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Abstract: The term “sea waste” generally refers to any solid, liquid, or gaseous material or substance
that is discarded, disposed of, or abandoned in the ocean, sea, or any other body of salty water,
such as a lagoon, etc. This includes waste generated by human activities on land that makes its way
into the ocean, as well as waste generated by ships and other vessels at sea. Examples of sea waste
include plastic debris, chemicals and toxic substances, oil spills, sewage, and other forms of pollution.
These pollutants can harm marine ecosystems, endanger marine life, and impact human health and
wellbeing. Efforts are being made by governments, organizations, researchers, and individuals to
reduce the amount of sea waste generated, and to clean up existing waste in the ocean. Less attention
is usually paid to waste materials of natural origin as they are considered (sometimes wrongly) to
be less critical; an example is the tons of organic and inorganic material of natural origin that wash
up on the beaches daily and must be landfilled or incinerated. The present paper intends to provide
an updated review of research experiences and engineering solutions that are able to offer a second
life to natural (biological) sea waste by incorporating it into the creation of new, more sustainable
materials, and especially composites.

Keywords: marine composites development; characterization and processing; seawater resistance;
bio-based materials; marine waste; algae-derived materials; natural fibers; bioresins

1. Introduction

In the field of maritime activities, a variety of sources of refuse are present. These
need attention in relation to the management of planetary resources towards a circular
economy and include, e.g., waste originating from the extensive use of composites in the
fabrication of ships and boats. These composites remain at sea after dismantling or are very
sparsely and randomly managed, and have been brought to the attention of researchers
in the field [1]. Marine pollution caused by the presence of sea-dispersed materials is
a serious issue that receives significant attention; particularly regarding microplastics,
whose detection is increasingly perfected through qualitative and quantitative methods [2].
A recent review clarified the potential for, and the technical perspectives of, the mitigation
of microplastics’ environmental impact [3]. These materials primarily result from the
degradation of products from specific industries such as packaging [4] and textiles [5].
However, human activities at sea also contribute to the problem, for example, just to name
one activity directly connected to the sea, the progressive deterioration of fishing nets
capable of incorporating within themselves large quantities of various refuse [6].

Generally, it can be said that it should be possible to reuse sea waste in various ways,
thereby turning a problem into an opportunity. One of the most effective ways is through
recycling [7]. This involves collecting and processing materials such as plastics, metals,
and glass from the ocean to create new products. Recycling can help reduce the amount of
waste in the ocean, prevent further pollution, and preserve natural resources.
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Other ways to reuse sea waste include using it in energy recovery through incinera-
tion [8], or to produce energy directly. For example, ocean currents can be employed to
generate electricity through the use of underwater turbines [9]. Additionally, some forms of
sea waste, such as organic matter, can be converted into biofuels [10] or used as a source of
biogas through the process of anaerobic digestion; especially when rich in polysaccharides,
as is the case with algae [11].

In recent years, there has been increasing interest in recycling ocean plastics to create
new products such as clothing [12], furniture complements and stuffing [13], and building
materials [14]. This can help to reduce the amount of virgin materials needed for production
and create a circular economy for ocean waste.

Furthermore, some organizations are developing technologies to capture and utilize
carbon dioxide from the ocean to reduce greenhouse gas emissions. These technologies
involve the use of seaweed or other types of marine biomass to capture and store carbon
dioxide from the atmosphere [15].

Overall, there are many potential ways to reuse sea waste, and ongoing research and
development in this area will help to uncover new opportunities for sustainable utilization
of ocean resources.

While the above issues are well known, the relevance of natural waste as a source
of marine pollution, on which the present work focuses, is often overlooked. Biological
waste from sea-related activities can take various forms: ceramics, such as mollusk shells
made of calcium carbonate [16]; fish scales, a hydroxyapatite-collagen composite [17];
polysaccharides, such as chitin from crustacean exoskeletons [18]; or cellulose from excess
algae resulting from eutrophication [19]. Some types of waste that are considered in the
present review are shown in Figure 1 as examples of sea-derived biological waste.
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Unfortunately, there are currently no established solutions for reusing these materials.
This is still true, despite the fact that some high-profile applications have been attempted.
For example, the addition of seashell powder to active carbons magnetized with ferrous-
ferric oxide (Fe3O4) assists the removal of chemicals, such as methylene blue, from water
solutions [20]. The production of nanocomposites based on zinc oxide and biochar has also
been carried out using extracts of sea lettuce (Ulva lactuca) waste from the Black Sea [21].
Regarding biologically active carbons, a proposal has been made to obtain a novel cathode
for lithium-sulfur batteries with good initial capacity, quite easily retained thereinafter,
from Posidonia oceanica sea waste [22]. In the case of chitin-based shrimp exoskeletons,
a possible application in a soil bioremediation process has also been suggested [23].

However, in the most common case, they become waste that needs to be managed.
In natural fiber composites, cellulose in the form of short fibers or disorganized fabrics
can serve as reinforcement, while pulverized ceramic can be used as a filler, to enhance
the tensile strength and hardness of polymeric matrices. However, managing the inherent
variability of these materials’ chemical and mechanical properties is crucial for their effec-
tive use. When using natural waste as a functional material, managing its chemical and
mechanical variability is even more critical. Non-compostable marine waste, in particular,
contains high levels of cellulose, lignin, carbonates, or silicates which must be character-
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ized precisely for their purity. Additionally, they are difficult to process as they are often
contaminated by human-made waste or through their use in manufacturing chains, such
as food production or fishing. A short and introductory review has been published already,
yet it mostly concentrated on the use of calcium carbonate from seashells in concrete,
a straightforward and limited risk application [24].

The present work aims at more generally elucidating recent advancements in the use
of sea waste to produce advanced materials, with special attention to reinforced composites
that may represent the most promising destination of use for such waste. Materials produced
from waste become more sustainable in terms of environmental impact, even if they introduce
non-marginal challenges in terms of development, production, and use. This paper is focused
on such unusual topics, proposing itself as a basis for further insights.

2. Methodological Approach

The present analysis is based on a few methodological concepts.
In terms of data source and consistency:

- Apart from exceptions, which are introduced to provide an historical framework, only very
recent investigations and case studies were considered (typically within the last 5 years).
In this period, the subject investigated has experienced very significant developments.

- Only investigations and case studies from already-published scientific studies are
considered here. No references to activity carried out for industrial and/or commercial
purposes are provided outside scientifically based research.

In terms of data information analysis, with the scope of providing a better classification
of information, investigations were distinguished based on the element of the composite
materials that were substituted by biological sea waste, between:

a. reinforcement/filler (e.g., fibers or particles);
b. matrix (e.g., biopolymers)

3. Reinforcements
3.1. Ceramic Fillers

The high purity of calcium carbonate content (95–97%) of mussel shells makes this filler,
when powdered, a suitable component in cement, and in particular as the replacement for
aggregate. In this sense, mussel shells represent one of the so-called “aquaculture modifiers”,
together with, e.g., oyster shells or scallop shells, which are globally presented in [25]. In the
case of polymers, calcium carbonate is frequently used to reduce their cost, improve their
properties (in particular hardness), and better control their rheology during molding. As
a substitute for extracted limestone, mussel shells are lately in competition with eggshell
powder (ESP), which also has around 95% calcium carbonate content [26]. The two fillers have
their origin as food industry waste in common. However, it can also be observed that calcium
carbonate is prevalently formed by aragonite crystals, a high-density and -hardness material;
thence it is very adapted as a bio-filler for polymer matrices [27]. Some uncertainty remains
about whether the few percentages of proteinaceous matter present in both of them would
effectively link with the polymer or should be removed, possibly by thermal degradation, as
they might harm the performance of the manufactured materials [28].

The use of seashells in thermoplastic polymers requires more sophisticated methods,
such as directly blending in polymer pellets before twin-screw extrusion, such as in [29]
where proportions of seashells (SS) of up to 18% were introduced in a nylon-6 matrix.
Seashell content of up to 15% increases the composite crystallinity, leading to higher storage
modulus, and at 18% content, SS leads to a more pronounced elastic behavior, as indicated
by the lower loss modulus, though the temperature for degradation onset is lower for
higher oxidative stability.

Another possibility regarding the use of calcium carbonate from seashells is its intro-
duction in a bio-based polymer, as is the case for bio-epoxy. The work from Fombuena
et al. evidenced as two main points the significant increase in flexural properties, up



J. Mar. Sci. Eng. 2023, 11, 855 4 of 11

to 50%, achievable through the introduction of 30 wt.% seashell calcium carbonate, and,
once again, the higher thermal stability subsequently reached, with an increase in glass
transition temperature from 80.6 ◦C to 91 ◦C [30]. A similar work, though focusing on
bio-polyurethane with 25% castor oil resin content, was carried out in [31] to improve the
sound absorption characteristics of polyurethane foam, namely below 500 Hz, and at the
same time to enhance its compression strength. To try to standardize test results, especially
in regards to thermal characterization, it is essential to offer indications about the exact
species from which the shells are obtained, as was the case for one of the first studies in
the sector, concerning Rapana Thomasiana, a type of sea-snail [32]. To continue with the
specific uses of seashell powder from certain species, the use of cowrie shell powder in
polypropylene-acrylonitrile injection-molded composites has also been reported [33].

In Table 1, the characteristics and main achievements of some studies on seashell-
filled composites are reported. The first studies [34–41] specifically concern mechanical
properties, whereas the following ones [42–45] are described in the parts regarding other
properties, such as biological, optical, etc.

Table 1. Studies on ceramic sea waste in polymer matrices.

Matrix Ceramic Sea Waste Filler Achievements Ref.

Epoxy Up to 15% seashell powder (SSP) into a composite
with waste plastic particulate (WPP)

Reduction in wear rate, which at best passed from
9.90 to 4.61 × 10−6 from 5 to 15% SSP in 30% WPP [34]

Poly(methylmethacrylate) (PMMA) Up to 20% seashell nanopowder Microhardness increases from 16.5 to 25 HV up to
12% filler, then declines for interface stress [35]

Glass/Epoxy Up to 45% seashell powder (SSP) (sieved at
1.7 mm) with 15-25% glass fibers (GF)

Best Brinell hardness (100 HB) and tensile strength
(56.96 MPa) obtained for 35% SSP and 25% GF [36]

Polypropylene
(PP)

10 wt.% oyster and mussel shell powder in
injection molded PP

No change in tensile, Charpy impact, and stiffness.
Elongation decreased from 61% (neat PP) to 38%

(PP/oyster) and 26% (PP/mussel)
[37]

Polypropylene Up to 15 wt.% furfural-modified seashell powder

Good balance between stiffness and toughness, and
action as nucleating agent. In particular, increased

impact strength from 5.79 to 6.83 KJ/m2 with
10 wt.% filler

[38]

Jute/Epoxy Up to 10 wt.% clam shell powder (CSP)
Increasing Barcol hardness (by 22.5%) with slight

decrease in Izod impact strength (9%) for
introduction of 10 wt.% CSP

[39]

Jute/Epoxy Up to 10 wt.% clam shell powder (CSP)
With 5 wt.% CSP, increased tensile strength and

stiffness by 51.40% and 63.47%, respectively, with
increased storage and loss modulus

[40]

Castor oil polyurethane (COPU) 50 wt.% clam shell powder (CSP) untreated and
treated at 500 ◦C

Increased tensile strength from 22.9 (neat COPU) to
35.7 MPa (50 wt.% untreated CSP) and modulus

from 2037 (neat COPU) to 5859 (50 wt.% untreated
CSP) and 6506 MPa (50 wt.% treated CSP)

[41]

High-density polyethylene (HDPE) Hydroxyapatite (HA) from fish scale and seashell
calcination

Reduced cytotoxicity to MG-63 (human
osteosarcoma) cells and after 24 h interaction for a

ratio 10:3 between HDPE and HA
[42]

Acrylonitrile-butadiene-styrene (ABS) Up to 35 wt.% seashell powder (SSP)
For flame retardancy, seashells outperformed
calcium carbonate. The best value of the fire
performance index is 0.12 for 25 wt.% SSP

[43]

Polypropylene Mussel shells (MS) (up to 33%) and clam shells
(CS) (up to 32%) powder

Enhancement of solar reflectance (SR) for
polypropylene from 10% in neat PP to 35–37% in
highly filled composite, with a maximum cooling

effect of about 2–3 ◦C.

[44]

Jute/Epoxy Up to 10 wt.% clam shell powder Maintenance of Fickian behavior into water
absorption [45]

In particular, the introduction of clamshell powder has been investigated as an im-
provement for providing a more regular drilling performance of glass fiber-reinforced
plastics [46]. Most recent studies also involved the study of biodegradable matrices, such
as polycaprolactone (PCL), when added to different kinds of calcium carbonate shells, and
considered that those of agricultural origin are mainly based on calcite, while seashells are
conversely constituted of aragonite [47,48].

The above considerations open the field to the possible comparison of seashell calcium
carbonate as a filler for polymers, even a bio-based polymer such as poly(lactic acid) (PLA)
when compared to other types of food waste of different origins [49]. The main requirement
in this case is to increase as much as possible the amount of filler introduced into the polymer
with limited detriment to its structural properties: a comparative indication of the different
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percentages introduced over 100 parts of polymer is offered in Figure 2. From the reported
information, it is clear that powdered mussel shell represents one of the wastes most adapted
for matrix-filling, as demonstrated by the high quantity it is possible to introduce. Even
more recently, the introduction of seashell powder, combined with various ligno-cellulosic
wastes, also led to the potential prototyping of more structural products, such as in the case of
a centrifugal clutch lining for a motorcycle [50]. The synergistic effect of different sea-derived
wastes proved to be of interest for achieving enhanced properties with different aspects, such
as obtaining flame retardancy together with antimicrobial effects [51].
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3.2. Cellulosic Fillers

The function of filler in polymer matrices of different origins and nature can also be
exerted by fibers obtained from prevalently cellulosic sea-derived waste—namely algae and
other plants such as Posidonia oceanica—growing at sea, yet extirpated from particular areas,
typically due to weather-related events or to specific activities, such as trawl fishing [52].
These materials would become refuse unless economic opportunities for recycling are
offered. In the case of Posidonia, an over-abundant waste in the Mediterranean context,
and a refuse produced in quantities which can be only partially used for seashore protec-
tion, a proposal has been made for it to become a raw material for the wood chipboard
industry [53]. A further possibility, given the high amount and crystallinity of cellulose
present, e.g., in algae cells, is the extraction of microcrystalline cellulose (MCC) from this
waste [54,55]. This bears some interest, though it might be chemically intensive due to the
substantial use of acids required, and is also strongly dependent on the algal species for
MCC yield.

For the possible use of cellulosic marine waste in composites, the same issue reported
above for ceramic fillers appears substantial. In practice, the limited knowledge of engi-
neers about the botanical nature, properties, and origin of cellulosic biomass results in an
equally incomplete development of possible biocomposites from their use, as reported
in [56]. This suggests that a multidisciplinary approach is increasingly needed in this
respect, especially for the large and gradually growing number of species involved in
experimentation with natural fiber composites. In a waste management approach, it is
often the case that biomass from various species is available, so that it can be introduced
in a polymer matrix. This occurred, e.g., with Chlorella vulgaris, from algal oil extraction,
when mixed biomass from two further species, such as Enteromorpha and Zostera marina,
were introduced in a polyurethane elastomer matrix [57]. The morphological differences
between the species were not negligible, as shown in Figure 3; however, they were not
prevented from being applied as the reinforcement of the same matrix.
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an Enteromorpha–Zostera marina blend, S2 with Chlorella vulgaris after oil extraction, and S3 with
Chlorella vulgaris before oil extraction [57]. (Figures marked with 1 do represent samples with 1 wt.%
algae, while those marked with 5 do represent samples with 5 wt.% algae) Distributed under the
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In Table 2, a selected number of works are described which include sea-derived
cellulosic biomass as the filler for polymer matrices. In another sense, it is also possible to
directly extract the polysaccharides from algae waste by removing the possible presence
of lipids, proteins, or ash from the waste [58]. However, Table 2 concentrates on those
studies that have strived to use the biomass as received, which is deemed to be a more
sustainable practice. As per Table 2, in some cases the type of algae used is declared, while
in others it is only generically indicated as such. After presenting some works on algae,
these are followed by specific works using seagrass waste, such as Posidonia oceanica. The
objective of these studies is generally the use of bio-based matrices, such as poly(lactic acid)
(PLA), which showed promising applications in other sectors in combination with red and
brown algae waste, e.g., for collagen replacement [59]. However, limitations encountered
in their performance often recommend carrying out studies using well-tested, and often
more reliable traditional thermosetting matrices, such as epoxy. In particular, reviews exist
which investigate a particular species’ algae biomass, such as Sargassum, with a view to
creating a productive system based on it, which would include the production of epoxy
composites for the construction industry in a prominent role [60].

Table 2. Studies on prevalently cellulosic sea waste in polymer matrices.

Matrix Cellulosic Sea Waste Filler Achievements Ref.

Epoxy Algae-reclaimed fibers
The optimal algae volume (56%) for compression-molded pieces offered an

improvement on the flexural and tensile modulus of 70% and 86%,
respectively

[61]

Epoxy Gelidium corneum Exploring the application of red algae for nautical purposes, as the
replacement for fiberglass [62]

Maleinized polycaprolactone
(PCL-g-MA) Algae powder

Bacteria-encapsulated film bags (BEFB) showed comparable
biodegradability to PCL, or PCL-g-MA, after burial in compost containing

Burkholderia cepacia
[63]

Polyvinylalcohol (PVA) Ulva armoricana
Film production with glycerol (20%) in PVA (40%) and starch (40%), the
latter substituted by ulva up to 25%, which enhanced the mineralization

process
[64]

Poly(lactic acid) (PLA) Green, red, and brown algae
Melt-mixing of up to 40 wt.% algae. Minor influence of their type on tensile
properties. Strain at break only increases at 2 wt.% algae in PLA, due to the

high mineral fraction in algae biomass
[65]

Thermoplastic starch (TPS) and
polycaprolactone (PCL) Algae fibers from Sardinia Optimal processing for injection molding of algae-filled polymer: maximum

stiffness increased from PCL (114 MPa) to PCL/70 wt.% algae (1469 MPa) [66]

Wheat gluten Posidonia oceanica
Use of 10–40 wt.% wheat gluten as binder for Posidonia: flexural strength
increased from 22.2 MPa to 40.8 MPa, though no impact strength increase

revealed
[67]

Poly(lactic acid) (PLA) or
thermoplastic starch (TPS) Posidonia oceanica (PO) dead leaves

Compression molding with 10–20 wt.% PO particles with 150–300 µm, or
75–150 µm: the latter could be introduced in higher amounts, yet the

former offered higher stiffening
[68]

Potato flour/copolyester
(BIOPLAST) Posidonia oceanica (PO) Film compression molding with 10–30 wt.% of Posidonia, increasing storage

modulus at 25 ◦C from 7.83 (bare BIOPLAST) to 295 MPa (30 wt.% PO) [69]

High-density polyethylene (HDPE) Posidonia oceanica Mixing with de-inked water sludge and processing study: stiffening effect
of up to 30 wt.% PO, and increase in thermal stability [70]
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The interest in mixing different types of cellulose biomass, including marine waste
such as Posidonia oceanica, in a modern concept of composite production based, e.g., on
additive manufacturing, namely using fused deposition mode (FDM) with poly(lactic acid)
(PLA) matrix, was proposed in [71]. As shown in Figure 4, the blending of Posidonia short
fibers was performed with the reinforcement obtained from Opuntia ficus indica biomass,
which was also studied elsewhere as a prospective filler for thermoplastic starch (TPS)
composites [72].
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4. Sea Waste Polymer Matrices

An additional possibility is linked to the extraction of polymers from sea waste in
order to provide added functionalities as a matrix in composites for various uses. An
example of this prospect is given by the mixing of chitosan, extracted from refuse shrimp
shells, with Ulva lactuca fibers in a biocomposite; this proved effective for the biosorption
of cadmium ions (Cd II), most effectively at pH = 5.5 [73]. The aforementioned work
is capable of possible extension, since a similar mixture also worked for the removal of
mercury from aqueous solutions at a more acidic pH = 4 [74]. It is normally considered
more straightforward to proceed to the deacetylation of waste sea shrimps’ chitin into
chitosan to improve water retention properties; therefore, to provide possible interfaces
for hydrophilic fillers, such as lignocellulosic fibers [75]. Despite this, the reduction into
powder of chitin from seashell waste for the prospective preparation of pellets for injection
molding has been considered [76].

Beyond the chitin/chitosan system of crustaceans, such as sea shrimps, products from
excess algae biomass have also been considered in the production of biopolymers and,
prospectively, biocomposite matrices: this is the case for alginates [77], alginic acid [78], and
carrageenan, used more specifically for drug delivery purposes [79]. The blending of the
two biomasses of the wastes, chitosan, and Cladophora algae also showed some promising
properties for the removal of heavy metals ions, such as Cr(III), Cu(II), and Ni(II), from
water solutions [80].

5. Conclusions

Marine waste, such as mollusk shells, algae, and other plants, e.g., Posidonia oceanica,
and crustaceans’ exoskeletons, can be considered as a mine for useful raw materials;
namely ceramics (calcium carbonate) and biopolymers (cellulose, chitin). Composites are
a suitable “container” for this waste, especially as particle fillers in the case of ceramics,
or fibrous reinforcements in the case of biopolymers. This presents an advantage in terms
of sustainability by effectively extracting calcium carbonate and cellulose from purposely
cropped plants, therefore contributing to a reduction in raw material consumption.

The evolution of this trend, which is supposed to be constantly growing as an effect of
eutrophication and of sea-related activities, will be the development of composites entirely
based on sea waste, and possibly combining biological and man-made waste (e.g., polyester
or nylon end-of-life fishing nets, or even microplastics). This would contribute further to both
cleaning the sea of waste and reducing the raw materials required for a composites’ fabrication.
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