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Abstract: Many achievements toward unmanned surface vehicles have been made using artificial
intelligence theory to assist the decisions of the navigator. In particular, there has been rapid
development in autonomous collision avoidance techniques that employ the intelligent algorithm of
deep reinforcement learning. A novel USV collision avoidance algorithm based on deep reinforcement
learning theory for real-time maneuvering is proposed. Many improvements toward the autonomous
learning framework are carried out to improve the performance of USV collision avoidance, including
prioritized experience replay, noisy network, double learning, and dueling architecture, which can
significantly enhance the training effect. Additionally, considering the characteristics of the USV
collision avoidance problem, two effective methods to enhance training efficiency are proposed. For
better training, considering the international regulations for preventing collisions at sea and USV
maneuverability, a complete and reliable USV collision avoidance training system is established,
demonstrating an efficient learning process in complex encounter situations. A reward signal system
in line with the USV characteristics is designed. Based on the Unity maritime virtual simulation
platform, an abundant simulation environment for training and testing is designed. Through detailed
analysis, verification, and comparison, the improved algorithm outperforms the pre-improved
algorithm in terms of stability, average reward, rules learning, and collision avoidance effect, reducing
26.60% more accumulated course deviation and saving 1.13% more time.

Keywords: unmanned surface vehicles; deep reinforcement learning; autonomous collision
avoidance; COLREGs

1. Introduction

With the higher demand for unmanned surface vehicle (USV) intelligent technology,
countries have taken measures to improve the effect of autonomous collision avoidance
while safeguarding public life and property. Intelligence navigation refers to a USV that can
use a sensing system to obtain current maritime navigation information and autonomously
generate USV navigation decisions to achieve safe and reliable water navigation. Research
on intelligent USV navigation is of great practical importance for the shipping industry
and even human society.

USVs have been used for missions at sea due to their small size, high speed, low cost,
and no risk of human casualties. In ocean mapping, USVs are used to carry GNSS and
other equipment to assist in achieving accurate positioning and mapping [1]. The USV can
efficiently achieve the detection of submarine geomorphology and underwater objects by
carrying side scan sonar [2]. In hydrological monitoring, the detection area is covered by the
navigation and control of the USVs, and the hydrological parameters are monitored by the
sensor equipment [3,4]. In addition, many studies for path-tracking control [5], trajectory
tracking [6], dynamic positioning [7], and collision avoidance [8] problems are a permanent
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basis for any application of USVs, and they can forcefully advance the development of the
problem of autonomous USV navigation.

There are many ways of designing autonomous collision avoidance algorithms for
USV, such as A*, artificial potential field, velocity obstacle, dynamic window, fast marching
method, etc. Ren et al. [9] use the velocity obstacle method for collision avoidance algorithm
design, optimizing the way of setting up the velocity obstacle region for multi-ship collision
avoidance. Fan et al. [10] use an improved cuckoo search algorithm designed with an adap-
tive update step, which optimizes the global search capability and can plan a better collision
avoidance strategy. Guan et al. [11] use the A* method and dynamic window method to
design a collision avoidance algorithm for static and dynamic obstacles, optimizing the
weight coefficient of the dynamic window algorithm by deep Q network. These methods
have unique advantages in specific environments and are very effective in USV collision
avoidance algorithms, but their disadvantages are also distinct. Firstly, the operational
anthropomorphism degree of these algorithms is not sufficient. Secondly, the generalization
ability of some algorithms is poor, and the tuning of parameters is complicated. Moreover,
some algorithms simplify the actual situation when applied in training and are difficult
to be applied in practice. However, the model-free deep reinforcement learning approach
based on learning styles can effectively compensate for these shortcomings.

With the development of the deep reinforcement learning approach, it has achieved
great results in many fields due to its outstanding perception and decision-making capabil-
ities, such as Go [12], video games [13], autonomous navigation [14], and medicine [15].
It is based only on itself, without any human knowledge of collision avoidance beyond
navigation rules. However, it can make excellent decisions in many challenging domains.
Especially in USV collision avoidance, reliable samples for learning are hard to obtain and
expensive. Therefore, independently, starting tabula rasa, deep reinforcement learning can
fully compensate for these problems and complete collision avoidance tasks in complex
USV encounter situations.

On the issues of USV collision avoidance, many pieces of research on autonomous
collision avoidance based on the deep reinforcement learning approach have been devel-
oped. Most researchers focus on the model-free method because this direction is easy to
implement, and for another reason, the model-based method is difficult. The model-free
method used in the USVs collision avoidance algorithm is divided into value-function-
based and policy-gradient-based [16]. The former is good at dealing with discrete action
space. Chen et al. [17] provide a representative paradigm for the discrete ship movements
and devise a unique way of training. Li et al. [18] employ the traditional artificial potential
field (APF) method to optimize the reward signal of the DQN method, resulting in a more
scientific reward signal. Shen et al. [19] improve the neural network framework for more
efficient learning, obtaining a better collision avoidance effect than the algorithm before
improvement. Zhou et al. [20] improve the collision algorithm to solve the sparse reward
problem, using two networks to generate actions and evaluate behavior. Compared to the
DQN algorithm, the training effect under the improved algorithm is better.

Research on the latter, the policy gradient method, is also widely studied. Du et al. [21]
propose an improved algorithm based on the deep deterministic policy gradient (DDPG)
algorithm [22] that combines with Douglas–Peucker (DP) algorithm to plan the path. The
Long Short-Term Memory (LSTM) architecture and rich reward function are designed
to improve the speed and stability of convergence. Xu et al. [23] also choose the DDPG
algorithm and establish a risk assessment model, improving the network structure. Their
algorithm has a good collision avoidance effect and real-time performance. Additionally,
Chen et al. [24] propose a cooperative multi-agent deep reinforcement learning algorithm
for ship collision avoidance, resulting in a good collision avoidance effect under simple
typical ship encounter situations. Considering the results of this collision avoidance
research, based on the reinforcement learning algorithm, there are some problems worth
further consideration:
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(1) In many pieces of research, the training environment in each episode is fixed, lacking
practical significance, whether complex or not.

(2) Most researchers are not selecting more random seeds to verify the superiority and
reliability of their algorithm.

(3) Some researchers are not considering the maneuverability characteristics of USVs
adequately.

Deep reinforcement learning theory provides an extraordinary way for USVs’ au-
tonomous collision avoidance safety and efficiency. Compared with the traditional methods,
it performed better in complex environments with simple designs. Furthermore, it does
not require any prior knowledge from the expert navigator about avoiding the obstacle
well; surprisingly, it is not even necessary to provide fully observed training environments,
to accomplish the complex collision task.

Aiming at the above problems and characteristics, in this paper, a USV collision
avoidance algorithm based on the deep reinforcement learning approach, DRLCA, is
designed. The main contributions of this paper are as follows:

(1) This paper considers the restriction of maneuverability and international regulations
for preventing collisions at sea (COLREGs) in the training process. A suitable train-
ing environment with stochasticity and complexity is designed based on the deep
reinforcement learning approach. Additionally, considering the collision avoidance
process for factors, a meticulous reward signal for USVs training is constructed, which
makes training more practical.

(2) Double Q learning method is used to reduce overestimation, dueling neural network
architecture to improve training effect, and prioritized experience replay to optimize
sampling. The results of various improvements are analytically compared under an
abundant training environment based on multiple random number seeds.

(3) Aiming at the hard-exploration problem caused by the training environment with strong
randomness, the noisy network method is introduced, which can enhance the detection
capability. Experimentally, the best way of noise adding in USV collision avoidance
training is confirmed. Considering the characteristics of the USVs collision avoidance
problem, the restriction of the dynamic area is introduced in training for calculation
reduction and the clip of neural network state input for training effect improvement.

This paper is organized as follows. Kinematic parameters, COLREGs, ship domain,
and USV mathematical models are in Section 2. Section 3 is about the deep reinforcement
learning approach and its optimization methods. Section 4 describes the establishment
of the training environment. In Section 5, the improved algorithm for USVs collision
avoidance is tested in the Unity environment. The last section is the summary and prospect.

2. USV Collision Avoidance Parameters
2.1. USV Collision Avoidance Characteristics

As shown in Figure 1, Y(N) and X(E) point to the north and east. (xU , yU), (xO, yO),
and (xT , yT) are the positions of our own USV, obstacle USV, and terminal. ϕU , ϕT , ϕO, φ,
αO, and θ are our USV course, absolute azimuth of the terminal and our own USV, obstacle
USV course, relative azimuth of the terminal and our own USV, absolute azimuth of the
obstacle USV and our own USV, and the relative azimuth of the obstacle USV and our
own USV. The distance between obstacle USV and our own USV is d. The speed of our
own USV and obstacle USV are VU and VO. To reflect the USV collision avoidance training
characteristics, the following Norrbin ship mathematical model is selected [25],{

Tη̇ + η + αη3 = Kδ
η = ϕ̇

(1)

where, T, K, and α are related to USV maneuverability, and the course change caused
by rudder angle change can be well calculated. Because the research object of this paper
is the “Lan Xin” USV, which has a vector propulsion system, it is necessary to consider
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the influence of the characteristics of the steering gear. The vector propulsion system is a
type of thruster that can change direction to achieve maximum speed propulsion in any
direction and can obtain additional control torque to achieve control of ship attitude change.
Therefore, the following equation, the second-order propulsion angle response model, is
selected in this paper,

δ̈ + 2ζωn δ̇ + ωn
2δ = kωn

2δr (2)

where, ωn, ζ, and k are intrinsic frequency, damping ratio and proportionality coefficient as
ωn = 0.958, ζ = 0.811 and k = 0.923. δr is the target rudder angle.

Figure 1. USV collision avoidance kinematic.

The accurate division of USV encounter situations is crucial for collision avoidance
agent training, and it is divided into the following six conditions in this paper [26]:

(1) As shown in Figure 2a, when the obstacle USVO and own USVU are at the relative
azimuth of [355◦, 360◦) ∪ [0◦, 5◦), it is the head-on encounter situation. According to
the COLREGs, when there is a hazard of USV collision, both USVs have to avoid each
other and should turn to the port side as they pass.

(2) As shown in Figure 2b, when USVO is at the [247.5◦, 355◦) relative azimuth of USVU ,
and there is a risk of collision, it is the crossing-stand-on encounter situation. USVU
should stand on the course, and USVO should turn to starboard.

(3) As shown in Figure 2c, when USVO is at the [5◦, 112.5◦) relative azimuth of USVU ,
and there is a risk of collision, it is the crossing-give-way encounter situation. USVU
should turn to starboard, and USVO should stand on the course.

(4) As shown in Figure 2d, when USVU is at the [112.5◦, 247.5◦) relative azimuth of USVO,
and there is a risk of collision, it is the overtaking encounter situation. USVU should
avoid the collision, and turns to starboard or port are allowed.

(5) As shown in Figure 2e, when USVO is at the [112.5◦, 247.5◦) relative azimuth of USVU ,
and there is a risk of collision, it is the overtaking encounter situation. USVU should
stand on the course.

(6) Additionally, when the obstacle USV is in breach of rules, our own USV should avoid
it proactively.



J. Mar. Sci. Eng. 2023, 11, 812 5 of 27

(a) (b)

(c) (d)

(e)

Figure 2. Encounter situation. (a) Head-on; (b) Crossing-stand-on; (c) Crossing-give-way;
(d) Overtaking-give-way; (e) Overtaking-stand-on.
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2.2. USV Collision Avoidance Characteristics

In Figure 2, our USV and the obstacles also have a region with the radius of r, called
ship domain (SD) [27]. This domain is for each USV and is used to determine the collision
when another USV invades. There are three main ways of defining the ship domain,
theoretical analyses, experts’ knowledge, and determined empirically. The first two are
mainly based on a variable number of parameters to regulate the shape and size of the
ship domain, which is complex and detailed. The third one lacks some details but is more
concise. In this paper, the third way of a circular ship domain is chosen, which is a clean and
practical ship domain shape. It is essential for deep reinforcement learning USV collision
avoidance algorithm training. Another essential concept is the dynamic area (DA), recorded
as R, planning a circular range around USV. When the obstacle USV is not in this range,
there is no collision risk between the USVs. These two parameters are used to calculate
the collision risk index (CRI), which can not only visualize the current risk for navigation
intuitively but is also the key to guiding collision avoidance behavior. The distance at the
closest point of approaching (DCPA) and time to the closest point of approaching (TCPA)
are defined as shown in Figure 3, and they can be calculated as follows,{

DCPA = dOU sin(λ)
TCPA = dOU cos(λ)/VOU

. (3)

Figure 3. DCPA and TCPA.

Their membership functions uD and uT can be calculated as follows,

uD =


1, |DCPA| ≤ r
0.5− 0.5 sin[ π

R−r ×
DCPA(R+r)

2 ], r < |DCPA| ≤ R
0, |DCPA| > R

(4)

If TCPA > 0,

uT =


1, TCPA ≤ T1

[ T2−TCPA
T2−T1

]2, T1 < TCPA ≤ T2

0, TCPA > T2

(5)
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If TCPA ≤ 0,

uT =


1, |TCPA| ≤ T1

[ T2+TCPA
T2−T1

]2, T1 < |TCPA| ≤ T2

0, |TCPA| > T2

(6)

T1 and T2 are expressed as follows,

T1 =


√

D2
1+DCPA2

VOU
, D1 ≥ |DCPA|

0, D1 < |DCPA|
(7)

T2 =


√

D2
2−DCPA2

VOU
, D2 ≥ |DCPA|

0, D2 < |DCPA|
(8)

Therefore, the USV collision risk uCRI can be calculated as follows,

uCRI =


0, uD = 0
0, uD 6= 0, uT = 0
max(uD, uT), uD 6= 0, uT 6= 0

(9)

3. Deep Reinforcement Learning

Deep reinforcement learning theory focuses on the interaction in learning, which
addresses how an agent can maximize their reward through learning conspicuous behavior
in different states under a specific environment. It is worthwhile to note that it requires
only a small amount of prior knowledge provided by humans, but it can complete many
challenging problems. Such as path planning in a grid [28], imitating humans playing video
games [29], and controlling the movement of vehicles [30]. The deep reinforcement learning
approach does not need to investigate internal connection and hidden architecture to the
object. Through trial-and-error and delay reward, it can perform control and environment
identification tasks simultaneously [31]. The reinforcement learning theory with strong
decision-making ability is very suitable for use in the research of USVs. Based on the USV
agent and training maritime environment, this algorithm can accomplish the task of USV
collision avoidance well in a complex environment.

3.1. Deep Q Learning

Reinforcement learning theory is very suitable for use in unstructured and intricate
environments because it is almost impossible for other algorithms to accurately describe the
implicit relationship between the environment and the agent. In this way, the component
that can make decisions is called the agent, and all the others are the environment. All the
frames in reinforcement learning theory are around the constant interaction between these
two components [32]. The core of agent-environment interaction consists of the following
four elements [33]. The first element is the policy π. It describes the mapping relationship
from state to action, similar to a functional relationship, and determines the selected action
in the current state. The second element is reward signal Gt. It is a scalar form of feedback
from the environment to the agent’s behavior, and it defines the long-standing goal of
the agent in reinforcement learning processing. The third element is the value function
v. It is similar to the reward signal, a quantitative description of advantages based on
the latest state. The value function analyzes the better choice from a longer perspective.
Finally is the model, which reflects whether the agent has the ability to react to the external
environment. The method of driving the interaction process is through the Markov decision
process (MDP) [34], which consists of the following three parts. The first part is the state S,
which describes the agent and environment at the current moment t. The second part is the
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action A, which represents all possible ways an agent can influence the environment. The
third part is the reward function R, which describes the value of the reward for taking a
particular action in a given state. The last part is transition probability p(s′, r|s, a), which
selects a specific probability distribution for each state and action. In every step t, the agent
influences the environment by its action At, basing the state St−1 and reward Rt−1 of the
last step, and then getting a new state St and reward Rt. Through such a learning process,
the reinforcement learning agent can continue understanding the environment deeper and
achieve clever solutions to complex control problems.

Q learning is an algorithm [35] that not only contains the bootstrapped learning idea
from Dynamic Programming algorithm [36], learning without waiting for the end of an
episode but also allows continuous interaction with the environment without modeling, as
in the Monte Carlo method [37]. The Q learning algorithm is updated using the following
functions,

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (10)

Though Q learning has performed well in many control problems, there are still many
limitations because of the updating form of the value function based on the Q table. In
many complex control problems, the reinforcement learning approach is used to deal with
problems that are common, complex, and high-dimensional, such as tasks with huge state
space or a complex combination of forms, whereas traditional Q learning is inadequate.
Therefore, the Q table is fitted using a specific neural network. The gradient descent
technique is used instead of the Q table to update the neural network, which perfectly
makes up for the defects of traditional Q learning [38].

Figure 4 shows an update schematic diagram of the DQN algorithm. At every training
step t, the agent interacts with the environment, constantly enriches its knowledge, and
improves their behavior. The state S is fed into the neural network θ and influences the
environment by maximizing the action value obtained at this training step t. Then, the state
S changes to S′ as the environment changes, and the agent can obtain the corresponding re-
wards signal. Whereafter, the information of interaction (s, a, r, s′) is saved in the experience
replace buffer for sample and learning. The evaluating Q network output Q(s, a; θ), and
target Q network output Q(s′, a′; θ−). In this way, all the parameters of the loss function
needed for neural network training can be obtained, and the gradient descent method
is used to update the evaluating Q network. Finally, the parameters of evaluating the Q
network are copied to the target network every N step to achieve the real policy update.

Figure 4. DQN algorithm architecture.
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3.2. Collision Avoidance Algorithm for USV

When building a USV collision avoidance training framework with the deep reinforce-
ment learning approach, a complete set of state, action, and reward signals is essential and
can facilitate efficient training.

The first part is the design of state space. The USVs autonomous collision avoidance
system must be able to face complex and time-varying maritime conditions. With reliable
sensors, USVs can perceive the real-time information of obstacles within a range and
can be used for USV collision avoidance behavior training. So, the following state space
is designed,

S = {ϕU , ϕ̇U , δU , δ̇U , ϑt, dt, dO1, ϑO1, ϕO1, . . . , dOm, ϑOm, ϕOm, dS1, ϑS1, . . . , dSn, ϑSn} (11)

The state space can be divided into four parts. The first part is the state of our own
USV, which reflects the navigation information of the USV. It contains its own USV course
ϕU , the change rate of our USV course ϕ̇U , its own USV rudder angle δU , and the change
rate of the USV’s rudder angle δ̇U . The second part is the terminal state, which describes
the navigation destination of each episode. It contains the absolute azimuth of the terminal
and USVU , and the distance between USVU and the terminal. The third part is the state of
obstacle USVs, which reflects the navigation information of obstacle USVs near our USV,
and for m obstacle USVs, there are m groups. It contains the absolute azimuth of USVO
and USVO, the distance between our own USV and the obstacle USVs, and the obstacle
USVs’ course. The fourth part is the state of static obstacles with n sets of information for
n obstacles USV. It contains the absolute azimuth of static obstacles and USVO, and the
distance between our USV and static obstacles.

The second part is the building of the action space. It is appropriate to design some
actions in action space as the change of rudder angle because the USV changes its navigation
state by rudder changes, and it can be designed as the following action space,

A = {∆δ1, ∆δ2, ∆δ3, ∆δ4, . . . , ∆δk} (12)

After selecting the action, the change of target rudder angel ∆δk is obtained, and the
new target rudder angle is as follows,

δr ← δr + ∆δk (13)

In this paper, 11 different sizes of actions are designed in the action space to enable the
USV to adopt various behaviors, such as not changing the rudder angle, slightly changing,
and hard changing. Therefore, the specific designs of action space are as follows,

A = {−5◦,−4◦,−3◦,−2◦,−1◦,+0◦,+1◦,+2◦,+3◦,+4◦,+5◦} (14)

The third part is the design of the reward signal, which evaluates the various USV
behaviors at each training step. The training is to continuously learn about the new envi-
ronmental conditions and maximize their estimation of future benefits, but this estimation
is derived from the design of reliable reward signals. The reward design of this paper is
divided into the following two parts,

(1) The reward for goal

(a) Terminal reward
The terminal is where the end of USV navigation is on each training episode. The
design of the terminal reward can encourage this good behavior and affect the

whole training environment through bootstrap. When
√
(xU − xt)

2 + (yU − yt)
2

< rmin + rt, it is considered that reaching the terminal, and getting the reward, Rt.
(b) Collision reward

Avoiding obstacles is another important goal in training. Punishment for colli-
sion can teach the trained USV to keep a safe distance from obstacles. When
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√
(xU − xO)

2 + (yU − yO)
2 < r or

√
(xU − xO)

2 + (yU − yO)
2 < rO, it is consid-

ered that colliding the obstacle USV. The collision reward obtained is RO.

When
√
(xU − xO)

2 + (yU − yO)
2 < r + rS, it is considered that colliding the

static obstacle. The collision reward is RS.
(c) COLREGs reward

COLREGs provide a constraint for USV behaviors. Integrating COLREGs into the
training process in a reward signal can endow the trained USV agent with regularized
avoidance behavior. When E ∈ {E3, E4} and a /∈ {0◦,+1◦,+2◦,+3◦,+4◦,+5◦},
the reward signal RC = kCuCRI can be obtained. The more dangerous the
moment of breaking the COLREGs, the higher the penalty for USV. When
E ∈ {E3, E4} and a ∈ {0◦,+1◦,+2◦,+3◦,+4◦,+5◦}, or E ∈ {E1, E2, E5, E6},
there are the conditions that the our USV should go straight or turn left or right.
The designed reward signal is 0.

(d) Seamanship reward
When there are no obstacles or no duty to give way, our USV should keep straight
as far as possible. Therefore, the following seamanship reward is designed to
restrain the navigation behavior of the USV: When a /∈ {0◦} and uCRI = 0, the
reward is Rδ.

(2) Guiding reward
The guiding reward can enrich the reward signal in a training environment and avoid
the training difficulty caused by the sparse rewards problem.

(a) Course reward
The course that points more toward the terminal is considered to be a better
state, so the course reward signal is designed as follows,

Rϕ = kϕ(ϕk − |ϕU − ϕT |) (15)

where ϕk is the critical value of the positive or negative reward.
(b) Course better reward

The agent’s behavior is positive if it makes the course more pointed toward the
terminal after an action, so the course better reward signal is designed as follows,

R∆ϕ =


rs , if φ smaller
rb , if φ bigger
re1 , if φ doesn’t change, and φ = 0
re2 , if φ doesn’t change, and φ 6= 0

(16)

Thus, the complete reward signal function can be expressed as,

R = Rt + RO + RS + RC + Rδ + Rϕ + R∆ϕ (17)

After designing the state space, action space, and reward signal, the training
system is completed. Figure 5 shows the complete training architecture. At
each step, the state information is input into the neural network, then the value
of all actions based on the current network parameters and state is obtained
through the neural network. Then the selected action is obtained, resulting in
the environment update.
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Figure 5. Training Architecture.

4. Improvement for USV Collision Avoidance Algorithm
4.1. Double DQN

In the training process of the DQN algorithm, uncontrollable overestimation of the
action value generally exists, which is caused by the unknown of the real action value
in the learning process, resulting in the performance of the training being affected and
even falling into local optimal [39]. The DQN algorithm uses a greedy policy based on the
action with the maximum action value in the action space, which will introduce significant
maximization bias. This kind of overestimation is common. However, the influence of
overestimation on the optimal policy can be reduced as much as possible by Double Q
learning. In the traditional DQN algorithm, as shown in Equation (18), the action is chosen
through the target network, while the value estimation output is also. This operation is
the root cause of the overvaluation. Therefore, it can be decoupled by two neural network
outputs. The action is selected by the evaluated network rather than based on the target
network to reduce the impact of the overestimation problem [40]. A new calculation
method can be obtained as shown in Equation (19).

YDQN
t = r + γ max

a′
Q(s′, a′; θ−) (18)

YDouble_DQN
t = r + γQ(s′, arg max

a′
Q(s′, a′; θ); θ−) (19)
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4.2. Dueling DQN

Dueling neural network architecture is an outstanding method [41]. As shown in
Equation (20), the action value function is divided into a state value function and an
advantage function. The former describes the worth of a state, while the latter describes
the relative importance of each action. It can distinguish the value of different states and
actions, leading to more robust training.

Q(s, a; θ, α, β) = V(s; θ, β) + A(s, a; θ, α) (20)

4.3. Prioritized Experience Replay

As a pivotal part of the DQN algorithm, the experience replay buffer can reduce sample
correlation and improve sample utilization. The traditional DQN algorithm uniformly
samples the experience from the replay buffer after storing samples through action policy.
However, this form may not be optimal. In different training conditions and steps, the value
of each interaction for network training is distinct. If interactions have different sampling
probability weights, the interactions that are more valuable to the current USV training will
be assigned higher weights, which will be more conducive to agent learning [42]. Here
a significant index, TD-error, forms an essential part of the loss function and a basis for
gradient descent. This index provides easily accessible and valid evidence for the definition
of priority, making the interactions in the experience replay buffer with a certain tilt. This
random-priority method makes learning from the experience more robust. TD-error is
as follows,

TD = r + γ max
a′

Q(s′, a′; θ−)−Q(s, a; θ) (21)

Interactions with high sampling weights are also not guaranteed to be sampled at any
step, while those with low sampling weights are not necessarily not sampled. The priority
only makes the samples that need to be chosen much easier. The probability of sampling is
as follows,

P(i) =
pα

i
∑m pα

m
(22)

where P(i) is the probability of sampling for each interaction, and there are m interactions
in the experience replay buffer. α is used to adjust the effect of priority. When α → 0,
it is uniform sampling, and the higher α is, the more prominent the effect of priority on
sampling. This paper adopts proportional prioritization as follows,

pi = |TDi|+ ε (23)

where, TDi is the TD-error after normalization of TDi =
TDi

TDmax
, and ε is a parameter to

avoid the problem of zero denominators.
The off-policy method requires importance sampling weights (ISW) to correct the

bias of estimation based on different samples. However, the transfer probability of the
Q-learning algorithm is not dependent on policy but on the environment. Therefore, it
does not need ISW. Nevertheless, the prioritized experience replay method breaks this
advantage because the unbiasedness of the expected value estimation depends on the
sample with the same distribution as the expected value. The prioritized experience replay
changes the distribution of the samples in an uncontrolled way. Therefore, it is necessary to
compensate for this bias by adding ISW, which is calculated as follows,

ωi =

(
1
N

1
P(i)

)β

(24)
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This normalized ISW can make the updating process more stable. β can adjust the
impact of prioritized experience replay. When β → 1, it cancels out the inconsistent
probability effect of prioritized experience replay. So, its loss function is shown as follows,

L(θ) = E
[
ωiTDi

2
]
. (25)

4.4. Noisy Network

Because the training environment considered in this paper is multivariate, it places
high demands on the exploratory capabilities of the algorithm. Although promoting the
exploration with ε greedy policy is easy to implement and their effect is acceptable in most
cases, it is not a reasonable enough choice because the agent acting up to the greedy-action
with a specific probability value is too aimless. So, it can drive exploration by adding a
learnable noise instead of ε greedy policy [43], which has not been used in USV collision
avoidance. The weight and bias of the neural network become uncertain due to the noise
parameters, which will increase the uncertainty of neural network output and promote
agent exploration. After adding noise, the neural network can be expressed as follows,

y .
= (µw + σw � εw)x + µb + σb � εb (26)

where, weight w is divided into two parts, the weight µw without noise and the weight
σw with noise. εw is the noise parameter, and � represents element-wise multiplication
for adding the noise to each weight σw in the neural network. Similarly, µb is the bias
without noise, and σb is the bias with the noise parameter of εw. The noisy network forms a
way of exploration by reasonably controlling the noise added to each network parameter,
which can meet the different exploration needs in different training conditions. Factorized
Gaussian noise is chosen to construct the noise in the neural network, which has a lower
computational cost, that is suitable for the DQN algorithm. The noise can be constructed
as follows, {

εw
i,j = ζ(εi)ζ(ε j)

εb
j = ζ(ε j)

(27)

where, ζ(a) = sgn(a)
√
|a| is a function for construction of noise. All the value of param-

eters εi and ε j are obeyed Gaussian distribution as ε ∼ N(0, k). The variance k limits the
noise size, and the higher variance means a greater ability to explore. The mean of zero
means introducing noise parameters will not bias the original policy. Introducing a noisy
network instead of the traditional neural network is more beneficial for environment explo-
ration. The noise drives the exploration making the algorithm more flexible, reasonable,
and efficient. So, its loss function is as follows,

′
L (ζ)Noisy = Eε,ε− [E(s,a,r,s′)[r + γ max

a′
Q(s′, a′, ε−; ζ−)−Q(s, a, ε; ζ)]2]. (28)

4.5. Improvements with USV Characteristics

Since the input to the neural network in the form of USV states contains scalar values
with many differences in the order of magnitude, such as rudder angle values, direction
values, and distance values, it is not reasonable to put them directly into training. USV
state clipping is a benefit for improving the network training efficiency. By normalizing the
input, the potential problem of the large descent gradient caused by the differential input
can be avoided as much as possible, which makes neural network training more robust.

If the obstacles are too far from our own USV, the changes in the distance between
the USVs do not affect the navigation of the USV. Therefore, it is not worth wasting more
computational resources on learning these conditions. In this paper, a simplified way is
designed, using the collision avoidance parameter of DA, the distances between USVs and
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obstacles or the terminal more than the DA value R are limited to R, which can effectively
improve the training effect.

The code for this Algorithm 1 is as follows,

Algorithm 1 DRLCA algorithm code
Initialize USV training environment
Initialize experience replay buffer H to capacity of C
Initialize evaluation neural network in θ
Initialize target network in θ− = θ
Initialize variance of noise in k
For episode = 1, n do

Initialize initial states of each USV and static obstacles
Initialize speed of our USV and obtain ship domain size r in current episode
While true

Update the USV collision avoidance training environment
Generate εi and ε j
Get noise parameters
Select the action with am = arg max

a
Q(s′, arg max

a
Q(s′, a; θ), ε−; ζ−)

Changing rudder angel by execute action a∗ = am in environment, and obtain sm+1
Obtain collision avoidance reward signal R = Rt + RO + RS + RC + Rδ + Rϕ + R∆ϕ

Store current transition (sm, am, rm, sm+1) in experience replay buffer H
Assign current transition to highest priority pmax
By priority for each transition P(i), sample the random minibatch of transitions (sk , ak , rk , sk+1) from H

for learning
Caculate ISW ωi for each transition in minibatch
Caculate TD-error TDi .

Obtain yi =

{
rj, i f j + 1 is the terminal
rj + γ max

a′
Q(sj, a′, ε−; ζ−), otherwise

Using gradient descent with ISW, Update evaluate network parameters θ
Update pi = |TDi |+ ε for all samples
If it is target network updating step xN

update the weight θ− = θ
End if
The number of steps counted plus 1

End while
End for
Return the weight θ∗ = θ− of target network

5. Experiments
5.1. Training Environment

Figure 6 shows a collision avoidance training environment designed with a single
obstacle USV. The left part of this figure shows how the obstacle USV is generated, with
360 initial positions, spaced the degree of η = 1◦ evenly distributed around the circumfer-
ence. The right part of this picture shows how the static obstacles are generated, with eight
potential locations for each initial location of obstacle USV. Six of these locations are evenly
distributed around the circumference of the circle, and the other two are at the intersection
of line P1P3, line P4P6, and line P2P5. In each episode, randomly select two locations from
these eight locations to generate static obstacles. It constitutes a simulation environment
with 360 × 8 × 7 = 20,160 random combinations of obstacles. In addition, the simulation
in this paper is based on the Unity virtual marine simulation training and testing platform.

This experiment is based on 2× RTX 2080Ti GPUs, Xeon Gold 5218 CPU, Python 3.6,
and Tensorflow 1.15 for environment building, algorithm training, and collision avoid-
ance testing.
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Figure 6. Training environment.

5.2. Framework for Training

Based on the various improvements of the algorithm structure and simulation envi-
ronment, the training hyperparameters selected in this paper are shown in Table 1. For
more stable training, the learning rate is designed to be very low and the discount factor
very high, 0.0001 and 0.99, respectively. The update frequency of the target network is
4096, and the sampling number is 600. The noise variance is 0.1, and the mean value is 0,
which ensures a suitable exploration capability while avoiding the bias caused by noise.
The ISW is initially 0.5, and the priority experience replay factor is 0.4. For better training,
start training on the 2000th step. The experience replay memory size of 1,000,000 ensures
that no experience is dropped.

Table 1. Hyperparameters for training.

Hyperparameter Value
Learning Rate 0.0001

Discount Factor 0.99
Target Network Update Frequency 4096

Replay Memory Size 1,000,000
Batch Size 600

Noise Variance 0.1
Noise Mean 0.0

Greedy Value 1.0
Importance Sampling 0.5

Linearly Anneal of Importance Sampling 1.25× 10−6

Priority Experience Replay 0.4
Replay Start Size 2000

Figure 7 shows the neural network architecture in this paper. With 900 neurons in
each layer, the green part is the traditional layer of the Q network, the yellow is the noise
layer, the blue is the dueling network architect, the orange is the addition operation, the
red is state input, and the black is the action output. The optimizer is Adam. The activation
function is Lecky_ReLU.
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Figure 7. Neural network architecture.

5.3. Training

The average reward in training is shown in Figure 8. The same ten sets of random
number seeds are selected for all algorithms for ten simulations, and the average reward
graph containing confidence regions is plotted. In ten simulations, the average reward
per 40 episodes is averaged to one value, forming ten values, and the point on the curve
is the average of these ten values. The shaded part in this figure shows the confidence
region, whose upper and lower bounds are the maximum and minimum values among
these ten values. The means of the average reward value of each algorithm over different
training stages is shown in Table 2. An individual improvement is limited, but the algorithm
proposed in this paper, DRLCA, combining all improvement methods, has a very significant
collision avoidance performance. The average reward of DRLCA rises very fast in the early
stage, especially the first point on the curve, which is already much higher than others and
smooths out at a higher average reward value position in the later stage of training.

Figure 8. Average reward.
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Table 2. Mean of rewards at different stages of training.

Alogrithm First Third of
Training

Middle Third of
Training

Last Third of
Training

DRLCA −75.86 −32.61 −20.83
DQN −91.05 −48.37 −47.26

Double DQN −85.33 −47.62 −49.55
Per DQN −81.92 −37.46 −51.17

Dueling DRLCA −96.42 −48.82 −38.18
Noisy DQN −81.97 −43.11 −34.09

As Figure 9a shows the condition of USV training in the first episode, the USV will
keep rotation because the agent has no knowledge about this environment and is basing its
movement on random exploration. Figure 9b shows the training effect in the 9th episode,
where the USV tries to collect more experience. Figure 9c shows the training effect in the
20th episode. The USV has tried more behaviors to explore this environment. Figure 9d
shows the training effect in the 46th episode, where the USV reaches the terminal for the
first time, which is very important for the training and proves that the guidance reward
designed in this paper is very effective. Figure 9e shows the effect in the 124th episode,
where the failed collision experience with the obstacle USV is crucial for better learning.
As shown in Figure 9f, the effect in the 358th episode, the USV constantly optimizes
its behavior, and within the next thousands of training episodes, the optimal collision
avoidance policy is approached continuously.

(a) (b) (c)

(d) (e) (f)

Figure 9. Training. (a) First episode; (b) 9th episode; (c) 20th episode; (d) 46th episode; (e) 124th
episode; (f) 358th episode.

To verify whether all the improvements have positive effects and whether removing
one leads to better training, an ablation study is performed. The average reward of the
ablation study is shown in Figure 10. The means of the average reward value of each
algorithm over different ablation study stages is shown in Table 3. The average reward
height and increase rate of the algorithms with any one improvement removed are lower
than the DRLCA, verifying all the improvement methods are complementary.
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Figure 10. Ablation study.

Table 3. Mean of rewards at different stages of ablation study.

Alogrithm First Third of
Training

Middle Third of
Training

Last Third of
Training

DRLCA −75.86 −32.61 −20.83
DQN −91.05 −48.37 −47.26

Without Double DQN −97.36 −43.94 −31.61
Without Per DQN −88.91 −49.68 −33.53

Without Dueling DRLCA −69.30 −35.92 −31.44
Without Noisy DQN −73.84 −52.57 −52.04

5.4. Test

The first test environment is shown in Figure 11, where our USV is in the No. 6
encounter situation with the USVO, and USVU should avoid the USVO and steers both to
port and starboard are allowed. Concurrently, the two static obstacles do not obviously
block the navigation of our own USV that can be used to test whether the USV collision
avoidance agent has learned to ignore the non-hazardous obstacles. Figure 11a shows the
effect of collision avoidance of the DRLCA algorithm and Figure 11b DQN algorithm. The
initial position of the USVO, static obstacles 1 and 2 are (402.33, 783.66), (216.34, 402.33),
and (442.76, 205.51). The course of obstacle USV is 161◦. Figure 11c shows the change of
rudder angle and course of collision avoidance of the DRLCA, Figure 11d DQN algorithm.
Figure 11e shows the changes in the distance of collision avoidance of the DRLCA algorithm,
Figure 11f DQN algorithm. By adding up 180− φ (if φ > 180◦) or φ (if φ ≤ 180◦) in each
second, the accumulated course deviation can be obtained, and the DRLCA is 1730.28◦and
DQN is 3781.80◦. The closest distances to the three obstacles are 43.89 m, 136.66 m, and
162.22 m for DRLCA, and 129.81 m, 169.04 m, and 104.55 m for DQN.

The second test environment is shown in Figure 12, where it is in the No. 1 encounter
situation, and USVU should avoid the USVO and steers both to port and starboard are
allowed. In addition, there are two static obstacles, one of which does not affect our USV’s
navigation, and the other does. It tests the collision avoidance ability when encountering
static obstacles and USV at the same time. Figure 12a,b show the effect of collision avoid-
ance of DRLCA and DQN. The initial position of the USVO, static obstacles 1 and 2 are
(654.51, 757.15), (505.24, 799.95), and (628.56, 422.74). The course of obstacle USV is 211◦.
Figure 12c,d shows the change of rudder angle and course of collision avoidance of DRLCA
and DQN. Figure 12e,f shows the distance in collision avoidance of DRLCA and DQN. In
the index of accumulated course deviation, the DRLCA is 707.51◦, and DQN is 2357.59◦.
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The closest distances to the three obstacles are 44.32 m, 245.9 m, and 99.51 m for DRLCA
and 57.6 m, 274.29 m, and 66.81 m for DQN.
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Figure 11. Encounter situation 1. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.
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Figure 12. Encounter situation 2. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.

The third test environment is shown in Figure 13. The interference from the obstacle
USV is not significant, which can verify the ability to avoid static obstacles. Figure 13a,b
show the effect of collision avoidance of DRLCA and DQN. The initial position of the
USVO, static obstacles 1 and 2 are (789.77, 422.35), (538.82, 644.89), and (461.18, 355.11).
The course of obstacle USV is 285. Figure 13c,d shows the change of rudder angle and
course of collision avoidance of DRLCA and DQN. Figure 13e,f shows the distance in
collision avoidance of DRLCA and DQN. The accumulated course deviation is 3371.51◦ for
DRLCA, and DQN could not compare because of the incomplete navigation. The closest
distances to the three obstacles are 136.02 m, 100.57 m, and 138.48 m for DRLCA and
36.45 m, 65.79 m, and 103.96 m for DQN.
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Figure 13. Encounter situation 3. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.

The fourth test environment is shown in Figure 14. Our USV is in the No. 4 encounter
situation with the obstacle USV, and there is no interference from the static obstacles.
Figure 14a,b show the effect of collision avoidance of DRLCA and DQN. The initial
position of the USVO, static obstacles 1 and 2 are (363.80, 232.70), (232.70, 636.20), and
(633.65, 431.90). The course of obstacle USV is 27◦. Figure 14c,d shows the change of
rudder angle and course of collision avoidance of DRLCA and DQN. Figure 14e,f shows
the distance in collision avoidance of DRLCA and DQN. The accumulated course deviation
is 909.19◦ and 2074.92◦ for DRLCA and DQN. The closest distances to the three obstacles
are 55.11 m, more than 300 m, and 88.98 m for DRLCA and 33.16 m, 265.91 m, and 183.41 m
for DQN.



J. Mar. Sci. Eng. 2023, 11, 812 22 of 27

(a) (b)

0 50 100 150 200
Time(s)

0

10

20

30

40

50

60

Ru
dd

er
(d
eg

)  
/  
Co

ur
se
(d
eg

) Course
Rudder

(c)

0 50 100 150 200
Time(s)

−10
0

10
20
30
40
50
60
70

Ru
dd

er
(d
eg

)  
/  
Co

ur
se
(d
eg

) Course
Rudder

(d)

0 50 100 150 200
Time(s)

50

100

150

200

250

300

Di
an

ta
nc

e(
m
)

[96,55.11]

[0,300.0]

[108,88.98]
Obs_USV
Static_Obs1
Static_Obs2

(e)

0 50 100 150 200
Time(s)

50

100

150

200

250

300

Di
an

ta
nc

e(
m
)

[97,33.16]

[102,265.91]

[97,183.41]

Obs_USV
Static_Obs1
Static_Obs2

(f)

Figure 14. Encounter situation 4. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.

Table 4 shows the comparison results for four experiments. In groups 1, 2, and
4 experiments, the DRLCA reduced the total course deviation by 54.25%, 70.00%, and
56.18%, respectively, compared with the DQN, with an average improvement of 60.14%.

In total, 100 experiments of collision avoidance under the same random number seed
are carried out. As shown in Table 5, the results of these experiments are recorded. The
number of successful arrivals, out-of-bounds, and collisions are also recorded, and the
success rate of the DRLCA is much higher. Because the failed collision avoidance will affect
the result of the accumulated course deviation, only the experiments that reach the terminal
are used for the calculation. The accumulated course deviation for DRLCA is 2150.02◦, and
DQN is 2929.36◦, improving 26.60%. Finally, the average time per experiment is compared
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for DRLCA and DQN, which are 211.875 and 214.304 s, improving by 1.13%. The improved
algorithm performs better on collision avoidance problems in this environment.

Table 4. Results of four experiments.

Experiment Result Course Deviation
Test environment 1, DRLCA arrival 1730.28◦

Test environment 1, DQN arrival 3781.80◦

Test environment 2, DRLCA arrival 707.51◦

Test environment 2, DQN arrival 2357.59◦

Test environment 3, DRLCA arrival 3371.51◦

Test environment 3, DQN collision /
Test environment 4, DRLCA arrival 909.19◦

Test environment 4, DQN arrival 2074.92◦

Table 5. Results of 100 times experiments.

Algorithm Successful Arrival Out of Bound Collision Average Accumulated Deviation of Course Average Time
DRLCA 97 3 0 2150.02◦ 211.875 s

DQN 56 30 14 2929.36◦ 214.304 s

5.5. Multi-Obstacle USV Collision Avoidance

A test effect diagram of multi-obstacle USV collision avoidance is shown in Figure 15.
As shown in Figure 15a, the first stage shows the initial condition of a test environment.
The obstacle USVs are at the position of (250, 600), (570, 480), and (800, 200). The static
obstacles are at (250, 270) and (400, 500). The course of obstacle USVs are 90◦, 225◦, and
315◦. As shown in Figure 15b, stage 2 is a condition when our own USV avoids a static
obstacle. As shown in Figure 15c, our USV encounters USVO2 in the No. 1 encounter
situation, turns to the starboard, and successfully avoids the obstacle USV. As shown in
Figure 15d, our USV encounters the USVO3 in the No. 3 encounter situation. Our USV
successfully turned to the starboard to avoid the obstacle USV according to the COLREGs.
As shown in Figure 15e, stage 5, the USVU is close to the USVO1, but there is no hazard of
collision. Therefore, our USV continued to navigate to the terminal. Finally, as shown in
Figure 15f, our USV arrives at the terminal.

(a) (b)

Figure 15. Cont.
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(c) (d)

(e) (f)

Figure 15. Multi-USVs collision avoidance environment. (a) Test stage 1; (b) Test stage 2; (c) Test
stage 3; (d) Test stage 4; (e) Test stage 5; (f) Test stage 6.

6. Conclusions

This paper proposes an autonomous USV collision avoidance framework, DRLCA,
which can be applied to USV navigation. The collision avoidance characteristics and
maneuverability of USV are considered, and an efficient method for collision avoidance
agent training is designed accordingly. A dueling architecture and a double learning
method are used to improve training efficiency. Prioritize experience replay method is
used instead of the uniform sampling method to improve sample utilization. The noisy
network method, which has not been applied to the USV collision avoidance problem,
is used to increase the exploration capability in USV training, verifying the feasibility
of this method. Combining the characteristics of USV collision avoidance, two effective
improvement methods are proposed in this paper, namely USV state clipping and DA
distance restriction. Combined with the Unity virtual marine platform, which has realistic
physical characteristics, the effect of the DRLCA is reliably verified and compared. The
result shows that the improved collision avoidance algorithm proposed in this paper has a
superior USV collision avoidance effect.

In the future, the ship domain will be replaced by an ellipse that can vary with speed
to achieve a more accurate simulation of realistic collision avoidance situations. At the same
time, the reward signal will be designed to be more detailed and associated with different
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information, such as distance, speed, and angle. How the stability and generalization ability
of the algorithm can be further improved will be investigated to cope with the situation that
about 3% of the DRLCA algorithm proposed in this study still does not arrive at the terminal.

Author Contributions: Funding acquisition, G.W.; Writing—original draft, Z.S.; Review and editing,
Y.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by “National Natural Science Foundation of China” (Grant
number 61976033), “Key Development Guidance Program of Liaoning Province of China” (Grant
number 2019JH8/10100100), “Pilot Base Construction and Pilot Verification Plan Program of Liaoning
Province of China” (Grant number 2022JH24/10200029), “China Postdoctoral Science Foundation”
(Grant number 2022M710569).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [Yunsheng Fan], upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

USV unmanned surface vehicle
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