays was presented based on
the extraction of the directional modes of the acoustic field from finite difference-based
approximations of the particle velocity gradients [27].

In this paper, a new method using high-order particle velocity gradient polarization
characteristics to distinguish whether there is coherent interference is proposed. Firstly, the
particle velocity polarization characteristics of a single target and multiple coherent signals
are deduced theoretically. The result shows that the particle velocity gradient polarization
trajectories under the condition of a single target are all straight lines, and the particle
velocity gradient polarization trajectories under the condition of multiple coherent signals
are ellipses. Then, we take the case of two coherent signals as an example; it is found that
when the phase difference between them is 0◦ and 180◦, the trajectories are all straight
lines and cannot be separated. Further, the use of high-order particle velocity polarization
characteristics can not only solve the problem in the above special case, but also distinguish
the case of a single target and multiple coherent signals through increasing the polarization
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characteristics dimension. The results show that both the simulation and the experiment
results in the presence of noise achieve the aim of distinguishing one and multiple targets.

The rest of this article is arranged as follows: Section 2 lays the theoretical foundation,
providing the theoretical deduction of the particle velocity polarization characteristics
and high-order particle velocity gradient polarization characteristics. In Section 3, we
explore polarization characteristics under different target conditions. A BP neural network
is used for recognition, and the recognition effect is specified. In Section 4, an experiment
using a single target and coherent signals signal is carried out in an anechoic water pool,
and the test results are analyzed to show the feasibility of the proposed features. Finally,
conclusions are provided in Section 5.

2. Materials and Methods
2.1. Particle Velocity Polarization Characteristics of a Marine Target

Suppose that a far-field narrowband signal impinges on a vector hydrophone, the
two-dimensional situation is considered, and the output of the vector hydrophone can be
expressed as follows [27]:

vx = V cos φejωt;
vy = V sin φejωt;

(1)

where V is the amplitude of the velocity field variable, ω is the angular frequency, and φ is
the incident angle of the target, which is measured counterclockwise from the x-axis.

The displacement component of this position can be expressed as

ux = real(
∫

vxdt) =V cos φ sin ωt
ω ;

uy = real(
∫

vydt) =V sin φ sin ωt
ω ;

(2)

The particle motion equation is given as uy
ux

= tan φ. The particle trajectory is a line
with tan φ slope. The polarization characteristics of a marine target are that the length of
the major axis LA is V/ω, the length of the minor axis SA is 0, the inclination of the line τ,
which is defined as the angle between the major axis and the +x axis, is the incident angle
φ. The ellipse ratio angle ε is defined as the smallest interior angle in a right triangle with
the major and minor axes of the ellipse as sides is 0◦.

2.2. Particle Velocity Polarization Characteristics of Multiple Coherent Signals

In the presence of multiple coherent interferences in the marine acoustic field, the
particle velocity vc received at a point in space is defined as [28]

vcx = V cos φejωt + ∑
i

Vi cos φiej(ωt+ϕi)

vcy = V sin φejωt + ∑
i

Vi sin φiej(ωt+ϕi)
, (3)

where vcx and vcy are the components of the particle velocity vc. i denotes the number of
the coherent interference; Vi is the amplitude of each coherent interference; φi is the incident
angle of multiple coherent interference, and the phase difference between the desired target
signal source and the coherent interference signal is ϕi. The displacement component of
this position can be expressed as

uc = real
∫

vcdt =

V cos φ sin ωt
ω + ∑

i
Vi cos φi

sin(ωt+ϕi)
ω

V sin φ sin ωt
ω + ∑

i
Vi sin φi

sin(ωt+ϕi)
ω

. (4)

We select two coherent signals (the desired target and a coherent interference) as
an example.

vc = V
[

cos φ
sin φ

]
ejωt + V1

[
cos φ1
sin φ1

]
ej(ωt+ϕ1), (5)
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uc = V
[

cos φ
sin φ

]
sin(ωt)

ω
+ V1

[
cos φ1
sin φ1

]
sin(ωt + ϕ1)

ω
=

[
Amx sin(ωt + arctanphx)

Amy sin
(

ωt + arctanphy

)], (6)

where

Amx =

√
(V cos φ + V1 cos φ1 cos ϕ1)

2 + (V1 cos φ1 sin ϕ1)
2

ω
, (7)

Amy =

√
(V sin φ + V1 sin φ1 cos ϕ1)

2 + (V1 sin φ1 sin ϕ1)
2

ω
, (8)

phx = arctan
V1 cos φ1 sin ϕ1

V cos φ + V1 cos φ1 cos ϕ1
, (9)

phy = arctan
V1 sin φ1 sin ϕ1

V sin φ + V1 sin φ1 cos ϕ1
. (10)

The particle motion equation is

u2
x

A2
mx

+
u2

y

A2
my
− 2

ux

Amx

uy

Amy
cos
(

phy − phx

)
= sin2

(
phy − phx

)
. (11)

It can be seen from the equation that when there are two coherent signals, the particle
trajectory is an ellipse.

However, when sin ϕ1 = 0 or sin(φ − φ1) = 0, the particle trajectory of the two
coherent signals is a straight line. Because the trigonometric function is periodic, we
divided it into four cases to discuss the case where the particle trajectories of two coherent
signals are straight lines: φ = φ1, φ− φ1 = 180◦, ϕ1 = 0◦ and ϕ1 = 180◦. When φ = φ1,
i.e., the two coherent signals are each incident at a target, there is no need to distinguish
between them. In practical applications, because of the influence of the ocean environment,
the target cannot always be on the line of the incident angle of two coherent signals; thus,
when the incident signal is φ − φ1 = 180◦, we can obtain the variation of the particle
trajectory over time.

The phase difference between two coherent signals is 0◦ and 180◦ by introducing
the high-order particle velocity gradient polarization characteristics to distinguish two
coherent signals from a single target. Furthermore, through the introduction of the high-
order particle velocity gradient polarization characteristics, the dimension of polarization
characteristics can be increased, so that a single target and two coherent signals can be
better distinguished.

2.3. High-Order Particle Velocity Gradient Polarization Characteristics of a Marine Target

The nth-order particle velocity gradient of a target given at x = 0 is defined as [27]

vx
(n) = ∂nvx

∂xn |x=0 = V(jk)n cosn+1 φejωt;

vy
(n) =

∂nvy
∂xn |x=0 = V(jk)n sin φ cosn φejωt . (12)

where j is the imaginary unit, and k is the wavenumber.
The nth order of the displacement component of this position can be expressed as

ux
(n) = real(

∫
vx

(n)dt) =

 kn jnV(cos φ)n+1 sin(ωt)
ω (n even)

kn jn−1V(cos φ)n+1 cos(ωt)
ω (n odd)

uy
(n) = real(

∫
vy

(n)dt) =

{
kn jnV sin φ(cos φ)n sin(ωt)

ω (n even)
kn jn−1V sin φ(cos φ)n cos(ωt)

ω (n odd)
;

. (13)
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The particle motion equation is uy
(n)/ux

(n) = tan φ. The trajectories of each order
of the particle velocity gradient are all straight lines. The polarization characteristics of a
target for each order are such that the length of the major axis LA is the maximum distance
between a point and the origin in the trajectory. The length of the minor axis SA is 0. The
ellipse inclination angle is also the incident angle, and the ellipse ratio angle is 0◦.

When there is a single target, the characteristics of particle velocity and nth-order
particle velocity gradient are shown in Table 1. It is clear that the unchanged characteristics
for SA are all 0, the ellipse inclination angle is also the incident angle, and the ellipse ratio
angle is 0◦.

Table 1. Particle velocity and nth-order particle velocity gradient polarization characteristics of a
marine target.

A Target LA SA Inclination Angle Ratio Angle

Particle velocity
different same same same

Nth-order particle velocity

2.4. High-Order Particle Velocity Gradient Polarization Characteristics of Multiple
Coherent Signals

In the presence of multiple coherent interferences in the ocean, the high-order particle
velocity gradient vcx

(n) can be derived from Formulas (3) and (12),

vcx
(n) = ∂nvcx

∂xn = V cosn φejωt + ∑
i

Vi cosn φiej(ωt+ϕi)

vcy
(n) =

∂nvcy
∂xn = V sin φ cosn φejωt + ∑

i
Vi sin φi cosn φiej(ωt+ϕi)

. (14)

The displacement component of this position can be expressed as

uc
(n) = real

∫
vc

(n)dt =

 V cosn φ sin ωt
ω + ∑

i
Vi cosn φi

sin(ωt+ϕi)
ω

V sin φ cosn φ sin ωt
ω + ∑

i
Vi sin φi cosn φi

sin(ωt+ϕi)
ω

. (15)

We also select two coherent signals (the desired target and a coherent interference) as
an example.

vc
(n) = V

[
cosn φ

sin φ cosn φ

]
ejωt + V1

[
cosn φ1

sin φ1 cosn φ1

]
ej(ωt+ϕ1), (16)

uc
(n) = V

[
cosn φ

sin φ cosn φ

]
sin(ωt)

ω
+ V1

[
cosn φ1

sin φ1 cosn φ1

]
sin(ωt + ϕ1)

ω
=

[
Anmx sin(ωt + pnhx)

Anmy sin
(

ωt + pnhy

)]. (17)

where

Anmii =
kn
√

anii
2 + anii1

2 + 2aniianii1 cos ϕ1

ω
; (18)

pnhii =

 arctan
(

anii1 sin ϕ1
anii+anii1 cos ϕ1

)
(n even)

arctan
(
− anii+anii1 cos ϕ1

anii1 sin ϕ1

)
(n odd)

, (19)

where ii denotes x and y axis component, anx = V cosn+1 φ; anx1 = V1 cosn+1 φ1 any = V
sin φ cosn φ; any1 = V1 sin φ1 cosn φ1
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The particle motion equation is

u(n)2

x

A2
nmx

+
u(n)2

y

A2
nmy
− 2

u(n)
x

Anmx

u(n)
y

Anmy
cos
(

pnhy − pnhx

)
= sin2

(
pnhy − pnhx

)
. (20)

From Table 2, it can be seen that in the case of two coherent signals, the different order
of particle velocity gradient trajectory is an ellipse. However, the lengths of LA and SA, the
inclination angle, and the ratio angle of the ellipse are different.

Table 2. Particle velocity and nth-order particle velocity gradient polarization characteristics of
coherent signals.

Coherent Signals LA SA Inclination Angle Ratio Angle

Particle velocity
different different different differentNth-order particle velocity

However, when sin ϕ1 = 0, it can be deduced that the polarization trajectories of
the two coherent signals are also straight lines. Thus, SA cannot be the efficient detection
characteristic. Let ϕ1= 0◦ and ϕ1= 180◦ in the particle motion equation. The inclination
angle of each order of the high-order particle velocity gradient is τ = arctan

any±any1
anx±anx1

, where
addition is applied when the phase difference is 0◦ and subtraction is applied when the
phase difference is 180◦. From the equation, different orders have different inclination
angles. However, a single target’s inclination angle is changeless in different order. In
this situation, a single target and two coherent signals can still be distinguished by the
high-order particle velocity gradient polarization characteristics.

According to the above analysis, we choose the inclination angle and ratio angle of
the ellipse of the high-order particle velocity gradient as the polarization characteristics to
distinguish between a target and two coherent signals.

The Back-Propagation (BP) neural network is a model in the field of artificial neural
networks [29]. It is a multilayer and backpropagation feedforward artificial neural network
that achieves a nonlinear mapping between input and output through the error training
process for testing the effectiveness of high-order particle velocity gradient polarization
characteristics. The high-order particle velocity gradient polarization characteristics, in-
cluding the ellipse inclination and ratio angles of a single target and two coherent signals
from different angles, are the training data. Single target samples with random incident
angles and two coherent signals from two random incident angles are the test data for the
BP neural network. A single hidden layer network in BP neural network is selected [30].
The number of input layer nodes is the feature dimension, and the number of hidden layer
nodes is performed by m =

√
n + l + α and the number of output layer nodes is 2; where m

is the number of hidden layer nodes, n is the number of input layer nodes, l is the number
of output layer nodes, and α is the adjusting constant, whose value ranges from 0 to 10.

3. Simulation Results and Analysis

This section presents some simulations to validate the above theoretical derivation.
The frequencies of the target and two coherent signals are 1 kHz.

Figure 1 shows the 0th, 1st, 2nd, and 3rd order particle trajectories of a marine target. The
incident angles are 0◦ (o blue line), 30◦ (red solid line), and 60◦ (yellow + line), respectively.
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Figure 1. High-order particle trajectory of a marine target.

It can be seen from Figure 1 that the different order particle velocity gradient polariza-
tion trajectories are all straight lines, that is, the ratio angles are all 0◦, and the inclination
angles are all the same as the incident angles.

Figure 2 shows the 0th, 1st, 2nd, and 3rd order particle trajectories of two coherent
signals. In the case of sin ϕ1 = 0, the incident angles are 0◦ and 60◦, and the phase difference
is 0◦ (+ line) and 180◦ (* line). When the incident angles are 0◦ and 60◦, the phase difference
is 30◦ (red solid line). When the incident angles are 0◦ and 30◦, the phase difference is 30◦

(green triangular line). When the incident angles are 30◦ and 170◦, the phase difference is
30◦ (blue o line).
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Figure 2. High-order particle trajectory of two coherent signals. Blue + line represents the case of
Φ = 0◦, Φ1 = 60◦, ϕ = 0◦; orange * line represents the case of Φ = 0◦, Φ1 = 60◦, ϕ = 180◦; red solid line
represents the case of Φ = 0◦, Φ1 = 60◦, ϕ = 30◦; green4line represents the case of Φ = 0◦, Φ1 = 30◦,
ϕ = 30◦; blue #line represents the case of Φ = 30◦, Φ1 = 170◦, ϕ = 30◦.

The blue + line and the red * line in Figure 2 correspond to the case where sin ϕ1 = 0;
they are all straight lines, which is consistent with the previous derivation. The last three
lines show the particle trajectories of the two most coherent signals, which are ellipses, so
that they can be distinguished from the particle trajectories of a target.

From Figure 2, it can be seen that the different order particle velocity gradient polar-
ization trajectories are all ellipses, and the inclination angle and ratio angle of the ellipse of
each order is different. With a phase difference of 0◦ (+ line) and a phase difference of 180◦

(* lines), the trajectories in each figure are all straight lines, but the inclination angle of each
order is different; hence, we can distinguish them as two coherent signals.

Comparing Figures 1 and 2, each order particle trajectory of a single target is a straight
line, and the slope is the same with the tangent of the incident angle. Each order particle
trajectory of the two coherent signals is a different ellipse.

Considering that the noise influenced the particle trajectories, SNR is set as 5 dB. The
different order particle trajectories of a single target are shown in Figure 3. The different
order particle trajectories of two coherent signals are shown in Figure 4.
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Figure 3a–d represents the 0th, 1st, 2nd, and 3rd order particle velocity gradient
polarization trajectory, respectively. The black dotted line in each figure represents the
straight line with the slope of tangent incident angle. We can see that the particle motion
trajectory of each order is also near the theoretical line, although the noise is influenced.

Figure 4a–d represents the 0th, 1st, 2nd, 3rd order particle velocity gradient polariza-
tion trajectory of two coherent signals. The two coherent signals incident angles are 0◦ and
60◦, respectively. It is obvious that different order particle trajectories are different.

The single target incident angle is 30◦, and the two coherent signals incident angles
are 0◦ and 30◦. The SNR of the received data is calibrated after the polarization filter pre-
processing [31] from −30 to 25 dB at intervals of 5 dB. Here, 1000 Monte Carlo experiments
are conducted to calculate the inclination angles and ratio angles of the ellipse of different
order particle velocity gradients of a marine target and two coherent signals. The results
are presented in Figure 5. The *lines represent the polarization characteristics of a marine
target, the solid lines represent the polarization characteristics of two coherent signals,
and the different colors represent the polarization characteristics of different order particle
velocity gradients.
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In Figure 5, when the SNR is greater than −20 dB, the inclination angle of the ellipse
of different orders of a target is the same as the incidence angle. By contrast, the inclination
angle of the ellipse of different orders of two coherent signals varies. The ellipse ratio
angle tends toward 0◦ for different order particle velocity of a target, indicating a clear
difference between a target and two coherent signals. From Figure 5, two coherent signals
and a target can be clearly distinguished based on high-order particle velocity polarization
characteristics, including the ellipse inclination and ratio angles.

The BP neural network is used to distinguish between a target and multiple coherent
signals. The polarization characteristics of a single target and two coherent signals with
arbitrary angles are used as input vectors. It can be seen from Figure 6 that when the SNR
is −20 dB, the particle velocity polarization characteristics are used; when the 0th- and
1st-order particle velocity polarization characteristics are used, the distinction rate is 84.54%.
When the 0th-, 1st-, 2nd-, and 3rd-order particle velocity polarization characteristics are
used, the distinction rate increases to 91.20%. It can be seen from the figure (0th order
is + line; 0th and 1st order is * line; 0th, 1st, 2nd, and 3rd orders is ˆ line) that as the
order increases, the distinction rate also increases. When the SNR is greater than 5 dB,
the distinction rate of the three types of polarization characteristics are all greater than
98%, and it can be verified that the high-order polarization characteristics can be used as
effective features for a target and two coherent signals in water.



J. Mar. Sci. Eng. 2023, 11, 1027 11 of 15

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 16 
 

 

The BP neural network is used to distinguish between a target and multiple coherent 
signals. The polarization characteristics of a single target and two coherent signals with 
arbitrary angles are used as input vectors. It can be seen from Figure 6 that when the SNR 
is −20 dB, the particle velocity polarization characteristics are used; when the 0th- and 1st-
order particle velocity polarization characteristics are used, the distinction rate is 84.54%. 
When the 0th-, 1st-, 2nd-, and 3rd-order particle velocity polarization characteristics are 
used, the distinction rate increases to 91.20%. It can be seen from the figure (0th order is + 
line; 0th and 1st order is * line; 0th, 1st, 2nd, and 3rd orders is ^ line) that as the order 
increases, the distinction rate also increases. When the SNR is greater than 5 dB, the dis-
tinction rate of the three types of polarization characteristics are all greater than 98%, and 
it can be verified that the high-order polarization characteristics can be used as effective 
features for a target and two coherent signals in water. 

 
Figure 6. The distinction rate. 

4. Experiment Results 
In this paper, the high-order particle velocity polarization trajectory measurement 

experiment is carried out in the anechoic water pool of the Acoustic Science and Technol-
ogy Laboratory, Harbin Engineering University. The length, width and depth of the water 
pool are 25 m, 15 m and 10 m, respectively. Sound absorption wedges are laid on six sides 
of the pool, which guarantees the absorption coefficient above 2 kHz of the water pool is 
greater than 0.99. Above the lower frequency limit of 2 kHz, the free sound field conditions 
can be simulated. There are two mechanical moving vehicles, denoted as Vehicle #1 and 
Vehicle #2, above the pool for lifting equipment into the water. The schematic diagram of 
the experimental arrangement is shown in Figure 7. Two transducers (Transducer #1 and 
Transducer #2) are used to transmit signals in this experiment, which are placed 11 m 
apart on one side of Vehicle #1. The vector hydrophone is sealed with an oil with good 
transmission performance and packaged with a sound permeable shell. The vector hydro-
phone is placed on Vehicle #2. The distance between the two vehicles is about 3.5 m. The 
vector hydrophone and the sources are laid 5 m underwater. 

Figure 6. The distinction rate.

4. Experiment Results

In this paper, the high-order particle velocity polarization trajectory measurement
experiment is carried out in the anechoic water pool of the Acoustic Science and Technology
Laboratory, Harbin Engineering University. The length, width and depth of the water pool
are 25 m, 15 m and 10 m, respectively. Sound absorption wedges are laid on six sides of
the pool, which guarantees the absorption coefficient above 2 kHz of the water pool is
greater than 0.99. Above the lower frequency limit of 2 kHz, the free sound field conditions
can be simulated. There are two mechanical moving vehicles, denoted as Vehicle #1 and
Vehicle #2, above the pool for lifting equipment into the water. The schematic diagram
of the experimental arrangement is shown in Figure 7. Two transducers (Transducer #1
and Transducer #2) are used to transmit signals in this experiment, which are placed
11 m apart on one side of Vehicle #1. The vector hydrophone is sealed with an oil with
good transmission performance and packaged with a sound permeable shell. The vector
hydrophone is placed on Vehicle #2. The distance between the two vehicles is about 3.5 m.
The vector hydrophone and the sources are laid 5 m underwater.
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Vehicle #1 and Vehicle #2 are equipped with the experimental instrument of the
transmitting system and the receiving system. Figure 8a shows the transmitting system.
The transmitting system consists of two signal generators (Agilent33522A), two power
amplifiers (B&K2713) and two low-frequency transducers. The cylindrical transmitting
transducers are used to generate the sound signal, which is shown in Figure 8b. The
diameter and the height of the transducers are about 30 cm and 10 cm, respectively. The
transmitting frequency range of the transducers is from 2 kHz to 8 kHz. The receiving
system is shown in Figure 8c; it is composed of a vector hydrophone, a signal conditioner
(B&K2636), a data acquisition device (B&K Pulse) and a computer. Firstly, a sinusoidal
signal is generated by the signal generator, which is amplified by the power amplifier and
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sent to the transducer. The received signals from the hydrophone are sent to the signal
conditioner to be filtered and amplified, and then acquired by the signal acquisition device.
The filter is set as a band-pass filter. Consider the signal frequency is 3150 Hz, the band-pass
filter configuration ranges from 2 kHz to 4 kHz. Finally, measurement result processing
is conducted by a computer. The signal frequency configuration of transducers in this
experiment is shown in Table 3.
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Table 3. The signal frequency configuration of transducers in this experiment.

Cases Case Description

1 Single-source emission Transducer #1 transmits signals at a frequency of 3150 Hz
Transducer #2 does not emit

2 Single-source emission Transducer #1 does not emit
Transducer #2 transmits signals at a frequency of 3150 Hz

3 Two-source emission Transducer #1 transmits signals at a frequency of 3150 Hz
Transducer #2 transmits signals at a frequency of 3150 Hz

The high-order particle velocity trajectories of a single source emission are shown
in Figures 9 and 10, according to case 1 and case 2. They are in the same frequency but
incident from different angles.
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The trajectories are shown in Figure 9: (a) is the particle velocity trajectory, the ellipse
ratio angle is 3.38◦, and the ellipse inclination angle is 167.27◦; (b) is the first-order particle
velocity gradient trajectory, the ellipse ratio angle is 3.79◦, the ellipse inclination angle is
168.86◦; (c) is the second-order particle velocity gradient trajectory, the ellipse ratio angle
is 2.56◦, the ellipse inclination angle is 168.64◦. Figure 10a shows the motion trajectory of
the ellipse ratio angle is 2.32◦, and the ellipse inclination is 47.85◦. Figure 10b shows the
first-order gradient trajectory of the ellipse ratio angle is 3.45◦, and the ellipse inclination
is 46.03◦. Figure 10c shows the second-order gradient trajectory of the ellipse ratio angle
is 5.28◦, and the ellipse inclination is 44.60◦. It can be seen from the three graphs in
Figures 9 and 10 that when a single target is incident, the motion traces of the 0th, 1st and
2nd orders are thick rods, and the slope is almost the same.

The high-order particle velocity trajectories of the two coherent signal emissions are
shown in Figure 11, according to the case 3.
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Case 3 is the condition of two coherent signals 1 and 2: (a) shows the particle velocity
motion trajectory ellipse ratio angle is 13.99◦, and the ellipse inclination is 35.43◦; (b) is the
first-order particle velocity gradient trajectory, the ellipse ratio angle is 10.2◦, and the ellipse
inclination is 56.77◦; (c) is second-order particle velocity gradient trajectory, the ellipse ratio
angle is 32.84◦, and the ellipse inclination is 85.73◦. It can be seen from the three graphs
that the ellipse inclination angles and the ellipse ratio angles of the two coherent signals are
different and changing; thus, we can judge whether there is coherent interference by the
polarization characteristics of the high-order gradient of the particle vibration velocity.

It can be intuitively seen from the above trajectories that for a single target, the particle
trajectories are thick rods, and for the coherent targets, the trajectories are ellipse. For the
same single target case, the inclination angles and ratio angles of the ellipse of each order
are almost the same. The average ratio angle of the ellipse of each order in Case 1 is 3.24◦,
and the variance is0.26◦; the average inclination angle of the ellipse of each order in Case 1
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is 168.26◦, and the variance is0.49◦ The average ratio angle of the ellipse of each order in
Case 2 is 3.68◦, and the variance is 1.49◦; the average angle of the ellipse of each order in
Case 2 is 46.16◦, and the variance is 1.77◦. For the two coherent signals case, the average
ratio angle of the ellipse of each order in Case 3 is 19.01◦, and the variance is 98.03◦; the
average angle of the ellipse of each order in Case 3 is 59.31◦, and the variance is 424.91◦.
It can be seen more clearly from the above statistical characteristics of each order of the
particle velocity gradient polarization that the variance under the condition of a single
target is small (for the experimental data, it should be less than 2◦), and the variance under
the condition of two coherent targets is large (for the experimental data, it should be tens of
degrees or even hundreds of degrees). It can be seen that it is effective to use the high-order
particle velocity polarization characteristics to judge whether the signal is a single target or
two coherent targets.

5. Conclusions

In this article, the nth-order particle velocity gradient polarization characteristics of a
desired target and multiple coherent signals are theoretically derived and experimentally
analyzed. Different orders of particle trajectories are always a line whose slope is the tangent
of the incident angle, allowing us to directly locate the desired target. In the presence of
multiple coherent interferences, the trajectories of particles of different orders are different
ellipses. Based on the high-order particle velocity gradient polarization properties, a BP
neural network can effectively differentiate between the aforementioned two types of data
following the application of a polarization filter. When the SNR is greater than −20 dB,
using 0th-, 1st-, 2nd-, and 3rd-order particle velocity polarization characteristic fusion, the
distinction rate is greater than 91.2%. The proposed method based on high-order particle
velocity gradient polarization characteristics was verified by an anechoic pool experiment,
which showed good agreement with the simulation results. In summary, the high-order
particle velocity gradient polarization characteristics can be used to distinguish between the
desired target and multiple coherent signals. This approach can detect multiple coherent
signals with high precision on a compact platform with a low SNR and implies further
practical applications in future.
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